ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

  • P-ISSN1225-0163
  • E-ISSN2288-8985
  • SCOPUS, ESCI, KCI

논문 상세

Home > 논문 상세
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Effect of microwave irradiation on lipase-catalyzed reactions in ionic liquids

분석과학 / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
2017, v.30 no.3, pp.138-145
https://doi.org/10.5806/AST.2017.30.3.138
안광민 (인하대학교)
하성호 (한남대학교)
김영민 (한남대학교)
구윤모 (인하대학교)
  • 다운로드 수
  • 조회수

Abstract

Microwave-assisted organic synthesis has gained a remarkable interest over the past years because of its advantages - (i) rapid energy transfer and superheating, (ii) higher yield and rapid reaction, (iii) cleaner reactions. Ionic liquids are well known for their unique properties such as negligible vapor pressure and high thermal stability. With these properties, ionic liquids have gained increasing attention as green, multi-use reaction media. Recently, ionic liquids have been applied as reaction media for biocatalysis. Lipase-catalyzed reactions in ionic liquids provide high activity and yield compared to conventional organic solvents or solvent free system. Since polar molecules are generally good absorbent to microwave radiation, ionic liquids were investigated as reaction media to improve activity and productivity. In this study, therefore, the effect of microwave irradiation in ionic liquids was investigated on lipase catalyzed reactions such as benzyl acetate synthesis and caffeic acid phenethyl ester synthesis. Comparing to conventional heating, microwave heating showed almost the same final conversion but increased initial reaction rate (3.03 mM/min) compared to 2.11 mM/min in conventional heating at 50 oC.

keywords
microwave, ionic liquids, lipase, activity, initial reaction rate


참고문헌

1

1. R. N. Gedye and J. B. Wei, Can. J. Chem., 76(5), 525-532 (1998).

2

2. D. R. Baghurst and D. M. P. Mingos, Chem. Soc. Rev., 20, 1-47 (1991).

3

3. R. Gedye, F. Smith, K. Westaway, H. Ali, L. Baldisera, L. Laberge, and J. Rousell, Tetrahedron Lett., 27(3), 279-282 (1986).

4

4. R. J. Giguere, T. L. Bray, S. M. Duncan, and G. Majetich, Tetrahedron Lett., 27 (41), 4945 4948 (1986).

5

5. I. Roy and M. N. Gupta, Curr. Sci., 85(12), 1685-1693(2003).

6

6. C. O. Kappe, D. Dallinger, and S. S. Murphree, ‘Practical Microwave Synthesis for Organic Chemists’, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009.

7

7. S. H. Ha, N. L. Mai, G. An, and Y. -M. Koo, Bioresource Technol., 102(2), 1214-1219 (2011).

8

8. J. Kim and S. H. Ha, Korean Chem. Eng. Res., 53(5), 570-575 (2015).

9

9. Y. H. Moon, S. M. Lee, S. H. Ha, and Y.-M. Koo, Korean J. Chem. Eng., 23(2), 247-263 (2006).

10

10. V. I. Parvulescu and C. Hardacre, 2007, Chem. Rev., 107(6), 2615-2665 (2007).

11

11. F. van Rantwijk and R. A. Sheldon, Chem. Rev., 107(6), 2757-2785 (2007).

12

12. M. Moniruzzaman, N. Kamiya, and N. Goto, Org. Biomol. Chem., 8(13), 2887-2899 (2010).

13

13. H. Hu, H. Yang, P. Huang, D. Cui, Y. Peng, J. Zhang, F. Lu, J. Lian, and D. Shi, Chem. Commun., 46, 3866-3868(2010).

14

14. M.-G. Ma, J.-F. Zhu, Y.-J. Zhu, and R.-C. Sun, Chem. Asian J., 9(9), 2378-2391 (2014).

15

15. Q. Zhang, S. H. Zhao, J. Chen, and L. W. Zhang, J. Chromatogr. B Analyt. Technol. Biomed. Life. Sci., 1002, 411-417 (2015).

16

16. S. Mallakpour and Z. Rafiee, Polym. Degrad. Stab., 93(4), 753-759 (2008).

17

17. X. Liu, Y. Wang, J. Kong, C Niea, and X Lina, Anal. Methods, 4, 1012-1018 (2012).

18

18. T. Maugard, D. Gaunt, M. D. Legoy, and T. Besson, Biotech. Lett., 25(8), 623-629 (2003).

19

19. N. E. Leadbeater, L. M. Stencel, and E. C. Wood, Org. Biomol. Chem,, 5, 1052-1055 (2007).

20

20. H. Zhao, G. A. Baker, Z. Song, O. Olubajo, L. Zanders, and S. M. Campbell, J. Mol. Cat. B: Enzym,, 57(1-4), 149-157 (2009).

21

21. T. D. Matos, N. King, L. Simmons, C. Walker, A. R. McClain, A. Mahapatro, F. J. Rispoli, K. T. McDonnell, and V. Shah, Green Chem. Lett. Rev., 4(1), 73-79 (2011).

22

22. S. H. Lee, Y. -M. Koo, and S. H. Ha, Korean J. Chem. Eng., 25(6), 1456-1462 (2008).

23

23. A. Widjaja, T. H. Yen, and Y. H. Ju, J. Chin. Inst. Chem. Eng., 39(5), 413-418 (2008).

24

24. M.-C. Parker, T. Besson, S. Lamare, and M.-D. Legoy, Tetrahed. Lett., 37(46), 8383-8386 (1996).

25

25. G. D. Yadav and P. S. Lathi, J. Mol. Cat. A: Chem., 223(1-2), 51-56 (2004).

26

26. J.-R. Carrillo-Munoz, D. Bouvet, E. Guibe-Jampel, A. Loupy and A. Petit, J. Org. Chem,, 61(22), 7746-7749(1996).

27

27. P. Kerep and H. Ritter, Macromol. Rapid Commun., 27(9), 707-710 (2006).

상단으로 이동

분석과학