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Abstract   Practical methodology for categorizing collaborative disciplines or 

research in a quantitative manner is presented by developing a Correlation Matrix of 

Major Disciplines (CMMD) using bibliometric data collected between 2009 and 2014. 

First, 21 major disciplines in science and engineering are defined based on journal 

publication frequency. Second, major disciplines using a comparing discipline 

correlation matrix is created and correlation score using CMMD is calculated based on 

an analyzer function that is given to the matrix elements. Third, a correlation between 

the major disciplines and 14 research fields using CMMD is calculated for validation. 

Collaborative researches are classified into three groups by partially accepting the 

definition of pluri-discipline from peer review manual, European Science Foundation, 

inner-discipline, inter-discipline and cross-discipline. Applying simple categorization 

criteria identifies three groups of collaborative research and also those results can be 

visualized. Overall, the proposed methodology supports the categorization for each 

research field. 

  

Keywords   Collaborative research, inner-disciplinary research, interdisciplinary 
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I. Introduction 

 
In recent decades, complementary collaboration between disciplines, as well 

as the re-purposing and reuse of methodologies or theoretical foundations 

between disciplines has become increasingly normal in academia (Aboelela et 

al., 2007; Bourke and Butler, 1998; Broto, Gislason and Ehlers, 2009; Cameron 

R., 2016; Huutoniemi et al., 2010; National Academies, 2004; Roco, 2008). 
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Although interdisciplinary collaboration has traditionally been associated with 

technological applications, it has proven a valuable practice in research, 

contributing to the development of several fields. As a result, interdisciplinary 

characteristics have emerged as a major issue in research and development 

(R&D) funding and knowledge production (Bruun et al., 2005; Han and 

Kyung 2011; Huutoniemi et al., 2010; Lee and Choi, 2010; Mansilla, 2005; 

Van Rijnsoever and Hessels, 2011; Sá, 2008). 

The National Research Foundation of Korea (NRF), one of the largest 

science and engineering (S&E) funding agencies in the world, organized the 

Division of Interdisciplinary Research, under the supervision of the directorate 

for basic research in science and engineering, in early 2000. The division’s 

funding is mandated to support the development and success of research 

requiring significant collaboration between S&E disciplines; while this 

mandate is specific to the NRF, funding agencies around the world continue to 

go through similar challenges. Additionally, the division is tasked with 

developing a convergence research support framework to promote creative 

and transformative research (Park et al., 2012/2013). 

For many years, this division has categorized research applications as 

interdisciplinary based on applicant proposals’ self-reported status as well as 

partial sorting by reviewers. This process has brought up a few important 

questions: are proposals interdisciplinary enough? How can inter-

disciplinarity be defined? Are there indicators for interdisciplinary fields that 

can lead to general agreement? If so, what are these key factors and how can 

they be analyzed?  

In order to answer these questions and develop a better approach to 

collaborative research funding, a more meaningful definition of a ‘discipline’ 

is required. Both researchers and funding agencies have made attempts to 

create this distinction, with varying degrees of success (Beers and Bots, 2009; 

Brandt et al., 2013; Bruun et al., 2005; Fagerberg, Landström and Martin, 

2012; Huutoniemi et al., 2010; Klein, 2006; Rafols et al., 2012; Rinia et al., 

2001; Tijssen, 1992). In fact, attempts to define and classify individual fields 

have met with difficulty since the earliest division of classical disciplines; 

because there are so many topics and several of them overlap, it is difficult to 

definitively and rigidly categorize them (Mansilla, 2005; Repko, 2008). For 

example, mathematics is originally defined by the Oxford English Dictionary 

as:  

 

“Originally: (a collective term for) geometry, arithmetic, and certain 

physical sciences involving geometrical reasoning, such as astronomy and 

optics; spec. the disciplines of the quadrivium collectively. In later use: the 
science of space, number, quantity, and arrangement, whose methods 

involve logical reasoning and usually the use of symbolic notation, and 
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which includes geometry, arithmetic, algebra, and analysis; mathematical 

operations or calculations” (Stevenson, 2010). 

 

This definition, relying mostly on exemplum, shows how early distinctions 

were created through the combination of smaller fields. As science advances 

and new fields emerge, it is difficult to keep to such qualitative definitions. 

There must be a limit in place when accounting for these new fields. Instead, 

as shown in Repko's 2008 study, the definitions become social constructs that 

have evolved and changed through additional qualitative measures. Sugimoto 

provides an in-depth discussion on how disciplines are perceived through 

various conceptual frameworks, but fails to give a specific metric or 

quantitative definition (Sugimoto and Weingart, 2015).  

While many mappings of the academic landscape have been created, they 

problematically rely on selecting disciplines subjectively (Klavans and 

Boyack, 2009) or utilizing existing map classifications (Rafols, Porter and 

Leydesdorff, 2010), making it difficult to continuously update the ever-

changing landscape. As the work of Klavans and Boyack combines and finds 

common features among 20 existing maps, the resulting disciplines are 

abstracted twice. For a funding agency relying on transparent and consistent 

evaluations, an automated process for defining these main disciplines based 

on academic institutions and not subjective discourse is required. As such, 

rather than consolidating multiple expert opinions each year, department 

names of the academic institutions provide a more direct categorization 

method. While it has not always been easy to parse this data, the 

improvements to databases have allowed access to author addresses, including 

department names. Furthermore, this method allows for a democratized 

system, where if many academic institutions were to consider a topic such as 

graphene to be regarded a major discipline, hence creating a Department of 

Graphene, this would automatically be included in the yearly discipline 

categorization.  

