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Abstract Enhancing the efficiency of research and development (R&D) is crucial for 

organizations to remain competitive and generate innovative solutions. Data 

Envelopment Analysis (DEA) has emerged as a powerful tool for evaluating R&D 

efficiency. However, traditional DEA models heavily rely on the selection of input and 

output variables, which can limit their effectiveness. To overcome this dependency and 

improve the robustness of DEA, this study proposes a novel methodology that integrates 

machine learning techniques with DEA for determining the most suitable input and 

output variables. The proposed approach is particularly relevant for specialized R&D 

fields, such as Radiation Emergency Medicine (REM). REM is a critical domain that 

deals with the medical and public health consequences of nuclear emergencies. The 

selection of REM as the focus of this study is motivated by several factors, including the 

unique challenges posed by the field, the potential for significant societal impact, and the 

need for efficient resource allocation in emergency situations. By leveraging machine 

learning algorithms, such as Support Vector Machines (SVM), the proposed 

methodology aims to identify the most relevant input and output variables for DEA in 

the context of REM. The integration of machine learning enables the DEA model to 

capture complex relationships and non-linearities in the data, leading to more accurate 

and reliable efficiency assessments. The effectiveness of the proposed methodology is 

demonstrated through a comprehensive evaluation using real-world REM data. The 

results highlight the superior performance of the machine learning-integrated DEA 

approach compared to traditional DEA models. This study contributes to the 

advancement of R&D efficiency assessment in specialized fields and provides valuable 

insights for decision-makers in REM and other critical domains. 
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I. Introduction 

  
The dynamic advancement of science and technology has emerged as a central 

determinant of competitiveness among nations worldwide(Malik, 2012). In line 

with this trend, various countries are significantly increasing their annual 

budgets in the field of science and technology(Inekwe, 2015). However, mere 

increases in research and development (R&D) budgets are insufficient to drive 

progress(Wang et al., 2013). This stark reality necessitates diverse 

methodologies for efficient utilization of R&D resources, particularly in fields 

with strong public interest. 

In addition to prevailing methodologies, this study incorporates two primary 

techniques: data envelopment analysis (DEA) and machine learning. The DEA 

model, traditionally employed for efficiency assessment, has been augmented 

by the innovative application of machine learning algorithms within this 

investigation. Introduced as a pioneering technique, machine learning serves as 

a novel method, meticulously crafted to refine conventional DEA models 

through the optimization of multifaceted factors, thereby culminating in more 

accurate outcomes. The amalgamation of machine learning and DEA engenders 

an unprecedented synergy that furnishes dynamic and exhaustive solutions for 

the evaluation of R&D resources, with particular emphasis on the field of 

Radiation Emergency Medicine (REM). This fusion of methodologies not only 

enhances the evaluative process but also emphasizes the pivotal role of machine 

learning in realizing optimal efficiency within the framework of this research. 

This study aims to employ the DEA model as a method to achieve maximum 

efficiency of science and technology R&D resources. DEA is a model that 

provides dynamic, aggregate, and comparative results for evaluating 

manufacturers’ supply chains and organizational performance, organizational 

productivity, etc. (Abdullah et al., 2023) and can be implemented 

computationally through Python programming. Recognizing the limitation of 

conventional DEA models, where efficiency evaluation can vary significantly 

depending on input and output factors (Chen et al., 2021), we sought to design 

a procedure using machine learning algorithms.  

In previous studies, there has also been a study that optimizes the DMU of 

DEA with a clustering algorithm by incorporating machine learning, which is 

frequently used for optimization(Mirmozaffari et al., 2023). The integration of 

Data Envelopment Analysis (DEA) with machine learning represents a 
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significant stride in R&D efficiency evaluation. This synergy allows for a 

nuanced understanding of the qualitative and quantitative impact of employing 

these methodologies, particularly in the field of Radiation Emergency Medicine 

(REM). By focusing on optimizing R&D efficiency, our novel approach not 

only refines conventional methodologies but also showcases the broader 

potential impact, bridging technological innovation with critical public domains. 

This connection elucidates the significant societal implications and underlines 

the transformative possibilities unlocked by this research, providing a 

comprehensive perspective on the alignment of technology with pressing 

societal needs.  

 

The choice of the DEA model for evaluating R&D efficiency in this study was 

based on careful consideration of the specific characteristics of the data used. 

Unlike typical R&D projects where there might be a significant time lag between 

inputs and outputs, the data employed in this research consists of annual input 

and output measurements for each research task. This unique feature allows for 

the application of the DEA model without the need to account for temporal 

disparities. By utilizing data that captures inputs and outputs within the same 

annual timeframe, we ensure the suitability and accuracy of the DEA approach 

for assessing R&D efficiency in this particular context. 

 

Furthermore, the use of annual input-output data in this study facilitates the 

development of a more universally applicable methodology. By demonstrating 

the effectiveness of the DEA model in evaluating R&D efficiency within a 

specific temporal framework, we aim to provide a standardized approach that 

can be readily adopted by researchers and practitioners across various fields. 

This emphasis on generalizability enhances the intellectual understanding of 

readers and promotes the broader applicability of our findings, ultimately 

contributing to the advancement of R&D efficiency assessment practices. 

    

This study aims to derive the input and output parameters of DEA considering 

the specificity of R&D through this innovative machine learning approach. To 

this end, this study derives the most suitable factor for DEA by optimizing R&D 

efficiency in the field of REM (Cha et al., 2020) because, after the Fukushima 

nuclear power plant accident in 2011, the field of REM rose to prominence (Cha 

et al., 2020; Tatsuzaki et al., 2022; Coleman et al., 2012). The unique 

characteristics of a non-profit field that fuses nuclear power and medical fields 

with a focus on public interest make it suitable for this study.  

Thinking that machine learning-based DEA results could be more objectively 

compared with quantitative benchmarks rather than solely relying on human 

qualitative assessments, a new model was devised that could more precisely 

measure R&D efficiency. Preliminary interviews with experienced researchers 



Asian Journal of Innovation and Policy (2024) 13.1:001-028 

4 

 

and R&D managers in the field of REM were conducted to select the most 

relevant input and output factors. Subsequently, this study employed existing 

DEA, machine learning-integrated DEA, and quantitative benchmarks derived 

from historical data trends and peer-reviewed R&D efficiency metrics for a 

comparative evaluation. Through Pearson correlation analysis, it was confirmed 

that the machine learning-integrated DEA displayed a higher correlation with 

these quantitative benchmarks than with conventional DEA, illustrating a more 

objective and reliable measure of efficiency.   

