Article Detail

Home > Article Detail
  • P-ISSN 1225-0163
  • E-ISSN 2288-8985

Article Contents

    Method validation of detecting ethanol metabolites (EtG, EtS) in post-mortem spleen

    Analytical Science and Technology / Analytical Science and Technology, (P)1225-0163; (E)2288-8985
    2021, v.34 no.3, pp.115-121
    https://doi.org/10.5806/AST.2021.34.3.115





    • Downloaded
    • Viewed

    Abstract

    Ethyl glucuronide (EtG) and ethyl sulfate (EtS), which are ethanol metabolites, are direct indicators of ethanol intake; they have been studied in a variety of biological samples in forensic science. It is necessary to analyze ethanol metabolites to determine whether the ethanol detected in autopsy cases was due to alcohol consumption before death or due to the ethanol produced from post-mortem decay. In general, EtG and EtS are detected in the blood together with ethanol; however, it may be difficult to secure blood depending on the extent of decay. Therefore, the aforementioned method should be replaced by detecting the ethanol metabolites using tissue biological samples. In this study, we determined the optimal experimental conditions for detecting EtG and EtS from spleen samples using Liquid Chromatography - Tandem Mass Spectrometry (LC-MS/MS). Herein, the test method was validated, and an analysis method was applied to the actual autopsy cases.

    keywords
    ethanol, metabolite, ethyl glucuronide, ethyl sulfate, spleen


    Reference

    1

    1. H. Schneider and H. Glatt, Biochem. J., 383, 543-549(2004).

    2

    2. M. Kwon, H. J. Choi, Y. H. Jo, M. H. Son, J. S. M., N. Y. Kim and J. E. Jung, Forensic Sci. Int., 302, 109857(2019).

    3

    3. R. S. Foti and M. B. Fisher, Forensic Sci. Int., 153, 109-116 (2005).

    4

    4. N. E. Walsham and R. A. Sherwood, Ann Clin. Biochem., 49, 110-117 (2012).

    5

    5. G. Hoiseth, G. O. Berg-Hansen and J. Morland, Forensic Sci. Int., 257, 398-402 (2015).

    6

    6. K. Borucki, R. Schreiner, J. Dierkes, K. Jachau, D. Krause, S. Westphal, F. M. Wurst, C. Luley and H. Schmidt-Gayk, Alcohol Clin. Exp. Res., 29, 781-787(2005).

    7

    7. Y. H. Jo, S. M. Kim, W. J. Lee, K. W. Kim, S. H. An and M. Kwon, Korean J. Forensic Sci. Int., 21, 71-75(2020).

    8

    8. H. Wang, J. Li, Z. Huang, F. Wang, Y. Zhang, J. Chang and Y. Rao, Forensic Toxicology, 38, 195-202 (2019).

    9

    9. G. Hoiseth, R. Karinen, A. S. Christophersen, L. Olsen, P. T. Normann and J. Morland, Forensic Sci. Int., 165,41-45 (2007).

    10

    10. F. T. Peters, O. H. Drummer and F. Musshoff, Forensic Sci. Int., 165, 216-224 (2007).

    11

    11. V. P. Shah, K. K. Midha, J. W. A. Findlay, H. M. Hill, J. D. Hulse, I. J. McGilveray, G. McKay, K. J. Miller, R. N. Patnaik, M. K. Powell, A. Tonelli, C. T. Viswanathan and A. Yacobi, Pharm. Res., 17, 1551-1557 (2000).

    12

    12. Committee for Medicinal Products for Human Use, ‘Guideline on bioanalytical method validation’, EMEA/CHMP/EWP/192217/2009 Re.1 Corr.2** (2011).

    13

    13.의약품등 분석법의 밸리데이션 가이드라인 해설서, 식품의약품안전평가원, (2015).

    14

    14. S. Walorczyk, Talanta, 120, 106-113 (2014).

    15

    15. European Commision DG-SANTE, ‘Method validation and quality control: Procedures for pesticide residues analysis in food and feed’, Document No. SANTE/11945/2015 (2016).

    16

    16. B. K. Matuszewski, M. L. Constanzer and C. M. Chavez-Eng, Anal. Chem., 75(13), 3019-3030 (2003).

    17

    17. H. Wang, J. Li, Z. Huang, F. Wang, Y. Zhang, J. Chang and Y. Rao, Forensic Toxicology, 38, 195-202 (2020).

    18

    18. H. Schloegl, T. Rost, W. Schmidt, F. M. Wurst and W. Weinmann, Forensic Sci. Int., 156, 213-218 (2006).

    19

    19. L. Politi, L. Morini, F. Mari, A. Groppi and E. Bertol, Int. J. Legal Med., 122, 507-509 (2008).

    상단으로 이동

    Analytical Science and Technology