바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

가현 운동 연구 패러다임의 움직임 지각 이해에 대한 기여

The Contribution of the Methodological Paradigm of Apparent Motion to the Understanding of Motion Perception

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2011, v.23 no.1, pp.1-44
https://doi.org/10.22172/cogbio.2011.23.1.001
오성주 (경남대학교)
  • 다운로드 수
  • 조회수

초록

인접한 두 점이 충분히 짧은 시간을 두고 차례대로 깜박일 때 한 점의 착시적 움직임이 관찰된다. 이 가현 운동 현상은 형태주의 심리학의 설립과 운동 지각 연구 발전에 결정적 기여를 하였다. 본 개관 논문에서는 100년이 넘는 가현 운동 연구사에서 일어난 다양한 논쟁들을 주요 실험들을 중심으로 살펴보았다. 특히, 가현 운동이 자극의 제시 방법과 자극의 형태에 따라 다양하게 지각 될 수 있음을 기술하였고, 따라서 가현 운동이 단일한 이론으로 설명될 수 없는 복잡한 현상임을 제안하였다. 끝으로 가현 운동 패러다임은 움직임 지각 이해에 고유한 기여를 한 것으로 평가하였고, 이를 이용해 연구 할 수 있는 주제들에 대해서 논의하였다.

keywords
가현 운동, 운동 지각, 형태주의, 움직임 제약, Apparent motion, Gestalt Psychology, Motion Constraints

Abstract

When two adjacent dots alternate rapidly a dot appears moving back and forth instead of two dots' flashes stationary. This phenomenon, given apparent motion, has played a crucial role both in the establishment of the Gestalt Psychology and in the understanding of motion perception. In this review, major findings over the last 100 year regarding apparent motion is summarized, including the history of apparent motion study. It is emphasized that the percept of apparent motion highly varies according to spatiotemporal characteristics and figural forms of stimuli so that it is difficult to account for it in a single theoretical framework. It is discussed how apparent motion paradigm could be utilized for the future studies of motion perception.

keywords
가현 운동, 운동 지각, 형태주의, 움직임 제약, Apparent motion, Gestalt Psychology, Motion Constraints

참고문헌

1.

Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of Optical Society of America, 2(2), 284-299.

2.

Anderson, J., & Anderson, B. (1993). The mythe of persistence of vision revisited. Journal of Film and Video, 45(1), 3-12.

3.

Anstis, S. (1986). Motion perception in the front plane. In K. R. Boff, L. Kaufman & J. P. Thomas (Eds.), Handbook of Perception and Human Performance (Vol. 1, pp.16-11-16-27). New York: John Wiley and Sons.

4.

Anstis, S. M. (1980). The perception of apparent movement. Philosophical Transactions of the Royal Society of London. B, 290, 153-168.

5.

Anstis, S. M. (1989). Spatial and temporal context affects correspondences in apparent motion. Physica Scripta., 39, 122-127.

6.

Ashida, H., Lingnau, A., Wall, M. B., & Smith, A. T. (2007). fMRI adaptation reveals separate mechanisms for first-order and second-order motion. Journal of Neurophysiology, 97, 1319-1325.

7.

Barlow, H. B., & Levik, W. R. (1965). The mechanism of directionally selective units in rabbit's retina. Journal of Physiology, 178, 477-504.

8.

Benton, C. P., & Johnston, A. (2001). A new approach to analysing texture-defined motion. Proceedings of Royal Society of London. B. Biological Sciences, 268, 2435-2443.

9.

Bernstein, L. J., & Cooper, L. A. (1997). Direction of motion influences perceptual identification of ambiguous figures. Journal of Experimental Psychology: Human Perception and Performance, 23(3), 721-737.

10.

Blake, R., & Shiffrar, M. (2006). Perception of human motion. Annual Review of Psychology, 58, 1-27.

11.

Blaser, E., & Sperling, G. (2008). When is motion? Perception, 37(1), 624-627.

