- P-ISSN 1225-0163
- E-ISSN 2288-8985
우라늄 화합물 중에 함유된 염소를 정량하기 위하여 수증기증류 및 열가수분해를 이용한 량 염소의 분리 및 정량법을 개발하였다. 수증기 증류에 의한 시료 중의 염소를 분리하기 위하여 수증기 발생장치, 증류플라스크 및 냉각기 등으로 구성된 장치를 제작 설치하였다. LiCl 표준용액과 모의사용후핵 연료 일정량을 혼합하여 만든 우라늄 화합물 시료 중의 염소를 분리하기 위하여 혼산(0.2 M ferrous ammonium sulfate-0.5M sulfamic acid 3 mL + phosphoric acid 6 mL + sulfuric acid 15 mL)을 이용하여 <TEX>$140^{\circ}C$</TEX>로 증류시키고 <TEX>$90{\pm}5\;mL$</TEX>를 수집하였다. 열가수분해에 의한 시료 중의 염소를 분리하기 위하여 공기공급장치, 온수공급장치, 석영반응관, 연소로 및 연소보트, 그리고 휘발 염소 흡수장치로 구성된 열가수분해장치를 제작 설치하였다. 일정량의 우라늄 화합물 시료에 반응촉진제(<TEX>$U_3O_8$</TEX>)를 가하고 1 mL/min의 공기유속과 <TEX>$80^{\circ}C$</TEX>의 공급수 온도를 유지하고 <TEX>$950^{\circ}C$</TEX>에서 1시간 반응시켜 시료 중의 염소를 분리하였다. 두 방법에 의하여 수집된 각 흡수용액은 일정부피로 희석하고 이온크로마토그래피로 정량하여 회수율을 측정하였다. 금속전환체 잔류 용융염 중의 미량 염소를 이온크로마토그래피로 정량하기 위하여 시료를 공기 및 건조 산화시키고 분쇄한 후 열가수분해하여 염소를 회수하였다.
우라늄 화합물 중에 함유된 염소를 정량하기 위하여 수증기증류 및 열가수분해를 이용한 미량염소의 분리 및 정량법을 개발하였다. 수증기 증류에 의한 시료 중의 염소를 분리하기 위하여 수증기 발생장치, 증류플라스크 및 냉각기 등으로 구성된 장치를 제작 설치하였다. LiCl 표준용액과 모의사용후핵연료 일정량을 혼합하여 만든 우라늄 화합물 시료 중의 염소를 분리하기 위하여 혼산(0.2 M ferrous ammonium sulfate-0.5M sulfamic acid 3 mL + phosphoric acid 6 mL + sulfuric acid 15 mL)을 이용하여140 oC로 증류시키고 90±5 mL를 수집하였다. 열가수분해에 의한 시료 중의 염소를 분리하기 위하여 공기공급장치, 온수공급장치, 석영반응관, 연소로 및 연소보트, 그리고 휘발 염소 흡수장치로 구성된 열가수분해장치를 제작 설치하였다. 일정량의 우라늄 화합물 시료에 반응촉진제(U3O8)를 가하고 1 mL/min의공기유속과 80℃의 공급수 온도를 유지하고 950℃에서 1시간 반응시켜 시료 중의 염소를 분리하였다. 두 방법에 의하여 수집된 각 흡수용액은 일정부피로 희석하고 이온크로마토그래피로 정량하여 회수율을측정하였다. 금속전환체 잔류 용융염 중의 미량 염소를 이온크로마토그래피로 정량하기 위하여 시료를공기 및 건조 산화시키고 분쇄한 후 열가수분해하여 염소를 회수하였다.
1. J. E. Rein, R. K. Zeigler, G. R. Waterbury, W. E. McClung, P. R. Praetorius and W. L. Delvin, “Quality assurance programme for surveillance of fast reactor mixed oxide fuel analytical chemistry”, in Nuclear fuel quality assurance, IAEA-SR-7/1, 149-163(1976).
2. O. Gotzmann and H. J. Heuvel, J. Nucl. Mater., 81, 231-239(1979).
3. CAM-013, “열가수분해에 의한 불소 및 염소분석”,화학분석·시험절차서, 원자력환경관리센터 (1995).
4. KAERI/TR-1229/99, “사용후핵연료 차세대관리 공정개발”, 한국원자력연구소 (1999).
5. K. L. Evans and C. B. Moore, Anal. Chem, 52(12), 1908-1912(1980).
6. K. L. Evans, J. G. Tarter and C. B. Moore, Anal. Chem, 53(6), 925-928(1981).
7. H. Akaiwa, H. Kawamoto and K. Hasegawa, Talanta, 26, 1027-1028(1979).
8. H. R. Cui, J. H. Chen, J. F. Xie, D. C. Hu and J. Y. Gu, J. Instrum. Anal., 24(6), 92-95(2005).
9. UKAEA, “The determination of chlorine in beryllium, thorium or uranium metals or their oxides”, AEREAM42 (1959).
10. Y. Chunqing, L. Fuyun and H. Dianfan, “The determination of chlorine in nuclear-grade uranium compounds”, CNIC-00157 (1988).
11. R. W. Stromatt, “Automated halide analysis of ceramic fuel by high temperature pyrohydrolysis-ion chromatography”, HEDL-SA-3091-Rev.1 (1984).
12. M. A. F. Pires, D. B. Filho and A. Abrao, “Separation of halogens from uranium compounds by means of pyrohydrolysis and their determination by ion chromatography”, IPEN-Pub-109 (1987).
13. ASTM C 696-99, “Standard test methods for chemical, mass spectrometric, and spectrochemical analysis of nuclear-grade uranium dioxide powders and pellet”, Annal Book of ASTM Standards, Vol 12.01, 1-15(1999).
14. ASTM C 1502-01, “Standard test methods for determination of total chlorine and fluorine in uranium dioxide and gadolinium oxide”, Annal Book of ASTM Standards, 12.01, 1011-1014(1999).
15. R. G. Mansfield and D. H. Templeton, “Chlorine, bromine and iodine”, Chap. 7 in analytical chemistry of the Manhattan project (ED : C. J. Rodden), p.287-302, 1950.
16. ASTM C 799-99, “Standard test methods for chemical, mass spectrometric, spectrochemical, nuclear, and radiochemical analysis of nuclear-grade uranyl nitrate solutions”, Annal Book of ASTM Standards, Vol 12.01, 196-209(1999).
17. J. C. Warf, W. D. Cline and R. D. Tevebaugh, Anal. Chem, 26(2), 342-346(1954).
18. R. H. Powell and O. Menis, Anal. Chem, 30(9), 1546- 1549(1958).
19. M. Windholz, S. Budavari, L. Y. Stroumtsos and M. N. Fertig, “The Merck Index”, 9th Ed., p.1264-1265, Merck & Co., Inc., Rahway, N. J., U.S.A., 1976.
20. C. Keller, “The Chemistry of the Transuranium Element”, p.131-138, Verlag Chemie GmbH, Germany, 1971.