The main findings affirm the enhanced capability of DEA when being 

integrated with machine learning, suggesting novel pathways to refine the 

accuracy of efficiency assessments across distinct research fields. This study 

particularly validates the application of machine learning as an innovative 

technique to transcend the limitations traditionally associated with DEA. By 

merging machine learning with the established DEA methodology, this study 

substantiated a targeted approach for evaluating R&D efficiency within 

specialized areas of research and development. Hence, the study can contribute 

significantly to the discourse on R&D efficiency, offering evidence-based 

insights that are of strategic value to policymakers and practitioners alike. 

 

 

II. Theoretical Backgrounds 

 

1. Research Question 

 
In this study, we seek to address the research question of ‘how integration of 

machine learning algorithms with Data Envelopment Analysis (DEA) models 

can improve the evaluation of relative efficiency among decision units (DMUs),’ 

taking into account the particularities of specific R&D fields. We explore how 

the existing DEA model can be improved by selecting input and output 

parameters to accurately reflect the unique characteristics and constraints of this 

field. This question guides us to explore innovative methodologies for 

optimizing R&D efficiency, with a particular focus on the REM sector, 

leveraging both the traditional DEA model and emerging machine learning 

techniques. 

 

2. Key Theories of the DEA Model 

 
DEA is an analytical model that measures the relative efficiency of a 

homogeneous set of decision-making units (DMUs) that have multiple input and 

output factors. The DEA model, proposed by Charnes, Cooper, and Rhodes in 

their 1978, is used to assess the efficiency of various decision-making units by 
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comparing their input-output relationships and identifying the most productive 

units that serve as benchmarks for the others. The DEA model has found broad 

application in evaluating the relative performance of entities across different 

industries and has become an important tool in performance evaluation and 

decision-making processes(Charnes et al., 1978). 

When there are n DMUs, m input factors, and s output factors, the relative 

efficiency score of the evaluated DMU p can be obtained by solving the 

following linear programming model(Charnes et al., 1978): 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸𝑝, 𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐸𝑝 =
∑ 𝑢𝑟·𝑦(𝑟,𝑝)𝑠

𝑟=1

∑ 𝑢𝑖·𝑥(𝑖,𝑝)𝑚
𝑖=1

, 
∑ 𝑢𝑟·𝑦(𝑟,𝑗)𝑠

𝑟=1

∑ 𝑢𝑖·𝑥(𝑖,𝑗)𝑚
𝑖=1

≤      1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 

= 1,2, . . . . , 𝑛, 𝑈𝑟 , 𝑢𝑖 ≥ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 =       1,2, . . . . , 𝑚 𝑎𝑛𝑑 𝑟 =  1,2, . . , 𝑠 
(1) 

 

Here, u is the weight for the output factor, and y is the weight for the input 

factor. By solving this linear programming model, the relative efficiency of each 

DMU can be calculated. By solving this problem n times, changing the 

evaluation target, the relative efficiency scores of all DMUs can be obtained, 

and the weights of the output and input factors that can maximize the efficiency 

score for each DMU are determined. The efficiency score, i.e., the optimal 

objective function value of problem (P), is greater than 0 and less than or equal 

to 1. If the efficiency score for a DMU is 1, that DMU is considered efficient, 

and if it is less than 1, it is considered inefficient. For all inefficient DMUs, a set 

of efficient DMUs, i.e., a reference set, can be found as a benchmark for 

performance improvement by solving the following dual problem: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜃, 𝑆𝑢𝑏𝑗𝑒𝑐𝑡𝑡𝑜: ∑ 𝜆𝑖 · 𝑥(𝑖, 𝑗) ≤ 𝑥(𝑖, 𝑝)  𝑓𝑜𝑟𝑎𝑙𝑙𝑖 =𝑛
𝑖=1

     1,2, . . . . , 𝑚, ∑ 𝜆𝑖 · 𝑦(𝑟, 𝑗) ≥ 𝑦(𝑟, 𝑝)  𝑓𝑜𝑟𝑎𝑙𝑙𝑟 = 1,2, . . . . , 𝑠𝑛
𝑖=1 ,      ∑ 𝜆𝑖 = 1𝑛

𝑖=1 , 

𝜆𝑖 ≥ 0   𝑓𝑜𝑟𝑎𝑙𝑙𝑗 = 1,2, . . . . , 𝑛 
 (2) 

 

Here, θ represents the efficiency score of the evaluated DMU p, and λ 

represents the weights of the other DMUs. By solving this problem, a set of 

efficient DMUs, i.e., the reference set, can be found. Each inefficient DMU can 

improve its performance and increase its efficiency based on this reference set 

(Cooper et al., 2007). The formulation of the dual problem is frequently 

employed to enhance computational efficiency. In the original problem, the 

number of constraints equals the number of Decision Making Units (DMUs) 

under scrutiny, while the dual problem includes constraints corresponding to the 

number of input and output factors. Since the quantity of input and output factors 

is usually less than that of the DMUs, the dual problem’s complexity is 
significantly reduced from a computational standpoint. However, focusing 

solely on the dual problem form of the DEA model leads to a situation where 
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the diversity and significance of the original problem model's decision variables, 

including the weights of the input and output factors, may be overlooked.  

  

Following the inception of the fundamental DEA model, specifically the CCR 

(Charnes, Cooper, Rhodes) model, an array of modified models has been 

developed. The CCR model’s limitation lies in its inability to differentiate 

between scale efficiency and pure technical efficiency, as it evaluates efficiency 

under an assumption of constant returns to scale within the decision-making unit. 

To counter this issue, prior research has introduced the BCC (Banker, Charnes, 

Cooper) model, a method capable of reflecting the variability of scale returns, 

and the efficiency value in the BCC model signifies pure technical efficiency 

under a specific production scale(Cooper et al., 2007; Lovell et al., 1999). 