12.

Bordwell, D., & Thompson, K. (1993). Film Art: An Introduction (4 ed.): Mcgraw-Hill College.

13.

Boring, E. G. (1942). Sensation and perception in the history of experimental Psychology. New York: Irvington.

14.

Bours, R. J. E., Stuur, S., & Lankheet, M. J. M. (2007). Tuning for temporal interval in human apparent motion detection. Journal of Vision, 7, 1-12.

15.

Braddick, O. (1974). A short-range process in apparent motion. Vision Research, 14, 519-528.

16.

Braddick, O. (1980). Low-level and high-level processes in apparent motion. Philosophical Transactions of the Royal Society of London. B, 290, 137-151.

17.

Bruce, V., Green, P. R., & Georgeson, M. A. (2003). Visual Perception: Physiology, Psychology and Ecology. (4 ed.). New York: Psychology Press.

18.

Burr, D., Ross.J., & Morrone, C. (1986). Smooth and sampled motion. Vision Research, 26(4), 643-652.

19.

Cavanagh, P. (1991). Short-range vs long-range motion: not a valid distinction. Spatial Vision, 5, 303-309.

20.

Cavanagh, P. (1992). Attention-based motion perception. Science, 257, 1563-1565.

21.

Cavanagh, P. (1993). The perception of form and motion. Current Opinion in Neurobiology, 3, 177-182.

22.

Cavanagh, P., Arguin, M., & von Grünau, M. (1989). Interattribute apparent motion. Vision Research, 29, 1197-1204.

23.

Cavanagh, P., & Mather, G. (1989). Motion: the long and short of it. Spatial Vision, 4, 103-129.

24.

Chang, J. J. & Julesz, B. (1983). Displacement limits, directional anisotropy, and direction versus form discrimination in random-dot cinematograms. Vision Research, 23, 639-646.

25.

Chaudhuri, A. (1990). Modulation of the motion aftereffect by selective attention. Nature, 344(1), 60-62.

26.

Chubb, C., & Sperling, G. (1986). Drift-balanced random stimuli: a general basis for studying non-Fourier motion perception. Journal of Optical Society of America, 5(11), 1986-2007.

27.

Cisek, P., & Kalaska, F. (2004). Neural correlates of mental rehearsal in dorsal premotor cortex. Nature, 431, 993-996.

28.

Dawson, M. R. (1991). The how and why of what went where in apparent motion: modeling solutions to the motion correspondence problem. Psychological Review, 98(4), 569-603.

29.

Derrington, A. M. (2000). Vision: can colour contribute to motion? Current Biology, 10(7), R268-270.

30.

DeSilva, H. R. (1926). An experimental investigation of the determinants of apparent visual movement. American Journal of Psychology, 37(469-501), 469.

31.

Dick, M., Ullman, S., & Sagi, D. (1987). Parallel and serial processes in motion detection. Science, 237, 400-402.

32.

Duncker, K. (1929/1937). Induced motion. In W. D. Ellis (Ed.), A sourcebook of Gestalt psychology (pp.161-172). London: Routledge & Kegan Paul.

33.

Finlay, D. C., Manning, M. L., & Fenelon, B. (1987). Individual differences in responses of untrained observers to stroboscopic apparent motion. Perception, 16(5), 573-581.

34.

Foster, D. H. (1975). Visual apparent motion and some preferred paths in the rotation group SO(3). Biological Cybernetics, 18, 81-89.

35.

Freeman, E., & Driver, J. (2008). Direction of visual apparent motion driven solely by timing of a static sound. Current Biology, 18, 1262-1266.

36.

Galifret, Y. (2006). Visual persistence and cinema? Neurosciences, 329, 369-385.

37.

Gengenfurtner, K. R., & Hawken, M. J. (1996). Interaction of motion and color in the visual pathways. Trends in Neurosciences, 19(9), 394-401.

38.