In this study, the researchers present novel and practical methodology for 

categorizing collaborative disciplines, such as inter-disciplines and cross-

disciplines, in a quantitative manner by developing a Correlation Matrix of 

Major Disciplines (CMMD) using bibliometric data. Research shows that 

collaborative disciplines can be identified quantitatively by first defining the 

major disciplines and then measuring the correlation between the major 

disciplines and a compared discipline. Disciplines were categorized as major 

disciplines, inner-disciplines of a specific major discipline, inter-disciplines or 

cross-disciplines of the major disciplines in this research, or emerging 

disciplines in which the data has yet to stabilize.  
The conceptual framework of the proposed methodology was introduced by 

the NRF in the 2013 Society of Research Administrators International annual 
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meeting, in a session designed for sponsors and agencies (Park, Cha and Lee, 

2013). In a previous study, the authors presented the possibility that major 

disciplines could be differentiated based on knowledge productivity, such as 

the number of publications in a specific discipline, while other disciplinary 

categories such as inner-discipline, inter-discipline, multidiscipline, and trans-

discipline might be explained by their relationship with the predefined major 

disciplines.  

In this paper, preceding work was refined and simplified to identify 

collaborative disciplines and classify disciplines based on types and levels of 

collaboration or academic dependency for practical implementation. The 

suggested approach could be an effective complimentary tool to manage the 

proposal review process in early stages and could simplify proposal 

classification and review panel organization for both funders and proposal 

applicants. 

 

 

II. Background 

 
Since the mid-to-late 1990s, the literature has recorded the frequent 

combination of knowledge between disciplines, including multi-, inter-, cross-, 

and trans-disciplinarity (Aboelela et al., 2007; European Science Foundation, 

2011, National Academies, 2004; Huutoniemi et al., 2010; Nordmann, 2004). 

The prefixes multi, inter, cross and trans have been applied to the word 

discipline; however, it is difficult to find a quantitative definition that enables 

academics around the world to find shared meaning in these terms (Mansilla, 

2005; Rafols et al., 2012). NRF defines interdisciplinary research as any 

research that breaks down disciplinary boundaries (Song and Seol, 1999; Seol 

and Song, 1999; Park et al., 2012/2013). NRF has used the national science 

and technology (S&T) standard classification system to measure 

interdisciplinarity of R&D proposals statistically by mapping multiple S&T 

classifications, but it still remains subjective manner by applicants (Song and 

Seol, 1999; Seol and Song, 1999). In order to rank the relevance of a 

proposal’s topic to the category of funding in detail, subjective measures are 

used. For example, in some cases, reviewers are asked to do the ranking 

themselves. This can cause problems for both the grant applicants and the 

funding foundation since many categories are not clear for specific topics, 

especially in interdisciplinary fields (Park, Cha and Lee, 2013; Porter and 

Rossini, 1985). 

Disciplines as a whole can be valuable references in identifying inter-

disciplinarity (Broto, Gislason and Ehlers, 2009). A discipline refers “to a 

particular branch of learning or body of knowledge” (Repko, 2008) and can be 



Asian Journal of Innovation and Policy (2016) 5.3:251-274  

255 

 

categorized by its social organizations, based on factors such as mutual 

dependence and uncertainty (Broto, Gislason and Ehlers, 2009). Researchers 

have used existing data to create a journal-journal citation matrix on document 

sets in relation to each other, but have not arrived at a quantifying value 

(Leydesdorff, Rafols and Chen, 2013). As such, the publication trends of 

major disciplines were used for the CMMD in this study. 

Many conceptual definitions of interdisciplinary research have been 

suggested by scholars (Aboelela et al., 2007; Apostel, 1972; European Science 

Foundation, 2011, National Academies, 2004; Huutoniemi et al., 2010; Klein, 

1990/ 1996; Lattuca, 2001; Repko, 2008; Rosenfield, 1992; Stember, 1991). 

Wagner et al. (2011) gives an in-depth analysis of past analysis methods of 

interdisciplinary research. Among these definitions, the European Science 

Foundation (ESF) provides relatively comprehensive meanings for practical 

use and a guideline for peer review (European Science Foundation, 2011). 

ESF suggested pluri-disciplinary research as the contrary term of mono-

discipline (European Science Foundation, 2011). Pluri-discipline was broken 

down into four categories: multidisciplinary, interdisciplinary, crossdisciplinary 

and transdisciplinary research. Each of them are then defined as follows: 

 

Multidisciplinarity is concerned with the study of a research topic within 

one discipline, with support from other disciplines, bringing together 

multiple dimensions, but always in the service of the driving discipline. 

Disciplinary elements retain their original identity. It fosters wider 

knowledge, information and methods. 

