Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Study on the spectroscopic reconstruction of explosive-contaminated overlapping fingerprints using the laser-induced plasma emissions

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2020, v.33 no.2, pp.86-97
    https://doi.org/10.5806/AST.2020.33.2.86
    Jun-Ho Yang (Department of Mechanical & Aerospace Engineering, Seoul National University)

    • Downloaded
    • Viewed

    Abstract

    Reconstruction and separation of explosive-contaminated overlapping fingerprints constitutes an analytical challenge of high significance in forensic sciences. Laser-induced breakdown spectroscopy (LIBS) allows real-time chemical mapping by detecting the light emissions from laser-induced plasma and can offer powerful means of fingerprint classification based on the chemical components of the sample. During recent years LIBS has been studied one of the spectroscopic techniques with larger capability for forensic sciences. However, despite of the great sensitivity, LIBS suffers from a limited detection due to difficulties in reconstruction of overlapping fingerprints. Here, the authors propose a simple, yet effective, method of using chemical mapping to separate and reconstruct the explosive-contaminated, overlapping fingerprints. A Q-switched Nd:YAG laser system (1064 nm), which allows the laser beam diameter and the area of the ablated crater to be controlled, was used to analyze the chemical compositions of eight samples of explosive-contaminated fingerprints (featuring two sample explosive and four individuals) via the LIBS. Then, the chemical validations were further performed by applying the Raman spectroscopy. The results were subjected to principal component and partial least-squares multivariate analyses, and showed the classification of contaminated fingerprints at higher than 91% accuracy. Robustness and sensitivity tests indicate that the novel method used here is effective for separating and reconstructing the overlapping fingerprints with explosive trace.

    keywords
    LIBS (laser-induced breakdown spectroscopy), overlapping fingerprints, trace explosives, raman spectroscopy, multivariate analysis


    Reference

    1

    1. N. E. Archer, Y. Charles, J. A. Elliott and S. Jickellss, Forensic Sci. Int., 154(2), 224-239 (2005).

    2

    2. R. S. Croxton, M. G. Baron, D. Butler, T. Kent and V. G. Searss, Forensic Sci. Int., 199(1), 93-102 (2010).

    3

    3. K. M. Antoine, S. Mortazavi, A. D. Miller and L. M. Millers, J. Forensic Sci., 55(2), 513-518 (2010).

    4

    4. A. Johnston and K. Rogers, Appl. Spectrosc., 71(9), 2102-2110 (2017).

    5

    5. L. J. Radziemski, Spectrochim. Acta, Part B., 57(7), 1109-1113 (2002).

    6

    6. D. W. Hahn and N. Omenetto, Appl. Spectrosc., 66(4), 347-419 (2012).

    7

    7. J.-H. Yang, S.-J. Choi and J. J. Yoh, Spectrochim. Acta, Part B., 134, 25-32 (2017).

    8

    8. J.-H. Yang and J. J. Yoh, Appl. Spectrosc., 72(7), 1047-1056 (2018).

    9

    9. J.-H. Yang and J. J. Yoh, Microchem. J., 139, 386-393(2018).

    10

    10. K.-J. Lee, S.-J. Choi and J. J. Yoh, Spectrochim. Acta, Part B., 101, 335-341 (2014).

    11

    11. S. H. Lee, H. Do and J. J. Yoh, Combust. Flame., 165, 334-345 (2016).

    12

    12. S. Choi and J. J. Yoh, Spectrochim. Acta, Part B., 134, 75-80 (2017).

    13

    13. J. Feng, Y. Shi and J. Zhou, IEEE Trans Information Forensic and Security, 7(5), 1498-1510 (2012).

    14

    14. B. Stojanović, A. Nešković and O. Marques, Multimedia Tools and Applications, 76(10), 12775-12799 (2017).

    15

    15. Y. Mou and J. M. Rabalais, J. Forensic Sci., 54(4), 846-850 (2009).

    16

    16. H. Lees, F. Zapata, M. Vaher and C. Garcia-Ruiz, Talanta, 184, 437-445 (2018).

    17

    17. C. Ricci and S. G. Kazarian, Surf. Interface Anal., 42(5), 386-392 (2010).

    18

    18. M. J. West and M. J. Went, Forensic Sci. Int., 174(1), 1-5(2018).

    19

    19. E. D. Emmons, A. Tripathi, J. A. Guicheteau, S. D. Christesen and A. W. Fountain, Appl. Spectrosc., 63(11), 1197-1203 (2009).

    20

    20. M. Abdelhamid, F. Fortes, M. Harith and J. Lasernas, J. Anal. At. Spectrom., 26(7), 1445-1450 (2010).

    21

    21. M. Abdelhamid, F. Fortes, J. Laserna and M. Harith, AIP Conference Proceedings, 55-59 (2011).

    22

    22. P. Lucena, I. Gaona, J. Moros and J. J. Laserna, Spectrochim. Acta, Part B., 85, 71-77 (2013).

    23

    23. R. Bradshaw, W. Rao, R. Wolstenholme, M. R. Clench, S. Bleay and S. Francese, Forensic Sci. Int., 222(13), 318-26(2012).

    24

    24. Z. Baber and A. Q. Malik, Fire Mater., 41(2), 131-141(2017).

    25

    25. N. C. Dingari, I. Barman, A. K. Myakalwar, S. P. Tewari and M. K. Gundawars, Anal. Chem., 84(6), 2686-2694(2012).

    26

    26. S. Laville, M. Sabsabi and F. R. Doucet, Spectrochim. Acta, Part B., 62(12), 1557-1566 (2017).

    27

    27. A. Kramida, Y. Ralchenko and J. Reader, ‘NIST atomic spectra database (ver. 5.2)’, 2015.

    28

    28. S. Choi, D. Kim, J. Yang and J. J. Yoh, Appl. Spectrosc. 71(4), 678-685 (2017).

    29

    29. N. Toupry, H. Poulet, M. Le Postollec, R. M. Pick and M. Yvinec, J. Raman Spectrosc., 14(3), 166-177 (1983).

    상단으로 이동

    Analytical Science and Technology