Geobel, R., Khorram-Sefat, D., Muckli, L., Hacker, H., & Singer, W. (1998). The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. European Journal of Neuroscience, 10, 1563-1573.

39.

Gerbino, W. (1984). Low-level and high-level processes in the perceptual organization of three-dimensional apparent motion. Perception, 13, 417-428.

40.

Gibson, J. J. (1950). The perception of the visual world. Boston: Houghton Mifflin.

41.

Gibson, J. J. (1979). The ecological approach to visual perception. Boston: Houghton Mifflin.

42.

Gregory, R. L. (1990). Eye and brain: the psychology of seeing. New York: McGraw-Hill.

43.

Harrar, V., Winter, R., & Harris, L. R. (2008). Visuotactile apparent motion. Perception & Psychophysics, 70(5), 807-817.

44.

He, Z. J., & Nakayama, K. (1994). Apparent motion determined by surface layout not by disparity or three-dimensional distance. Nature, 367, 173-175.

45.

Hochberg, J. (1981). Levels of perceptual organization. In M. Kubovy & J. R. Pomerantz (Eds.), Perceptual Organization (pp. 255-278). Hillsdale, N.J.: Lawrence Erlbaum Associates.

46.

Hochberg, J. (1986). Representation of motion and space in video and cinematic displays Handbook of Perception and Human Performance (pp.22-21-22-64). New York: Wiley.

47.

Hogendoorn, H., Carson, T. A., & Verstraten, F. A. J. (2007). Interpolation and extrapolation on the path of apparent motion. Vision Research, 48, 872-881.

48.

Horowitz, T., & Treisman, A. (1994). Attention and apparent motion. Spatial Vision, 8, 193-219.

49.

Jeannerod, M. (2001). Neural simulation of action: a unifying mechanism for motor cognition. NeuroImage, 14, S103-S109.

50.

Julesz, B. (1975). Experiments in the visual perception of texture. Scientific American, 232, 34-43.

51.

King, B., & Wertheimer, M. (2005). Max Wertheimer and Gestalt Psychology, New Jersy: Transaction Publishers.

52.

Koffka, K. (1935). Principles of Gestalt psychology. New York: Harcourt, Brace & World.

53.

Kolers, P., & Pomerantz, J. (1971). Figural change in apparent motion. Journal of Experimental Psychology, 87(1), 99-108.

54.

Kolers, P. A. (1972). Aspects of motion perception. Oxford: Pergamon Press.

55.

Kolers, P. A., & Green, M. (1984). Color logic of apparent motion. Perception, 13(3), 249-254.

56.

Koriat, A. (1994). Object-based apparent motion. Perception & Psychophysics, 56(4), 392-404.

57.

Kourtzi, Z., Krekelberg, B., & van Wezel, R. J. A. (2008). Linking form and motion in the primate brain. Trends in Cognitive Sciences, 12(6), 230-236.

58.

Krekelberg, B. (2008). Motion detection mechanisms. In A. I. Basbaum, A. Kaneko, G. M. Shepherd, G. Westheimer, T. D. Albright, R. H. Masland, P. Dallos, D. Oertel, S. Firestein, G. K. Beauchamp, M. C. Bushnell, J. H. Kaas & Gardner.E. (Eds.), The Senses: A Comprehensive Reference. (Vol. 2, pp. 133-155). Oxford: Elsevier Inc.

59.

Lakatos, S., & Shepard, R. N. (1997). Constraints common to apparent motion in visual, tactile, and auditory space. Journal of Experimental Psychology: Human Perception and Performance, 23, 1050-1060.

60.

Lettvin, J. Y., Maturana, H. R., McCuloch, W. S., & Pitts, W. H. (1968). What the frog's eye tells the frog's brain. In W. C. Corning & M. Balaban (Eds.), The Mind: Biological Approaches to its Functions (pp.233-258). New York: John Wiley & Sons.

61.