 

Interdisciplinarity is concerned with the study of a research topic within 

multiple disciplines, and with the transfer of methods from one discipline 

to another. The research topic integrates different disciplinary approaches 

and methods 

 

Crossdisciplinarity is concerned with the study of a research topic at the 

intersection of multiple disciplines, and with the commonalities among the 

disciplines involved 

 

Transdisciplinarity is concerned at once with what is between, across and 

beyond all the disciplines with the goal of understanding the present world 

under an imperative of unity of knowledge (European Science Foundation, 

2011). 

 

For the purpose of this research, we accepted these proposed definitions of 
inter-disciplinary and cross-disciplinary research and specified our own term, 
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‘inner-discipline,’ which is a discipline or field that belongs to a larger 

discipline but has yet to qualify as a major discipline. 

Because the characteristics of inter-disciplinarity are not fully known, 

several scholars have attempted to identify underlying factors of such 

collaboration, although these are mostly qualitative studies (Broto, Gislason 

and Ehlers, 2009; Ho, Choi and Lee, 2013; Van Rijnsoever and Hessels, 

2011). Some studies sought factors associated with disciplinary and 

interdisciplinary research collaboration by quantifying individual researchers’ 

characteristics, such as global innovativeness, work experience, dynamics of 

the scientific fields, and gender collected through surveys (Van Rijnsoever 

and Hessels, 2011). Others used indicators of inter-disciplinarity typology, 

such as the scope of inter-disciplinarity, type of inter-disciplinary interaction, 

and type of goals (Huutoniemi et al., 2010). These studies still remain largely 

qualitative and act as conceptual guidelines, while some are designed using 

empirical analysis for practical use for funders and policy-makers.  

Past literature has shown a recent trend toward defining inter-disciplinarity 

in a quantitative way (Bourke and Butler 1998; Kaur et al., 2012; Pan et al., 

2012; Schoolman et al., 2012; Tijssen, 1992; Xie et al., 2015; Yang and Heo 

2014; Yang, Park and Heo, 2010). Bibliometrics is a useful tool for 

identifying publication trends, authors’ academic fields, and authors’ co-

workers. Combined with citation and bibliometric analysis, which uses 

citation data, these methods provide an effective way to better examine the 

nature or characteristics of inter-disciplinary activity. Recent studies have 

utilized citation information and constructed a network analysis to 

quantitatively and visually measure inter-disciplinarity (Kaur et al., 2012; 

Schoolman et al., 2012; Small, 2009; Xie et al., 2015; Yang and Heo, 2014). 

Although this approach offers some value in individual measurement, it is 

difficult to apply in macro scale analysis, including the S&E field. 

Furthermore, previous studies initially assumed the inter-disciplinarity of 

certain research and used such assumptions as basis for later analyses (Kaur et 

al., 2012; Schoolman et al., 2012; Small, 2009; Xie et al., 2015).  

Other quantitative assessments of inter-disciplinarity in science and 

technology have been conducted based on co-occurrence of publication in 

predefined classifications using bibliometric information (Börner et al., 2012; 

Bourke and Butler, 1998; Pan et al., 2012; Tijssen, 1992). This approach is 

quite practical and simple; however, it has limitations, such as the lack of 

generalization of co-occurrence, absence of quantitatively defined core 

disciplines that can be compared with other fields of study, disregard for 

diversity of publication size in different disciplines, and the restriction of 

testing to specific fields.  
This paper proposes a method for quantifying the relevance of a research 

topic to the major disciplines within S&E, where a topic can be considered a 
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type of research field or discipline that does not fall within the list of major 

disciplines. Instead of starting from a boundary condition that initially 

assumes a certain discipline or research topic that is inter-disciplinary, the 

major disciplines are identified by the NRF in a quantitative manner using 

bibliometric data and lists of R&D fields in S&E, and correlation over the 

major disciplines is calculated using the CMMD. Both the frequency of 

publications and co-occurrences of specific journal publication are used as a 

function representing collaboration of and relation to the major disciplines. 

Through correlation, these disciplines are then shown to be inner-disciplines, 

cross-disciplines or inter-disciplines. This classification is made by defining 

the major disciplines, creating a function representative of journal frequency, 

and analyzing the correlation of a compared discipline over the major 

disciplines. The correlation values describe the relation between a research 

topic and the major discipline. For example, if a recent research topic such as 

graphene shows high correlation with major disciplines such as physics, 

material science and electrical engineering, it can be considered 

crossdisciplinary, as it is strongly related to those fields. Conversely, algebra 

can be considered an inner-discipline due to its high correlation with 

mathematics only. 

As a funding agency, the motivation for this work is not in performance 

evaluations of researchers, but instead in the interest of appropriating funds 

designated to emerging and collaborative research topics. The ability for a 

funding agency to make decisions based on repeatable and quantitative 

methods is vital to a transparent and fair system. While subjective measures 

can judge aspects not easily seen in data, they are also a problem when 

comparing several reviewers for the same funds. This work presents a 

quantitative method of classifying emerging and collaborative research topics 

that can supplement the subjective measures currently used. However, it is not 

meant to replace the entire process. Finally, while numerous researchers have 

developed maps of the academic landscape, the methods that follow a 

completely quantitative approach are difficult to implement and lack 

methodology within the literature, an important aspect of this work and the 

likelihood of implementation. 

