Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Analysis of molecular mechanism of cellular localization of various N-terminal mutants of Aplysia PDE4 in HEK293T cells

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2016, v.29 no.1, pp.10-18
    https://doi.org/10.5806/AST.2016.29.1.10





    • Downloaded
    • Viewed

    Abstract

    Phosphodiesterase (PDE) plays an important role in cAMP-mediated signaling within cells. We previously showed that the long-form of Aplysia PDE4 (ApPDE4) was localized in the plasma membrane and the presynaptic terminal in Aplysia sensory neurons, and the 16 N-terminal amino acid was sufficient for this targeting process. In this study, we characterized the cellular localization of various ApPDE4 mutants. We first identified the roles of each amino acid within the group of 16 N-terminal amino acids of long-form ApPDE4. As a result, we were able to identify various mutants that were localized to both the plasma membrane and the Golgi complex, Golgi only, or both the endoplasmic reticulum (ER) and the Golgi complex. To examine the role of palmitoylation on the cellular localization of ApPDE4 mutants, 2-bromo palmitate (2-BR) was used as a treatment. As a result, in the presence of 2-BR, the plasma membrane targeting of many mutants was impaired, indicating that palmitoylation was involved in the plasma membrane targeting of the mutants. We also found that PI4P play crucial roles in the Golgi targeting of (N16,C3S/VV/G)-mRFP, L(N16,C3S/LFS/R)- mRFP, and L(N16,EPL/R)-mRFP.

    keywords
    Aplysia, phosphodiesteras 4, plasma membrane, Golgi complex, PI4P, palmitoylation


    Reference

    1

    1. Y. S. Lee, C. H. Bailey, E. R. Kandel and B. K. Kaang, Mol Brain, 1(1), 3 (2008).

    2

    2. E. R. Kandel, Mol. Brain, 5, 14 (2012).

    3

    3. W. Richter, F. S. Menniti, H. T. Zhang and M. Conti, Expert. Opin. Ther. Targets, 17(9), 1011-1027 (2013).

    4

    4. D. J. Jang, S. W. Park, J. A. Lee, C. Lee, Y. S. Chae, H. Park, M. J. Kim, S. L. Choi, N. Lee, H. Kim and B. K. Kaang, Learn. Mem., 17(9), 469-479 (2010).

    5

    5. D. J. Jang, J. A. Lee, Y. S. Chae and B. K. Kaang, Mol. Cells, 31(2), 175-180 (2011).

    6

    6. H. Park, J. A. Lee, C. Lee, M. J. Kim, D. J. Chang, H. Kim, S. H. Lee, Y. S. Lee and B. K. Kaang, J. Neurosci., 25(39), 9037-9045 (2005).

    7

    7. D. J. Jang, H. F. Kim, J. H. Sim, C. S. Lim and B. K. Kaang, Exp. Neurobiol., 24(3), 246-251 (2015).

    8

    8. K. H. Kim, Y. W. Jun, Y. Park, J. A. Lee, B. C. Suh, C. S. Lim, Y. S. Lee, B. K. Kaang and D. J. Jang, J. Biol. Chem., 289(37), 25797-25811 (2014).

    9

    9. G. Di Paolo and P. De Camilli, Nature, 443(7112), 651-657 (2006).

    10

    10. D. J. Jang, S. W. Park and B. K. Kaang, BMB Rep., 42(1), 1-5 (2009).

    11

    11. Y. W. Jun, S. Kim, K. H. Kim, J. A. Lee, C. S. Lim, I. Chang, B. C. Suh, B. K. Kaang and D. J. Jang, Lipids, 50(4), 427-436 (2015).

    12

    12. A. Godi, A. Di Campli, A. Konstantakopoulos, G. Di Tullio, D. R. Alessi, G. S. Kular, T. Daniele, P. Marra, J. M. Lucocq and M. A. De Matteis, Nat. Cell. Biol., 6(5), 393-404 (2004).

    13

    13. T. P. Levine and S. Munro, Curr. Biol., 12(9), 695-704(2002).

    14

    14. A. Roy and T. P. Levine, J. Biol. Chem., 279(43), 44683-44689 (2004).

    15

    15. K. M. Lee, S. K. Hwang and J. A. Lee, Exp. Neurobiol., 22(3), 133-142 (2013).

    상단으로 이동

    Analytical Science and Technology