Liu, T., Slotnick, S. D., & Yantis, S. (2004). Human MT+ mediates perceptual filling-in during apparent motion. NeuroImage, 21, 1772-1780.

62.

Lu, Z., & Sperling, G. (1995). Attention-generated apparent motion. Nature, 377, 237-239.

63.

Lu, Z., & Sperling, G. (2001). Three-systems theory of human visual motion perception: review and update. Journal of Optical Society of America, A, 18, 2331-2370.

64.

Marr, D. (1982). Vision: A computational investigation into the human representation and processing of visual information San Francisco: W. H. Freeman.

65.

Mather, G. (1991). First-order and second-order visual processes in the perception of motion and tilt. Vision Research, 31, 161-167.

66.

Mather, G., & Tunley, H. (1995). Temporal filtering enhances direction discrimination in random dot patterns. Vision Research, 35, 2105-2116.

67.

McBeath, M. K., Morikawa, K., & Kaiser, M. K. (1992). Perceptual bias for forward-facing motion. Psychological Science, 3(6), 362-367.

68.

McBeath, M. K., & Shepard, R. N. (1989). Apparent motion between shapes differing in location and orientation: a window technique for estimating path curvature. Perception & Psychophysics, 46(4), 333-337.

69.

Morgan, M. J. (1992). Spatial filtering precedes motion detection. Nature, 355, 344-346.

70.

Muckli, L., Kohler, A., Kriegeskorte, N., & Singer, W. (2005). Primary visual cortex activity along the apparent-motion trace reflects illusory perception. PLoS Biology, 3(8), 1501-1510.

71.

Muckli, L., Kriegeskorte, N., Lanfermann, H., Zanella, F. E., Singer, W., & Goebel, R. (2002). Apparent motion: Event-related functional magnetic resonance imaging of perceptual switches and states. Journal of Neuroscience, 22, 1-5.

72.

Nakayama, K. (1985). Biological image motion processing: a review. Vision Research, 25(5), 625-660.

73.

Nakayama, K., & Tyler, C. W. (1981). Psychophysical isolation of movement sensitivity by removal of familiar position cues. Vision Research, 21, 427-433.

74.

Navon, D. (1976). Irrelevance of figural identity for resolving ambiguities in apparent motion. Journal of Experimental Psychology: Human Perception and Performance, 2, 130-138.

75.

Newsome, W. T., Mikami, A., & Wurtz, R. H. (1986). Motion selectivity in macaque visual cortex. III. Psychophysics and physiology of apparent motion. Journal of Neurophysiology, 55(6), 1340-1351.

76.

Oh, S. (2008). The integration of visual form and motion during face perception. Ph. D., Rutgers, Newark.

77.

Orger, M. B., Smear, M. C., Anstis, S. M., & Baier, H. (2000). Perception of Fourier and non-Fourier motion by larval zebrafish. Nature Neuroscience, 3(11), 1128-1133.

78.

Palmer, S. E. (1999). Vision science. Cambridge: MIT Press.

79.

Pantle, A. J., & Picciano, L. (1976). A multistable movement display: Evidence for two separate motion systems in human vision. Science, 193, 500-502.

80.

Pomerantz, J. (1970). Eye movements affect the perception of apparent (beta) movement. Psychonomic Science, 19(4), 193-194.

81.

Prinz, W. (1990). A common coding approach to perception and action. In O. Neumann & W. Prinz (Eds.), Relationships between perception and action: Current approaches (pp.167-201). Berlin: Springer-Verlag.

82.

Pylyshyn, Z. W., & Storm, R. W. (1988). Tracking multiple independent targets: evidence for a parallel tracking mechanism. Spatial Vision, 3(3), 179-197.

83.

Ramachandran, V. S., & Anstis, S. M. (1983). Perceptual organization in moving patterns. Nature, 304(11), 529-531.

84.