 

 

III. Methods 

 

1. Major Discipline Definition 

 
In order to correlate either major disciplines to each other, or different 

research topics to major disciplines, it is necessary to quantitatively define 
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what a major discipline is. As the main funding agency for South Korea, the 

NRF has built a list over the last five years of fields in which it funds (NRF, 

2016). The list has over one thousand fields broken into three categories; chief 

review board, review board, and sub review board. From this list, all entries 

from chief review boards and review boards, the more general categories, 

were used as the candidates for a major discipline. This list of fields is not 

determined by a subjective measure; rather, it is a culmination of all fields and 

topics utilized in funded applications. Additions to the list in the future are 

possible, and would easily be analyzed for inclusion of major disciplines, but 

within the immediate term no additions would seem likely to contribute as a 

major discipline based on the following criteria. 

With a large initial set of keywords, the online database from the Web of 

Science (WOS) was used to determine the presence of each keyword in the 

academic community based on publications. The search filters available for 

the WOS were used to find articles published that were relevant to a specific 

field. Specifically, the option to search for author address was used. By using 

the address, the list of major discipline candidates were compared against the 

word the Universities use to define their department, i.e. Department of 

Chemistry. The number of queries returned for each candidate discipline for 

the entire period that had been stored in WOS was recorded. In order to define 

a limitation to the number of major disciplines while including a significant 

number, a value of 300,000 articles was decided as the cut-off point for a 

major discipline. This number provided 22 major disciplines and did not leave 

any obvious major disciplines out of the group, which was reduced further to 

21 major disciplines by the criteria in the following subsection due to 

duplications in the dataset. 

 

2. Data Collection 

 
All data used in this research was accessed either through the Web Of 

Science online or the API (Web of Knowledge Web Services v. 3.0) using the 

python programming language. When using data from the WOS database, it is 

important to note the methods in which the data is stored and searched. For 

most disciplines, the full name of the discipline is not stored in the WOS 

database; instead, a concatenated version is kept in place. For example, 

Chemistry is stored as Chem. This introduces errors when a word is 

concatenated to a different less common word. However, the full string 

Chemistry is still allowed to be used in the search, only the user must be 

aware of the automatic concatenation done by the database as other terms, 

such as Chemical Engineering must be searched as Chem* Eng*. For this 
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research, the search term for address is used as the WOS search tag AD, and 

when searching for keywords as the topic, the search tag TS is used. 

 
2.1 Major Disciplines 

After defining the major disciplines total search results, all data from the 

years 2009 through 2014 were downloaded for each discipline with full 

inclusion. Using the most recent six years of publication data is both more 

representational of the current academic landscape and a reasonable limit to 

the amount of data collected. In order to download the most accurate image of 

the database, a python script was used to both query the search terms and store 

the full raw data through the University account. Although the WOS API has 

a download limit of 100,000 results, the search for each discipline is split into 

yearly data. On a few disciplines, the yearly data exceeds 100,000, yet is 

under 200,000. In this case, the data is sorted in reverse order, downloaded, 

and parsed for duplicates in combination with the first set of 100,000, 

allowing any search term under 200,000 to be downloaded.  

For the search of major disciplines, a single keyword was used in the 

address search field. In this case, for a given search term, i.e. Chemistry, the 

results Department of Chemistry and Department of Chemistry and Chemical 

Engineering are both valid results. Additionally, multiple authors may have 

different addresses, resulting in a publication counting for two different search 

terms. The presence of multiple authors with different departments, or 

departments with multiple keywords, creates duplicate publications in each 

field. In order to check the overlaps, the total duplicates in one field to another 

were found. In the case of Chemical Engineering, the resulting data was 

included at a rate of 99.36% in Chemistry. This is caused by both the WOS 

concatenating search terms and the frequency of which departments are 

named as Chemistry and Chemical Engineering. The second most duplicated 

data was Biology containing 35.6% of publications from Biochemistry. 

Finally, the removal of Chemical Engineering due to the lack of unique data 

reduced the total major disciplines to 21. 

After deciding on the final 21 disciplines, all duplicate data was removed 

from the database to give a correlation based on a basic frequency of 

publications in a specific journal. This removes duplicate publications through 

database errors as well as collaborative papers. The motivation behind this is 

two folds. First and foremost, the data seems to agree with conventional ideas 

of disciplines when the duplicates are removed. Second, the use of duplicate 

data creates a strong weight on co-authored papers, which could be analyzed 

separately for their own metrics. 

Table 1 lists the final major disciplines and the total number of papers 
collected over each year. The data collection period occurred between May 
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13th and May 15th 2015. Each discipline displayed here had an overall 

publication number over 300,000 when searching through all years. Table 1 

represents the full data records collected for each of the past six years. 