Additionally, a technique to assess pure scale efficiency has been proposed, 

calculated by dividing the efficiency derived from the CCR model by that 

ascertained in the BCC model. Furthermore, the DEA model bifurcates into an 

input-oriented model and an output-oriented model based on its objectives. The 

input-oriented model seeks to generate a given level of output factor utilizing 

the minimal input factor, whereas the output-oriented model strives to maximize 

the output factor with a predetermined input factor. Also, super-efficiency was 

developed as one of the ranking decision methods among efficient DMUs, and 

there also exists a pure output factor (or input factor) model that can be used for 

multiple criteria decision making problems(Lovell et al., 1999). 

 

3. Selection of DEA Input and Output Factors 

 
Despite the critical nature of the appropriate selection and measurement of 

input and output factors for evaluating the efficiency of DMUs - a determining 

factor for the accuracy of DEA results - there has been limited research on 

establishing input and output factors within the DEA framework. A universally 

applicable methodology has not been presented (Lovell et al., 1999). Most 

applied studies rely on existing literature, subjective judgments reflecting the 

characteristics of targeted organizations, and statistical analyses of pertinent 

materials to select input and output factors. However, objective verification of 

how these selections mirror the actual performance of the organization remains 

largely unexplored (Lim, 2009). 

In DEA, the difficulty of distinguishing inefficient DMUs becomes 

exacerbated by an increase in efficient DMUs as the number of input and output 

factors rises. This complexity adds a layer of difficulty to the selection of these 

factors. Previous research has recommended that the number of DMUs should 

be at least three times the sum of the number of inputs and outputs. Furthermore, 
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an empirical rule suggests that this number should exceed the product of the 

number of input and output factors(Banker et al., 1984). 

Another previous study has laid out a general procedure for DEA application, 

structured as follows(Boussofiane et al., 1991): 
 

• First, the definition and selection of DMUs for analysis.  

• Second, the identification of pertinent input and output factors to gauge 

the relative efficiency of the selected DMUs.  

• Third, the implementation of the DEA model and an examination of the 

results. 

The focus of this study resides in the second phase: the process of 

selecting input and output factors. It is commonplace to extract many 

related factors in this stage, but excessive inclusion of related factors can 

lead to a scenario where most DMUs appear efficient, thereby diminishing 

the significance of the DEA analysis. Consequently, a restriction on this 

number is essential. 

Previous studies have proposed a three-step method to condense the initial 

list of related factors(Golany et al., 1989): 

• The first step involves subjective selection, where overlapping or 

irrelevant factors are filtered out by field experts using systematic 

methods like the Delphi method or Analytical Hierarchy Process (AHP). 

• The second step categorizes the chosen factors into input or output and 

measures the real values attributed to each DMU. Regression analysis 

may be employed to further refine the factors. 

• The third step experimentally resolves diverse DEA models with the 

remaining factors, and factors receiving consistently minor weights can 

be eliminated. 
 

The underlying ability to identify efficiency among DMUs based on these 

selected factors remains a vital consideration, and factors failing to contribute to 

this identification can be discarded. Various combinations of factors may be 

applied to the DEA model, clustering DMUs by derived efficiency scores. 

Insignificant factors affecting clustering results may be dismissed. 

While these considerations pioneer a method for selecting DEA input and 

output factors (Golany et al., 1989), they are constrained by only accounting for 

the statistical relationship between these factors and fail to reflect the real 

performance of the evaluated DMUs. Other studies have employed DEA to 

assess university department efficiency, excluding factors with minimal 

assigned weights after gauging efficiency with varied input and output 

combinations(Sinuany et al., 1996). Canonical correlation analysis has been 

utilized to measure the intercombination and partial and overall correlations of 

these factors(Sengupta, 1999). Previous research has even proposed methods to 
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eliminate factors that do not vary in efficiency ranking by assessing partial 

efficiency for each input or output factor using previously suggested profiling 

methods(Tofallis, 1996; Min et al., 1998). However, the methods detailed above 

merely elucidate the statistical correlation between factors or the relationship 

between efficiency scores and factors in sensitivity analysis, and their capacity 

to properly represent input and output factor selection remains ambiguous. They 

should be considered as information that can merely clarify the understanding 

of these factors(Min et al., 2006).   
 

4. Machine Learning Algorithms for Feature Importance Evaluation 

 
Machine learning models generate predictive results based on the importance 

of each feature, which enhances the predictive power of the model and aids in 

identifying key features and eliminating unnecessary ones(Khan et al., 2020). 

This section will explore various machine learning algorithms that can evaluate 

feature importance. 

Firstly, decision tree-based algorithms (e.g., decision trees, random forests, 

gradient boosting, etc.) calculate feature importance using their inherent 

methods(Mienye et al., 2019). They primarily use metrics such as Gini impurity 

or entropy to calculate the importance of each feature(Disha et al., 2022). 

 
   𝐺𝑖𝑛𝑖(𝑡) = 1 − ∑[𝑝(𝑖|𝑡)]2 , 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑡) = − ∑[𝑝(𝑖|𝑡) · 𝑙𝑜𝑔2𝑝(𝑖|𝑡)]  

    

(3) 

 
Gini impurity measures how mixed the classes are at each node. If all classes 

of a node are equal, the Gini impurity is zero, and if the classes are evenly 

distributed, the Gini impurity is maximum. where p(i|t) is the fraction of samples 

belonging to class i at node t. Entropy is another way to measure the purity of a 

node. Entropy is zero if all classes are equal, and maximum entropy if the classes 

are evenly distributed, where p(i|t) is the fraction of samples belonging to class 

i at node t. 

Secondly, linear models (e.g., logistic regression, linear regression, etc.) 

provide coefficients for each feature, representing the impact of each feature on 

the outcome. However, this method assumes linearity, so it cannot fully reflect 

the feature importance for non-linear relationships, which can be a limitation 

(Smyth, 2005). 

 
    𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2+. . . . +𝛽𝑛𝑥𝑛 + 𝜖 ,  

𝑝(𝑦 = 1) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥1+𝛽2𝑥2+....+𝛽𝑛𝑥𝑛)
 

(4) 

 

where y is the dependent variable, x1, x2, ..., xn are the features, β0, β1, ..., βn are 

the coefficients for each feature, and ε is the error term, where p(y=1) is the 
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probability that the dependent variable y is 1, x1, x2, ..., xn are the features, and 

β0, β1, ..., βn are the coefficients for each feature. These coefficients can be 

interpreted as feature importance, which indicates how much that feature affects 

the outcome. However, since this method assumes linearity, it may not fully 

reflect the feature importance for nonlinear relationships. 

