- P-ISSN 1225-0163
- E-ISSN 2288-8985
This study was conducted to establish the analytical method for the determination of cyanide in blood, urine, lung and skin tissues in rats. In order to detect or quantify the sodium cyanide in above biological matrixes, it was derivatized to Pentafluorobenzyl cyanide (PFB-CN) using pentafluorobenzyl bromide (PFBBr) and then reaction substance was analyzed using gas chromatography mass spectrometer (GC/MS)-SIM (selected ion monitoring) mode. The analytical method for cyanide determination was validated with respect to parameters such as selectivity, system suitability, linearity, accuracy and precision. No interference peak was observed for the determination of cyanide in blank samples, zero samples and lower limit of quantification (LLOQ) samples. The lowest limit detection (LOD) for cyanide was 10 μM. The linear dynamic range was from 10 to 200 μM for cyanide with correlation coefficients higher than 0.99. For quality control samples at four different concentrations including LLOQ that were analyzed in quintuplicate, on six separate occasions, the accuracy and precision range from -14.1 % to 14.5% and 2.7 % to 18.3 %, respectively. The GC/MS-based method of analysis established in this study could be applied to the toxicokinetic study of cyanide on biological matrix substrates such as blood, urine, lung and skin tissues.
1. G. Liu, J. Liu, K. Hara, Y. Wang, Y. Yu, L. Gao, and L. Li, J. Chromatography B, 877, 3054-3058 (2009).
2. S. M. Lee and J. S. Kim, J. Korean Med. Assoc., 56(12), 1076-1083 (2013).
3. S. W. Sauer and M. E. Keim, Ann. Emerg. Med., 37, 635-641 (2001).
4. R. K. Bhandari, R. P. Oda, I. Petrikovics, D. E. Thompson, M. Brenner, S. B. Mahon, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, J. Anal. Toxicol., 38(4), 218-225 (2014).
5. K. Minakata, H. Nozawa, K. Gonmori, I. Yamagishi, M. Suzuki, K. Hasegawa, K. Watanabe, and O. Suzuki, Anal. Bioanal. Chem., 400(7), 1945-1951 (2011).
6. T. T. Chistison and J. S. Rohrer, J. Chromatography A, 1155, 31-39 (2007).
7. A. Tung, J. Lynch, and W. A. McdDade, J. Moss, Anesth. Analg., 85, 1045 (1997).
8. A. M. Calafat and S. B. Stanfill, J. Chromatography B, 772, 131-137 (2002).
9. S. Tsukamoto, T. Kanegae, Y. Matsumura, S. Uchigasaki, M. Kitazawa, T. Muto, S. Chiba, S. Oshida, T. Nagoya, and M. Shimamura, Jpn. J. Legal. Med., 48, 336-342(1994).
10. S. H. Chen, S. M. Wu, H. S. Kou, and H. L. Wu, J. Anal. Toxicol., 18, 81-85 (1994).
11. S. Kage, T. Nagata, and K. Kudo, J. Chromatography B, 675, 27-32 (1996).
12. B. D. Paul and M. L. Smith, J. Anal. Toxicol., 30, 511-515 (2006).
13. R. K. Bhandari, R. P. Oda, S. L. Youso, I. Petrikovics, V. S. Bebarta, G. A. Rockwood, and B. A. Logue, Anal. Bioanal. Chem., 404, 2287-2294 (2012).
14. A. Tracqui, J. S. Raul, A. Geraut, L. Berthelon, and B. Ludes, J. Anal. Toxicol., 26, 144-148 (2002).
15. D. Tsikas, J. Chromatography B, 1043, 187-201 (2017).
16. J. B. Lee, S. K. Shon, S. H. Woo, S. Y. Park, J. H. Hwang, O. S. Kwon, N. Y. Kim, and K. J. Paeng, Anal. Sci. Technol., 29(2), 73-78 (2016).
17. Guideline for Industry on Bioanalytical Method Validation, FDA/CDER, May 2018.
18. Guideline on Bioanalytical Method Validation, EMA, Jul, 2011.