 
Table 1 Yearly data downloaded for each major discipline 

Discipline Code 2009 2010 2011 2012 2013 2014 

Agriculture A 35183 37350 42936 45599 48809 51872 

Anatomy B 12788 13120 13406 13758 13552 13235 

Biochemistry C 38592 39922 43170 44564 45884 45025 

Biology D 116802 123181 132868 141010 144436 146917 

Chemistry E 160299 161809 176172 182105 194227 199700 

Computer Science F 18197 18911 20605 22690 24553 26535 

Dentistry G 17667 19061 20067 21514 22019 21155 

Electrical Eng. H 20930 22265 24644 26715 28681 31113 

Food I 19263 19930 23005 24519 27853 29417 

Internal Medicine J 23796 25619 27170 29434 30417 29704 

Material Science K 29647 30925 34596 36678 40572 44363 

Mathematics L 48438 49655 53165 57853 61249 62425 

Mechanical Eng. M 18959 20039 21810 23362 26210 28475 

Nutrition N 17166 18086 20184 20872 24423 22863 

Obstetrics O 14207 15223 16513 17510 17792 18154 

Pathology P 45851 33400 50618 53791 53822 54168 

Pharmacology Q 26457 26710 28298 29055 30674 29209 

Physics R 110782 113486 121529 124636 132182 137450 

Physiology S 25850 26262 27037 28107 29111 28690 

Psychiatry T 23512 24503 26240 27514 28576 29147 

Surgery U 61888 67653 72212 77397 83092 85911 

 

2.2 Minor Disciplines 

After creation of CMMD, any research topic can be used as a keyword to 

find the collaboration category. A large challenge to quantifiable categories is 

the lack of prior work using quantifiable measures. In order to compare the 

results of this research to outside opinion, multiple keywords from various 

known sources were collected. In this study, these keywords refer to minor 

disciplines. Table 2 shows the selected 14 minor disciplines, the source and 

defined category from the source, as well as the total number of papers for 

each minor discipline of the six years. The search terms used for research 

topics are in the supporting information. 
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Table 2 Source, category and number of publications downloaded per year 

Keyword Code Source Category 2009 2010 2011 2012 2013 2014 

3D Printing AA Gatner, 2013 
Collaborative or 
Emerging 

143 123 168 234 379 762 

Algebra BB NRF, 2016 
Inner of 
Mathematics 

3497 3513 3665 3764 3915 3885 

Artificial 
Intelligence 

CC ESF, 2011 Transdisciplinary 589 595 669 754 807 826 

Atomic Physics DD NRF, 2016 Inner of Physics 849 1159 1541 1586 927 634 

Climate Change EE 
European 
Environment 
Agency, 2014 

Collaborative or 
Emerging 

8150 9676 11585 13281 15550 16582 

Cognition FF ESF, 2011 Transdisciplinary 4974 5296 5996 6814 7738 8156 

Combinatorics GG NRF, 2016 
Inner of 
Mathematics 

261 269 291 281 285 290 

Differential 
Equations 

HH NRF, 2016 
Inner of 
Mathematics 

6678 6652 6963 7441 8085 8116 

Graphene II 
Sanchez et al., 
2012 

Collaborative or 
Emerging 

2134 3506 5683 8477 11892 16554 

Internet of Things JJ Gartner, 2011 
Collaborative or 
Emerging 

41 61 144 202 412 623 

Molecular 
Machines 

KK Schlick, 2010 
Collaborative or 
Emerging 

310 309 287 324 322 357 

Quantum 
Mechanics 

LL NRF, 2016 Inner of Physics 1789 1826 1825 1913 1988 2009 

Robotics MM ESF, 2011 Interdisciplinary 905 972 1024 1069 1230 1200 

Synthetic Biology NN ESF, 2011 Transdisciplinary 424 515 641 851 912 1040 

 

3. Analyzer Score 

 

The correlation of two disciplines is defined by the common journals in 

which each discipline publishes. By parsing the data collected through 

publications, the total publications within a specific journal are counted, 

referred to here as journal frequency. The journal frequency is used as a 

function to correlate the importance of a specific journal in one field to 

another.  

With new data sets, the analyzer function can be derived by the same 

method each time, without the need for future model fitting. The analyzer 

function is then defined by the average of the most frequent journal frequency 

of all major disciplines, which can be written as Equation 1. 
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a(x)= 

 
i=1

n
 x(P

i
)

n
                                                        (1) 

 

Where n is the total number of major disciplines, P is the set of disciplines 

with elements P
i
, where P

i
 is the set containing the journal frequency of 

different journals within a discipline and x(P
i
) is the journal frequency of the 

xth most frequent journal in a discipline. 

 

 
Figure 1 xth most frequent journal frequency (journal rank) 

 

The minimum and maximum data is displayed in grey. This graph shows 

the core part of the graph with extents of 10,000 and 200 respectively. The 

middle dotted line is the calculated average using Equation 1. 