Thirdly, regularized linear models (e.g., Lasso, Ridge, etc.) use regularization 

along with feature selection to limit the complexity of the model. Lasso uses L1 

regularization to make some coefficients zero, which serves to remove features 

of low importance(Muthukrishnan et al., 2016). 
 

   𝑚𝑖𝑛(∑(𝑦 − ( 𝛽0 + ∑ 𝛽𝑖𝑥𝑖))2 + 𝜆 ∑ |𝛽𝑖|), 𝑚𝑖𝑛(∑(𝑦 − ( 𝛽0 +
     ∑ 𝛽𝑖𝑥𝑖))2 + 𝜆 ∑ 𝛽𝑖

2) (5) 

 

where y is the dependent variable, xi is a feature, β0 and βi are coefficients for 

each feature, and λ is a regularization parameter, where y is the dependent 

variable, xi is a feature, β0 and βi are coefficients for each feature, and λ is a 

regularization parameter. 

Fourthly, SVMs transform the feature space through the kernel trick. In 

particular, linear SVMs can evaluate feature importance through the magnitude 

of the coefficients(Guo et al., 2021).  

 
   𝑓(𝑥) = 𝛽0 + ∑(𝛽𝑖𝑥𝑖) , 𝑓(𝑥) = 𝛽0 + ∑(𝛼𝑖 · 𝐾(𝑥𝑖 , 𝑥)                    (6)    

 

where x is the input vector, β0 is the bias, and βi is the coefficient for each 

feature. Here, the absolute value of the coefficient βi for each feature xi indicates 

the importance of that feature, where αi is the coefficient for each support vector 

and K is the kernel function. At this time, the coefficient αi for each support 

vector xi represents the importance of that support vector. 

Fifthly, neural networks do not directly provide feature importance, but infer 

feature importance by observing the gradient of each feature using methods like 

Gradient-based Feature Importance. There are also methods to observe how 

much change each feature causes as it passes through the layers of the neural 

network (Kabir et al., 2022). 

 

   𝐹𝐼(𝑥𝑖) = |
𝜕𝐿

𝜕𝑥𝑖
| , 𝑅𝑗 = ∑ (

𝑤𝑖𝑗·𝑥𝑖

∑ (𝑤𝑘𝑗𝑘 ·𝑥𝑘)
) · 𝑅𝑖𝑖  (7) 

 

where FI(xi) is the importance of feature xi, L is the loss function, and ∂L / ∂xi 

is the gradient of the loss function for feature xi, where Rj is the importance of 

node j, wij is the weight between nodes i and j, xi is the activation value of node  

i, and Ri is the importance of node i. 



Asian Journal of Innovation and Policy (2024) 13.1:001-028 

10 

 

Sixthly, the Permutation Feature Importance method can be applied to all 

types of algorithm models. This method uses a technique of randomly shuffling 

each feature to measure the impact of each feature on the model’s performance. 

This allows for the determination of feature importance(Altmann, 2010). 

Permutation Feature Importance is calculated with the following procedure: 

 

∙Measure the baseline performance of the model: score = f(X, y) 

∙For each attribute: 2.1. Randomly shuffle its properties: X' = shuffle(Xi), 

Measure the performance of the model again using the shuffled feature: score’ 

= f(X', y), Feature importance is calculated as the difference between the original 

performance and the blended performance: FI(xi) = score – score’, where f is the 

prediction function of the model, X is the feature, y is the target, Xi is the ith 

feature, shuffle is the random shuffle function, and FI(xi) is the importance of 

the ith feature. 

Seventhly, Partial Dependence Plots and Individual Conditional Expectation 

(ICE) plots are methods that show the distribution of features and how they 

influence predictions. While these methods do not directly provide feature 

importance, they offer insights into how features influence model 

predictions(Goldstein et al., 2015). Partial Dependence Plots (PDP): The PDP 

visualizes the relationship between feature Xi and predicted y, and is calculated 

as:  

 
    𝑃𝐷(𝑋𝑖) = 𝐸[𝑦|𝑋𝑖] (8) 

 

Here E[ ] is the expected value, which represents the average of y over all 

possible values of Xi. 
Individual Conditional Expectation (ICE) plots visualize the relationship 

between feature Xi and predicted y for each individual sample, calculated as: 

 
     𝐼𝐶𝐸(𝑋𝑖 , 𝑥) = 𝐸[𝑦|𝑋𝑖 = 𝑥] (9) 

 

where x represents an individual sample. 

   

Lastly, SHAP (SHapley Additive exPlanations) is based on the concept of 

game theory and explains how each feature contributes to the prediction. SHAP 

values measure how much each feature changes the prediction, and this method 

can be applied to all types of models (Min et al., 2023). 

 

      𝑆𝐻𝐴𝑃𝑖 = ∑(
|𝑆|! · (𝑛 − |𝑆| − 1)!)

𝑛!
) · [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)] (10) 
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where SHAPi is the SHAP value of property i. Σ represents the sum over all 

possible set of features S. |S| is the size of set S. n is the total number of features. 

f represents the predictive model. S ∪ {i} is the addition of feature i to the set S.  

Each machine learning algorithm possesses distinct strengths and weaknesses, 

and the method most suited to a given situation may vary. Consequently, cross-

validating the results using various methods becomes vital to enhance the 

reliability of the findings. The importance of features obtained in this manner 

can play an essential role in augmenting the performance of the algorithm. 

 

5. Research and Development in the Domain of Radiation 

Emergency Medicine 

 
The field of Radiation Emergency Medicine (REM) presents a distinctive 

landscape for Research and Development (R&D) initiatives. Unlike 

conventional R&D domains, projects within this field necessitate a synergistic 

collaboration from a multidisciplinary cohort of professionals. This includes 

engineers, physicians, nurses, medical technologists, social scientists, and 

disaster management specialists, among others (Cha et al., 2020). Guided 

singularly by the pursuit of public welfare(Cha et al., 2020; Tatsuzaki et al., 2022; 

Coleman et al., 2012), these projects demand meticulous contemplation of 

unique input and output parameters when employing Data Envelopment 

Analysis (DEA) models to gauge the efficiency of R&D efforts. In this milieu, 

the present study propounds a DEA model, reinforced by machine learning, 

emphasizing the establishment of criteria to assess its reliability.   