 

4. Correlation Matrix 

 

The correlation of major discipline A to major discipline B, is referred to as 

C
a,b

, where C
a,b

 is a row-column pair of the nn matrix C. To calculate a 

discipline pair A and B, a normalized analyzer score is defined as k in 

Equation 2. 
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k= 
i=1

n
 a(i)

2
                                               (2) 

 

Where i is the argument for the analyzer function in equation 1. The value 

for an individual pair of journals in each discipline given ordered sets 

A={x
1
,x

2
,x

3
,,x

j
:x

i
x

j
i<j} and B={x

1
,x

2
,x

3
,,x

j
:x

i
x

j
i<j}  

where elements x
i
x

j
 are journal names ordered by journal frequency within 

discipline A and B. The resulting values from the analyzer function a(i) are 

multiplied. Defined in Equation 3. 

 

 

h(x)=(a(i):x
i
A)(a(i):x

i
B)                                     (3) 

 

The final correlation value for C
a,b

 is given through Equation 4, where p 

is the title of a journal in both discipline A and B. 

 

r
a,b

= 
pAB

 h(p)                                                (4) 

C
a,b

= 

r
a,b

k
*100  

 

For the minor discipline to major discipline correlation, an additional factor 

is applied to reduce the influence of a particular field on the correlation value. 

For a given major discipline a to minor discipline m, referred to as C
a,m

, a 

normalizer value t acts as the divisor for the final normalized score N
m,a

 

defined in Equation 5. 

 

t= 
i=0

n
 C

a,i
                                                         (5) 

N
m,a

= 

C
m,a

t
 

 

Where C
a,i

 is the correlation score defined in Equation 4, of discipline A 

to n total major disciplines. 
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5. Categorization 

 
Due to limited data of recently emerging fields, categorization through 

bibliometric data may be unreliable. In this case, the additional tag of 

Emerging is given to the research topic if the number of publications has 

doubled in the past 6 years, which can be found from Table 2. 

A function  𝑚𝑎𝑥𝑖(𝑥) is defined as the maximum value of the set X, where 

i is the ith maximum value such that 𝑚𝑎𝑥1(𝑥) > 𝑚𝑎𝑥2(𝑥) . Finally, the 

categorization for a minor discipline set of normalized correlations to the 

major disciplines,N
m

, is defined as: 

 

 
(6) 

 

These values are defined based on the definitions given in the Introduction 

section for inter-discipline and cross-discipline, for inter-discipline being a 

research topic, which is not central to any one specific field, and hence will 

have a lower overall correlation, which in this research was chosen as a value 

of 5. In contrast, cross-discipline is defined to be the default case such that a 

research topic is not inter-discipline and is also not considered inner-discipline, 

requiring a high correlation (above 5) to more than one major discipline.  

Further research into more research topics in the future would help in 

understanding if these values can be kept as constant or must be determined 

each year. While this is one drawback of the proposed method, it is acceptable 

for the intended purpose of correlating research topics to the major disciplines 

and being able to compare these topics against each other. 

 

 

IV. Results and Discussion 

 

1. Major Discipline 

 
This research took a bottom up approach to defining collaborative fields by 

using quantitative measures for each step of the process. The first step was in 

defining what is considered a major discipline. After finding the major 

disciplines, a correlation matrix between the major disciplines is created 

(Table 3). 
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Table 3 Correlation matrix of the major disciplines rounded to the nearest integer 

Code A B C D E F G H I J K L M N O P Q R S T U 

A * 33 38 43 10 10 11 2 33 30 3 3 2 20 7 20 18 3 33 13 11 

B 33 * 44 47 3 10 19 2 10 37 1 3 1 25 13 37 35 4 58 21 19 

C 38 44 * 71 21 11 20 2 21 47 6 3 2 29 13 35 43 5 58 15 16 

D 43 47 71 * 10 12 17 2 16 39 3 4 2 25 10 32 33 5 54 16 14 

E 10 3 21 10 * 2 3 5 18 3 36 1 10 4 1 2 8 15 5 1 1 

F 10 10 11 12 2 * 3 21 3 9 2 11 6 4 2 5 6 4 11 5 4 

G 11 19 20 17 3 3 * 1 5 24 3 1 1 13 9 16 15 2 20 8 11 

H 2 2 2 2 5 21 1 * 1 1 22 6 17 1 0 1 1 23 2 1 1 

I 33 10 21 16 18 3 5 1 * 8 5 1 2 27 3 7 11 2 11 3 3 

J 30 37 47 39 3 9 24 1 8 * 1 3 1 30 15 41 32 3 47 17 25 

K 3 1 6 3 36 2 3 22 5 1 * 1 29 1 0 1 2 38 2 0 1 

L 3 3 3 4 1 11 1 6 1 3 1 * 5 1 1 2 2 8 3 1 1 

M 2 1 2 2 10 6 1 17 2 1 29 5 * 1 0 1 1 14 2 0 1 

N 20 25 29 25 4 4 13 1 27 30 1 1 1 * 12 16 24 2 35 9 10 

O 7 13 13 10 1 2 9 0 3 15 0 1 0 12 * 14 10 1 13 6 10 

P 20 37 35 32 2 5 16 1 7 41 1 2 1 16 14 * 21 2 26 9 18 

Q 18 35 43 33 8 6 15 1 11 32 2 2 1 24 10 21 * 3 52 18 11 

R 3 4 5 5 15 4 2 23 2 3 38 8 14 2 1 2 3 * 5 2 1 

S 33 58 58 54 5 11 20 2 11 47 2 3 2 35 13 26 52 5 * 23 17 

T 13 21 15 16 1 5 8 1 3 17 0 1 0 9 6 9 18 2 23 * 6 

U 11 19 16 14 1 4 11 1 3 25 1 1 1 10 10 18 11 1 17 6 * 

 