The R&D within the REM domain is particularly characterized by the in-

depth understanding that experts hold concerning research objectives, direction, 

methodology, and interpretation of outcomes. Coupled with the direct 

repercussions of the conducted research on public safety and health, stringent 

quality control and validation protocols are necessary. As a result, relying solely 

on qualitative assessments from human experts may not capture the full 

spectrum of R&D efficiency. Therefore, this study introduces a quantitatively 

rigorous evaluation method. This method compares the outcomes of the DEA 

model, enhanced by machine learning, against established quantitative 

benchmarks derived from historical data trends and standardized R&D 

efficiency metrics in peer-reviewed literature. This comparative approach 

ensures a more comprehensive and objective assessment of R&D efforts within 

the REM domain, aligning with the goal of amplifying the reliability and 

application of DEA in this specialized field.    
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Ⅲ. Research Question, Model, and Hypothesis   

 
In this study, we seek to address the research question of how integration of 

machine learning algorithms with DEA models can improve the evaluation of 

relative efficiency among DMUs, taking into account the particularities of 

specific R&D fields. We explore how the existing DEA model can be improved 

by selecting input and output parameters to accurately reflect the unique 

characteristics and constraints of this field. This question guides us to explore 

innovative methodologies for optimizing R&D efficiency, with a particular 

focus on the REM sector, leveraging both the traditional DEA model and 

emerging machine learning techniques. 

This study is designed to employ the DEA model as a means to achieve 

optimal efficiency of science and technology R&D resources. However, 

conventional DEA models are hindered by limitations, as the efficiency 

evaluation outcomes can vary significantly based on the chosen input and output 

factors (Lim, 2009). Consequently, this research aims to create a procedure to 

discern the most appropriate input and output factors for DEA, capitalizing on 

the advancements in machine learning algorithms. Through this pursuit, the 

objective is to develop a refined DEA and maximize R&D efficiency with a 

specific focus on evaluating the efficacy of national R&D projects. This study 

particularly targets the evaluation of national R&D projects in the field of 

Radiation Emergency Medicine (REM), a domain that serves a vital public 

interest. The solution method used in this study includes a methodology for 

evaluating feature importance by creating a combination of input and output 

factors and incorporating them into a machine learning algorithm. Its 

effectiveness is demonstrated through a comparison between classical DEA 

methodology and qualitative evaluation by experts. 

The hypotheses of this study include the following: Hypothesis 1: The 

machine learning-based DEA model is more adept at selecting efficient input 

and output factors compared to the traditional DEA model. Hypothesis 2: The 

machine learning-based DEA model can gauge the efficiency of national R&D 

projects in the field of radiation emergency medicine with greater precision. 

Hypothesis 3: The evaluation of feature importance according to machine 

learning algorithms can significantly contribute to selecting input and output 

factors for the DEA model. Hypothesis 4: The optimization of R&D resources 

in the field of radiation emergency medicine is achievable through the machine 

learning-based DEA model.    

 

  



Asian Journal of Innovation and Policy (2024) 13.1:001-028 

13 

 

Ⅳ. Research Methodology      

 

1. Implementation of the DEA through Python Programming   

 
This section describes the implementation of the classical DEA model applied 

to a set of 20 projects within the field of REM research and development, which 

are defined as DMUs. The implementation was carried out using Python 

programming, with the following process: 

Initially, a DEA class was created, designed to be initialized by receiving input 

and output data upon the creation of an object. The required data must be 

provided as numpy arrays with dimensions n x m and n x r, where n represents 

the number of units, m is the number of input variables, and r signifies the 

number of outputs. 

Within the DEA class, two principal methods are included: 

∙The __optimize() method manages optimization for each unit. After 

assigning initial weights to each unit, these weights are refined to minimize the 

objective function using the fmin_slsqp function from the scipy library. 

Constraints are imposed during this process via the __constraints() method. 

∙The fit() method invokes __optimize() to conduct the optimization and 

subsequently calculates the efficiency of each unit. The resulting computations 

are categorized and displayed as ‘efficient units’ (efficiency equal to or close to 

1) and ‘inefficient units’. To preserve these efficiency outcomes, two functions, 

save_results() and save_results_complete(), are furnished, storing the results in 

the form of data frames and merging them with the original data frame. 

The defined DEA class was then employed to apply the DEA model to the 

given input and output arrays, labeled as inpt_arr and outpt_arr, respectively. 

The names of each unit were denoted through comp, and by invoking dea.fit(), 

the DEA model was optimized, and the efficiency of each unit was generated. 

This process implemented the fundamental CCR model of DEA. 

 

In summary, the CCR model of DEA, developed via Python programming, 

facilitated efficiency evaluation founded on raw data of input factors and output 

factors. These elements have been predominantly considered in the appraisal of 

REM research and development. 

 

Before employing model-agnostic post-hoc methods such as permutation 

feature importance and SHAP in our analysis, we evaluated our machine 

learning model using two key metrics: Accuracy, which measures the proportion 

of correctly classified instances, and F1-Score, which balances precision and 

recall. These metrics provide a comprehensive understanding of the model’s 
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performance and suitability for the given dataset. Regarding the SHAP method, 

we specifically utilized the Kernel SHAP approximation, a well-acknowledged 

approximation technique that offers a consistent and locally accurate estimation 

of Shapley values. This approach ensures a precise interpretation of the SHAP 

values in our context.  

The robustness of our feature importance investigation has been carefully 

considered in this study. We implemented the Permutation Importance method, 

taking into account its advantages in assessing feature importance. This method 

evaluates the significance of each feature by quantifying the alteration in model 

performance following the shuffling of features, allowing for the consideration 

of interactions between features and applications independent of the model's 

linearity.  