It is useful to see the correlation of these fields within S&E for funding 

decisions as the major disciplines of researchers collaborating can be 

quantified in terms of closeness through past journal publications. Easily 

visible through Figure 2 is the tendency for Engineering and Medical fields to 

be more correlated to their own group, a sign that the methodology produces 

intuitively agreeable results. 
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Figure 2 Correlation of the major disciplines 

 

The color map shows the correlation values from 0 to 100 of the major 

Disciplines. This map makes it easy to understand which fields have high 

correlation, which is most common in similar type fields. 

 

2. Minor Discipline 

 
The final result of this research is the categorization of any given keyword 

or research topic in relation to its collaboration within major disciplines. 

Fourteen minor disciplines have been analyzed, with the correlation matrix 

shown in Table 4. The resulting correlation between the referenced minor 

disciplines and the suggested major disciplines using the CMMD is shown in 

Table 5.  



Asian Journal of Innovation and Policy (2016) 5.3:251-274  

267 

 

Table 4 Minor disciplines to the major disciplines rounded to the nearest tenth 

Code A B C D E F G H I J K L M N O P Q R S T U 

AA .6 .6 .6 .6 2.3 1.1 .8 3.5 .6 .5 2.5 .6 4.1 .4 .4 .4 .4 1.5 .5 .5 .9 

BB .1 .0 .0 .1 .1 1.4 .0 .8 .0 .0 .2 17.6 .5 .0 .0 .0 .0 2.7 .0 .1 .0 

CC .4 .3 .2 .3 .3 8.0 .2 3.1 .3 .3 .3 2.9 3.5 .2 .2 .2 .2 .4 .2 .3 .2 

DD .1 .1 .2 .3 1.4 .5 .1 4.7 .1 .1 4.1 2.1 3.5 .0 .1 .1 .1 8.9 .1 .1 .1 

EE 2.2 1.5 1.3 2.1 .6 1.5 1.0 .5 .9 1.4 .3 1.2 .7 .8 .8 1.1 1.0 1.0 1.3 1.5 1.2 

FF 1.7 2.0 1.4 1.7 .4 1.6 1.3 .3 .7 1.6 .1 1.0 .2 1.1 1.0 1.2 1.5 .5 1.9 6.1 1.4 

GG .0 .0 .1 .1 .2 3.8 .0 .5 .1 .0 .1 12.3 .2 .0 .0 .0 .0 .9 .0 .0 .0 

HH .2 .1 .1 .1 .3 1.4 .1 1.7 .1 .1 .4 26.3 3.1 .1 .1 .1 .1 1.9 .1 .1 .1 

II .2 .1 .2 .2 5.2 .3 .2 4.1 .6 .0 6.7 .9 3.7 .1 .1 .1 .1 8.7 .1 .1 .1 

JJ .1 .1 .1 .1 .2 4.3 .1 2.7 .2 .1 .2 1.2 .8 .1 .1 .1 .1 .3 .1 .1 .1 

KK .7 .6 1.3 1.2 6.6 1.3 .5 .6 .7 .5 1.9 1.0 .8 .4 .4 .6 .7 1.8 .7 .6 .5 

LL .2 .1 .3 .3 2.4 .9 .1 1.4 .3 .1 1.7 5.8 1.1 .1 .1 .1 .2 7.8 .2 .1 .1 

MM .2 .3 .2 .2 .2 2.2 .2 1.8 .1 .2 .3 .7 2.3 .1 1.0 .3 .2 .4 .2 .3 1.1 

NN 1.2 1.0 1.6 1.8 2.9 1.5 .8 .4 1.0 .9 .9 1.0 .5 .6 .6 .9 .9 .9 1.0 1.0 .8 

 
Table 5 Categorization of the minor disciplines using CMMD 

Research Topic Code Category Emerging 
Agreement with 

Reference 

3D print AA Inter Yes Yes 

Algebra BB Inner  Yes 

Artificial Intelligence CC Cross  Yes 

Atomic Physics DD Inner  Yes 

Climate Change EE Inter Yes Yes 

Cognition FF Inner  No 

Combinatorics GG Cross  No 

Differential Equations HH Inner  Yes 

Graphene II Cross Yes Yes 

Internet of Things JJ Inter Yes Yes 

Molecular Machines KK Inner  No 

Quantum Mechanics LL Cross  No 

Robotics MM Inter  Yes 

Synthetic Biology NN Inter Yes Yes 

 

When comparing against the categorization of the NRF disciplines, Algebra, 

and Differential Equations agree as inner-disciplines of Mathematics. 

However, the NRF has categorized Quantum Mechanics as an inner discipline 

of Physics, while this research has found it to have high correlations with both 
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Mathematics and Physics, easily seen in Figure 3. Suggesting there is much 

more input from the mathematics discipline than previously thought. This 

color map shows the high correlation to Mathematics and Physics, suggesting 

a Cross-discipline rather than an Inner-discipline of Physics. 