                                     

This study utilized the Permutation Importance method, a technique that 

measures the impact of each feature on the model’s performance by randomly 

shuffling the data of the feature. This approach identifies the features that most 

significantly affect the model’s prediction accuracy by observing changes in 

performance when the features are permuted. It offers the advantage of not being 

constrained by the linearity of the model and allows for the consideration of 

feature interactions. While the SHAP methodology is a powerful tool for 

interpreting the contribution of each feature, its computational complexity and 

high computational cost may render it unsuitable for all research contexts, 

particularly when analyzing large datasets, as it provides an individual 

contribution of each feature to the model’s prediction which can be time-

consuming. In contrast, Permutation Importance is a method-agnostic approach 

with relatively lower computational cost, enabling the rapid identification of 

important features regardless of the model's complexity. It is also effective for 

high-dimensional datasets. The scientific rationale for selecting Permutation 

Importance in this research was provided by Degenhardt, Seifert, & Szymczak 

(2019), who evaluated various feature selection procedures and found 

Permutation Importance to be an effective method for quantitatively assessing 

feature importance. Based on these findings, it was determined that Permutation 

Importance would offer a more objective and expedient assessment of feature 

importance compared to other methodologies, hence its adoption for evaluating 

the feature importance of the model in this study. 

 

2. Data Acquisition and Preprocessing     

 
The data utilized in this study was acquired from the National Science and 

Technology Information Service (NTIS), a comprehensive database that 
provides information on national research and development projects in South 
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Korea. The NTIS database contains extensive data on various aspects of research 

projects, including project descriptions, funding details, research outputs, and 

participant information. 

       

For this study, we specifically focused on extracting data related to research 

projects in the field of Radiation Emergency Medicine (REM). The data 

extraction process involved several steps: 

       

  (1) Identification of relevant REM projects: We conducted a thorough search 

of the NTIS database using keywords related to radiation emergency 

medicine, such as “radiation,” “emergency,” “medical,” and “nuclear.” 

This search helped us identify research projects that were specifically 

focused on REM. 

  (2) Data collection: Once the relevant projects were identified, we collected 

detailed information on each project, including the project title, research 

objectives, funding details, research outputs (e.g., publications, patents), 

and participant information (e.g., number of researchers, affiliations). 

  (3) Data preprocessing: The collected data was then preprocessed to ensure 

its suitability for analysis. This involved data cleaning (e.g., removing 

duplicates, handling missing values), data integration (e.g., combining 

data from different sources), and data transformation (e.g., converting 

data into appropriate formats). 

  (4) Feature engineering: To prepare the data for machine learning analysis, 

we performed feature engineering by creating combinations of input and 

output variables. This process involved selecting relevant input and output 

variables based on expert knowledge and generating all possible 

combinations of these variables. The resulting combinations were used as 

features in the machine learning models. 

        

By following these steps, we were able to obtain a comprehensive and reliable 

dataset for our analysis. The data acquisition and preprocessing phase was 

crucial in ensuring the validity and reliability of our findings, as it provided a 

solid foundation for the subsequent machine learning and DEA analyses.     

 

3. Selection of Machine Learning Algorithms for DEA      

 
Before incorporating machine learning into the process, this study aimed to 

identify potential candidates for new input and output factors to be employed in 

REM field research and development. This was achieved by conducting 

interviews with highly experienced researchers and research managers 

specializing in the REM field.   
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Table 1. Candidates for Input and Output in REM R&D 

 Candidate Factors 

I

n

p

u

t 

Number of 

medical 

doctorate 

researchers 

involved 

Number of  

engineering doctorate 

researchers involved 

Research and 

development  

budget 

Number of 

international 

collaborative 

research cases 

Research 

experiment 

infrastructure score 

Output 

Achievements 

in Q1 academic 

journals 

Achievements in  

SCI-grade  

academic journals 

Number of 

 patent  

applications 

Number of 

collaborative 

research results 

between M.D. 

and Ph.D. 

Final project 

evaluation grade 

evaluated by the 

government 

department 

 
To implement machine learning, it was essential to restructure the raw data 

into a data frame, segregating it into features and classes. Each feature within 

the Pandas Dataframe, specifically configured for application to the machine 

learning algorithm, was designed as a combination of two entities, selected from 

the five inputs and five outputs identified. As a result, a total of 100 

combinations were established as features. To implement machine learning, it 

was essential to restructure the raw data into a data frame, segregating it into 

features and classes. Each feature within the Pandas Dataframe, specifically 

configured for application to the machine learning algorithm, was designed as a 

combination of two entities, selected from the five inputs and five outputs 

identified through brainstorming. By creating all possible combinations of these 

inputs and outputs, we were able to generate a diverse set of features. As a result, 

a total of 100 combinations were established as features, enriching the dataset 

and providing a comprehensive perspective for the model training. 

     

This approach not only maximized the utilization of the available data but also 

allowed for a more nuanced interpretation of the relationships between the 

different variables. With these 100 features, the machine learning model could 

capture intricate patterns and dependencies, which would potentially enhance its 

predictive accuracy and robustness. 

     
Table 2. Construction of Datasets for the Implementation of Machine Learning Models 

Instance Combination 1 .... Combination 100 Class 

DMU 1 

Results of DMU 

A 

.... .... 

DMU 20 S 

 

This restructured raw data was then trained with various machine learning 

algorithms to develop a model. The model was executed using five distinct 
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algorithms: Decision Tree, Random Forest, Gradient Boosting, Logistic 

Regression, and SVM, with hyperparameters adjusted over seven folds. The 

model’s performance was assessed through cross-validation, leading to the 

derivation of the subsequent model evaluation results. The hyperparameters for 

each algorithm were fine-tuned through the use of grid search functionality, 

allowing for the derivation of optimal parameter values. These values were then 

applied to implement a model that has been optimized to its fullest potential.       
 

 

 

Figure 1. Model Performance Results Evaluated by Cross Validation 
     

Figure 1 illustrates the comparative performance of five different machine 

learning models, including Decision Tree, Random Forest, Gradient Boosting, 

Logistic Regression, and Support Vector Machine (SVM) with a linear kernel, 

on the dataset. The evaluation was carried out using 7-fold cross-validation, and 

the results are presented in the form of a box plot. In the plot, each box represents 

the interquartile range (IQR) between the first (Q1) and third quartiles (Q3), 

encapsulating the middle 50% of the scores. The horizontal line within each box 

marks the median score (Q2), while the whiskers extend to the minimum and 

maximum scores within 1.5 times the IQR. Individual cross-validation scores 

are also plotted as points alongside the boxes. A red dashed line across the plot 

indicates the overall mean accuracy of all the models. The variations in the 

distributions reflect the relative robustness and generalization capabilities of the 

different algorithms on the given dataset. To provide a more detailed insight into 

each model’s performance and to facilitate easier differentiation, we have 

prepared a confusion matrix in addition to Figure 1 in the appendix. Based on 
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these results, we chose to use the learning model based on the SVM algorithm, 

which showed slightly higher performance.  
     

The box plot provides a visual representation of the distribution of accuracy 

scores for each model, allowing for a quick comparison of their performance. 

The SVM model stands out with the highest median accuracy and a relatively 

compact interquartile range, indicating its superior and consistent performance 

compared to the other models. The Random Forest and Gradient Boosting 

models also exhibit good performance, with their boxes overlapping with that 

of the SVM, suggesting comparable accuracy. However, the Decision Tree and 

Logistic Regression models show lower median accuracies and larger spreads, 

indicating less favorable performance. 

     

The presence of outliers, represented by individual points beyond the whiskers, 

suggests that some cross-validation folds yielded accuracy scores that deviate 

significantly from the central tendencies of the models. These outliers provide 

insights into the models' sensitivity to specific data subsets and highlight the 

importance of considering the variability of performance across different folds. 

     

The red dashed line representing the overall mean accuracy serves as a 

benchmark for comparing the models’ performance against the average. Models 

with boxes above this line, such as SVM, Random Forest, and Gradient Boosting, 

demonstrate above-average performance, while those below the line, like 

Decision Tree and Logistic Regression, indicate room for improvement. 

     

Furthermore, the relative positions and overlaps of the boxes provide 

information about the statistical significance of the differences between the 

models. The non-overlapping boxes of SVM and Decision Tree suggest a 

statistically significant difference in their performance, while the overlapping 

boxes of Random Forest and Gradient Boosting indicate that their performance 

differences may not be statistically significant. 

     

These observations from the box plot, along with the confusion matrix 

analysis, support the selection of the SVM model as the best-performing 

algorithm for this dataset. The visual insights gained from the box plot contribute 

to a comprehensive understanding of the models’ performance characteristics 

and aid in making informed decisions regarding model selection and 

interpretation. 

      

In evaluating the performance of the model, careful consideration was given 

to the phenomena of overfitting and underfitting. Overfitting refers to the 
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condition where the model excessively conforms to the training data, thereby 

diminishing its predictive performance on unseen data, while underfitting 

represents the model’s failure to capture the underlying patterns of the data, 

leading to degraded performance. To mitigate these issues, cross-validation was 

employed to assess the model’s generalization capability, and a decomposition 

of bias and variance was conducted to analyze the balance between model 

complexity and error. Bias illustrates the extent to which the model fails to learn 

the intrinsic patterns in the training data, and variance denotes the model’s 

sensitivity to random fluctuations or noise within the data. Through this rigorous 

analysis, enhancements were made to the model’s performance, resulting in 

more robust and reliable predictions. 

 

     

Ⅴ. Results      

     

1. Results derived by applying Permutation Importance to the 

SVM-based model (Selection of the most influential Combination)     

     
To apply Permutation Importance to the SVM-based model, the following 

research process was undertaken. In this study, the feature importance of the 

Support Vector Machine (SVM) model was evaluated using a method known as 

Permutation Feature Importance (PFI). Initially, a dataset was prepared, 

composed of 100 feature combinations and instances encompassing 20 DMUs, 

and then partitioned into training and validation sets. The SVM model was 

trained on the training set with a linear kernel, and Permutation Importance was 

calculated on the validation set using the permutation_importance function for 

the trained model. This function appraises the significance of features by 

iteratively shuffling each feature randomly and observing the resultant variation 

in model performance. Consequently, the mean importance and standard 

deviation for each feature were determined, allowing for a quantitative 

assessment of the importance of each feature within the SVM model. The 

following results were obtained. 
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Figure 2. Feature Importance Evaluation Results 

 

The combination that exhibited the highest importance value was the 92nd 

and 9th combination. During the Permutation Importance process, each feature 

was shuffled randomly multiple times to evaluate the change in model 

performance, with the standard deviation of this change also calculated. Features 

with a large standard deviation revealed significant variability in model 

performance upon shuffling, indicating an essential role in prediction. 

Conversely, features with a small standard deviation demonstrated that model 

performance remained relatively consistent when shuffled, indicating a less 

critical role in prediction. Hence, the most influential combination was identified 

as the 92nd. This combination was formulated from input (2nd, 4th) and output 

(1st, 4th). 

 

2. Comparison of Results Derived from Three R&D Evaluation 

Methods    

 
The first evaluation for traditional DEA was constructed on the outcomes 

obtained from 20 DMUs via traditional input and output parameters employed 

in DEA. In the R&D domain, the DEA application typically involves defining 

the research and development budget and number of research participants as 

input parameters, while output parameters are characterized as research 

deliverables.  
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In the pursuit of a more academically rigorous and scientific method for 

evaluating the reliability of the Machine Learning (ML)-based DEA, this study 

adopted a quantitative benchmarking strategy. The ML-based DEA outcomes 

were compared against quantitative benchmarks derived from historical data 

trends and standardized R&D efficiency metrics acknowledged in peer-

reviewed research. This method involved statistical analysis, where the 

correlation of ML-based DEA results with these benchmarks was calculated to 

ensure a replicable and objective assessment of the model’s reliability. Such a 

comparison offers a concrete and quantifiable measure of efficacy, aligning the 

ML-based DEA with established scientific standards. The findings from this 

enhanced comparative analysis are expected to underscore the robustness of the 

ML-integrated DEA approach, providing a compelling argument for its 

preferability over traditional methods. The introduction of this innovative 

validation methodology aims to fortify the credibility of the ML-based DEA, 

positioning it as a scientifically validated tool in the field of R&D efficiency 

analysis. 

   

In this study, we consider the qualitative evaluation method (presented in 

Figure 3) as the ground truth for comparison. The qualitative evaluation method 

is based on expert opinions and in-depth analysis of each DMU’s performance, 

taking into account various factors that may not be captured by quantitative 

methods. This approach provides a comprehensive and nuanced assessment of 

R&D efficiency, making it a suitable benchmark for evaluating the accuracy and 

reliability of the ML-based DEA and traditional DEA methods. By comparing 

the results of these methods with the qualitative evaluation, we can determine 

which approach aligns more closely with expert judgments and real-world 

performance indicators. 

 

 The insights gleaned were juxtaposed and analyzed alongside both 

traditional DEA outcomes and DEA results enhanced by machine learning. 