 

 
Figure 3 Correlation color map of quantum mechanics 

 

Atomic Physics was categorized as an inner discipline of Physics by the 

NRF database, but it seems to have strong correlation with Mathematics, 

Mechanical Engineering, and Physics as shown in Figure 4. However, it falls 

into the inner-discipline of Physics based on the suggested categorization 

criteria, equation (6). 

 

 
Figure 4 Correlation color map of atomic physics 

 

As the ESF manual uses Transdisciplinary, not being in the categories 

proposed here, it is considered either Inter or Cross disciplinary to validate the 

results (i.e. not Inner-disciplinary). In this view, most of the minor disciplines 

were categorized similarly to the referenced categorization of minor 

disciplines with a few exceptions such as Molecular Machines. The results in 

Figure 5 suggest it is still strongly correlated with Chemistry, leading it to be 

categorized as an Inner discipline. This color map shows the high correlation 

to Chemistry, with very little correlation to the other major disciplines, 

suggesting an Inner-discipline rather than a Collaborative discipline. 

 

 
Figure 5 Correlation color map of molecular machines 
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Finally, a good representation of how this research represents the definitions 

proposed in the ESF manual in a quantitative way is the research field 

Robotics. As the ESF defines Robotics as an inter-disciplinary field due to its 

application in a variety of disciplines, with no one major discipline taking 

ownership, an even correlation among many disciplines is to be expected, as 

seen in Figure 6. This color map shows the relatively similar correlation 

among many disciplines, suggesting a research topic that is neither cross nor 

inner disciplinary. 

 

 
Figure 6 Correlation color map of robotics 

 

The highest correlation value in Robotics can be seen as 2.3 with 

Mechanical Engineering, an unsurprising result. Additionally, Electrical 

Engineering and Obstetrics both have correlation values of approximately 1.8 

and 1.0 respectively. While the former is again unsurprising, the latter is more 

unique, most likely caused by the large use of robots and robotic technology 

in the discipline.  

10 of out 14 minor disciplines agreed with the referenced categorization; 3D 

print, Algebra, Artificial Intelligence, Atomic Physics, Climate Change, 

Differential Equations, Graphene, Internet of Things, Robotics, Synthetic 

Biology. Cognition and Molecular Machines are in disagreement with the 

references, as the proposed methodology suggests they are inner-disciplines of 

Psychiatry and Chemistry, respectively.  Additionally, while the reference 

material refers to Molecular Machines as both collaborative and emerging, the 

growth rate of bibliometric data does not suggest this. However, it is possible 

the low quantity of data has skewed the results. Quantum Mechanics and 

Combinatorics are considered inner-disciplines by the reference material, but 

are shown to have high correlations to more than one discipline. Quantum 

Mechanics is highly correlated to both Mathematics and Physics, while 

Combinatorics is highly correlated to both Mathematics and Computer 

Science.   

Based on the criteria stated in Table 2, the research topics 3D Print, Climate 

Change, Graphene, Internet of Things, and Synthetic Biology are emerging 

topics. As these minor disciplines were identified by Gartner (Gartner, 

2011/2013) as emerging topics, the results are in agreement. 
 

  



Asian Journal of Innovation and Policy (2016) 5.3:251-274  

270 

 

V. Discussion 

 
The purpose of this research is to introduce a quantitative method of 

categorizing disciplines and research topics in terms of their correlation to one 

another. The values produced from this correlation can be used to 

quantitatively define frequently used terms such as Inter-disciplinary. While 

this paper uses a variety of sources to ensure the accuracy of results, it is 

important to note that these references act as only a guide and cannot be used 

to truly test the validity of the results, as the current methods used by 

organizations such as the NRF and ESF are still qualitative.  

An initial search for publication frequency on a larger dataset of keywords 

in S&E would be beneficial. These keywords, though, had not been 

predefined as major or interdisciplinary, and were solely used as a source list 

for possible search terms without access to the raw database and numbers of 

keywords. 

Further improvement of the work can be done in data collection. Yearly 

data could be expanded to many more years, which would assist in the 

development of the analyzer function. Issues with the WOS database do 

introduce errors, although the error is believed to be negligible, especially as 

more yearly data is collected. Additional sources of data for publication 

records would also improve the accuracy of the correlations.  

This work is meant to be a starting point for the quantification of disciplines, 

a necessary step to improve funding allocations and allow academics to better 

understand new fields and collaborations. Additionally, the work can be 

applied as an indexing tool for academic institutions focusing on 

interdisciplinary or convergence research. In planning and development, 

institutes looking for new collaborations between seemingly unrelated 

disciplines can use this method to detect lowly correlated disciplines and 

focus on the possible convergence between them. As with any new method of 

categorization, there will be disagreements among academics on the way a 

discipline is categorized, in both the major disciplines and the categorization 

of minor disciplines. The authors acknowledge this issue and encourage 

further development of this method as a means for more accurately describing 

a discipline and more precisely (quantifiably) defining the use of words such 

as inner-,multi-,cross-,inter-, and trans-disciplinary. 
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