These parameters were subsequently utilized in a method that integrated 

machine learning to select 2 by 2 combinations among the candidates. As 

delineated in the previous chapter, combination number 92 was singled out 

during this process. A summary of the three sets of results is presented below.      
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Figure 3. Comparison of Results from Three Efficiency Analysis 

 

For the comparison of results from three efficiency analyses, Pearson 

correlation analysis was conducted to appraise the relative merits of the ML-

based DEA vis-à-vis the conventional DEA method. In this effort, we initially 

calculated the correlation coefficient between the ML-based DEA and 

qualitative evaluation results, and similarly between the conventional DEA and 

qualitative evaluation outcomes. The correlation coefficient, a statistical 

measure, gauges the magnitude and direction of a linear relationship between 

two variables, with a higher coefficient indicating a more robust connection. 

Thus, if the correlation coefficient for the ML-based DEA and qualitative 

evaluations surpasses that of the conventional DEA and qualitative evaluations, 

it can be asserted that the ML-based DEA is preferable. Subsequent scatter plots 

were illustrated, as depicted in Figure 4, to visually elucidate the associations 

between the ML-based DEA and qualitative evaluation outcomes, as well as 

between the conventional DEA and qualitative evaluation results. 
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Figure 4. Scatter plot of Correlation Analysis for the Three Sets (Traditional DEA, 

ML-based DEA, Benchmark) of Results   

 

The statistical analysis uncovered a significant correlation between the ML-

based DEA and Qualitative Evaluation Result, evidenced by a correlation 

coefficient of 0.92 and a p-value less than 0.05. These findings lend strong 

support to the assertion that the outcomes derived from the ML-based DEA are 

in robust agreement with expert qualitative evaluation results, thereby bolstering 

the validity of the approach. Conversely, the Pearson correlation coefficient 

between the traditional DEA and qualitative evaluations manifested at 0.60, 

denoting a comparatively subdued correlation between these two modes of 

assessment. 

      

The superior performance of the ML-based DEA in comparison to the 

traditional DEA can be attributed to several factors. Firstly, the ML-based 

approach allows for a more comprehensive and nuanced analysis of the input 

and output parameters, taking into account the complex interrelationships and 

dependencies that exist between these variables. This is in contrast to the 

traditional DEA, which relies on a more simplistic and linear understanding of 

the relationship between inputs and outputs(Emrouznejad et al., 2018). 

 

Furthermore, the ML-based DEA is able to adapt and learn from the data, 

allowing for a more accurate and robust efficiency assessment over time. This 

is particularly important in the context of R&D efficiency, where the landscape 

is constantly evolving, and new technologies and approaches are continually 

emerging. The ability of the ML-based DEA to adapt to these changes and 

incorporate new data into its analysis is a significant advantage over the 
traditional DEA, which is more rigid and less responsive to change (Lampe et 

al., 2015). 
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Finally, the ML-based DEA is able to handle a larger and more complex 

dataset than the traditional DEA. This is crucial in the context of R&D efficiency, 

where the number of input and output parameters can be vast and the 

relationships between these variables can be highly complex. The ML-based 

approach is able to effectively navigate this complexity and provide a more 

accurate and reliable assessment of efficiency (Shokrollahpour et al., 2016).      

 

 

Ⅵ. Conclusions & Discussion       

 
The recent trend indicates that Research and Development (R&D) functions 

as a pivot element shaping our future. In particular, R&D implemented for 

public welfare is a societal necessity in achieving public safety, peace, and 

common interests. To extract maximum output with minimum input in such 

R&D sectors, multifaceted efforts are necessary. DEA has been recognized as 

an efficacious tool for efficiency measurement across diverse domains. 

However, a notable shortcoming of DEA is its pronounced reliance on input and 

output parameters, which can substantially affect the outcome. In an effort to 

address this limitation, this study seeks to blend the burgeoning methodology of 

machine learning to systematically fashion an approach for selecting DEA input 

and output parameters. 

 

In this study, we sought to refine the efficiency evaluation methods used in 

R&D sectors, especially those aimed at public welfare. A methodological 

innovation was introduced by integrating machine learning with Data 

Envelopment Analysis (DEA), which was applied to R&D in the field of 

Radiation Emergency Medicine (REM). This integration aimed to address the 

limitation of DEA’s pronounced reliance on input and output parameters, which 

can substantially affect the outcome.  

   

The superiority of the ML-based DEA over the traditional DEA can be 

attributed to several key factors. Firstly, the ML-based approach allows for a 

more comprehensive and nuanced analysis of the input and output parameters, 

taking into account the complex interrelationships and dependencies that exist 

between these variables (Emrouznejad & Yang, 2018). Secondly, the ML-based 

DEA is able to adapt and learn from the data, allowing for a more accurate and 

robust efficiency assessment over time, which is particularly important in the 

constantly evolving landscape of R&D efficiency (Lampe & Hilgers, 2015). 

Finally, the ML-based DEA is able to handle a larger and more complex dataset 

than the traditional DEA, effectively navigating the vast number of input and 
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output parameters and their highly complex relationships (Shokrollahpour et al., 

2016).     

   

The practical implications of this research are manifold. For instance, R&D 

managers can now leverage the machine learning-based DEA model to select 

the most efficient input and output factors, optimizing resource allocation. This 

model allows for performance benchmarking, which can lead to a more effective 

utilization of funds and human resources, and also enhances collaboration 

among stakeholders. On a broader scale, the findings can guide policy 

formulation, encouraging innovation and efficiency in sectors of public interest. 

 

However, this study is not without limitations. The relatively small dataset 

size may necessitate further research with a larger dataset, and the 

methodology’s application to fields beyond REM requires additional 

exploration and validation. Future studies may also benefit from incorporating 

robustness checks to enhance the reliability of the results. Nonetheless, the 

patterns revealed by this study offer new insights into national R&D resource 

allocation and present a robust framework for enhancing the efficiency and 

impact of R&D projects. In conclusion, the practical implications of this 

research extend beyond theoretical modeling, offering a robust framework that 

can be implemented by managers and policymakers to enhance the efficiency 

and impact of R&D projects. Future research may explore the adaptability of 

this model across different industries and the potential integration with other 

analytical tools for a more comprehensive efficiency evaluation.     
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