Ramachandran, V. S., & Anstis, S. M. (1986). The perception of apparent motion. Scientific American, 254, 80-87.

85.

Ramachandran, V. S., Armel, C., Foster, C., & Stoddard, R. (1998). Object recognition can drive motion perception. Nature, 395, 852-853.

86.

Ramachandran, V. S., & Gregory, R. L. (1978). Does colour provide an input to human motion perception? Nature, 275, 55-56.

87.

Ramachandran, V. S., Rao, V. M., & Vidyasagar, T. R. (1973). Apparent movement with subjective contours. Vision Research, 13, 1399-1401.

88.

Raymond, J. E. (2000). Attentional modulation of visual motion perception. Trends in Cognitive Sciences, 4(2), 42-50.

89.

Reichard, W. (1957). Autocorrelation; A principle for the evaluation of sensory information by the central nervous system. In W. A. Rosenblith (Ed.), Sensory communication, New York: Wiley.

90.

Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169-192.

91.

Rock, I. (1983). The logic of perception. Cambridge, MA: MIT.

92.

Rock, I., & Ebenholtz, S. (1962). Stroboscopic movement based on change of phenomenal rather than retinal location. American Journal of Psychology, 75, 193-207.

93.

Rock, I., Tauber, E. S., & Heller, D. P. (1965). Perception of stroboscopic movement: evidence for its innate basis Science, 147(3661), 1050-1052.

94.

Sandeman, D. C., & Erber, J. (1976). The detection of real and apparent motion by the crab Leptograpsus variegatus. Journal of Comparative Physiology, 112, 181-188.

95.

Shechter, S., Hillman, P., Hochstein, S., & Shapley, R. M. (1991). Gender differences in apparent motion perception. Perception, 20(3), 307-314.

96.

Shepard, R. N. (1984). Ecological constraints on internal representation: Resonant kinematics of perceiving, imagining, thinking, and dreaming. Psychological Review, 91(4), 417-447.

97.

Shepard, R. N. (2001). Perceptual-cognitive universals as reflections of the world. Behavioral and Brain Sciences, 24, 581-601.

98.

Shepard, R. N., & Judd, S. A. (1976). Perceptual illusion of rotation of three-dimensional objects. Science, 191, 952-954.

99.

Shepard, R. N., & Zare, S. L. (1983). Path-guided apparent motion. Science, 220, 632-634.

100.

Shiffrar, M., & Freyd, J. (1990). Apparent motion of the human body. Psychological Science, 1, 257-264.

101.

Shiffrar, M., & Freyd, J. (1993). Timing and apparent motion path choice with human body photographs. Psychological Science, 4, 257-264.

102.

Steinman, R. M., Pizlo, Z., & Pizlo, F. J. (2000). Phi is not beta, and why Wertheimer's discovery launched the Gestalt revolution. Vision Research, 40, 2257-2264.

103.

Summerfield, C., & Egner, T. (2009). Expectation (and attention) in visual cognition. Trends in Cognitive Sciences, 13(9), 403-409.

104.

Ternus, J. (1926/1955). The problem of phenomenal identity. In W. D. Ellis (Ed.), A sourcebook of Gestalt psychology (pp.149-160). London: Routledge & Kegan Paul.

105.

Treisman, A. (1986). Properties, parts, and objects. In K. R. Boff, F. Kaufman & J. Thomas (Eds.), Handbook of Perception and Human Performance (Vol. 2, pp.(35)31-(35)70). New York: John Wiley and Sons.

106.

Treue, S., & Martínez Trujillo, J. C. (1999). Feature-based attention influences motion processing gain in macaque visual cortex. Nature, 399(10), 575-579.

107.

Tse, P., Cavanagh, P., & Nakayama, K. (1998). The role of parsing in high level motion processing. In T. Watanabe (Ed.), High-level motion processing: computational, neurobiological, and psychophysical perspectives. (pp.249-267). Cambridge:MA: MIT Press.

108.

Ullman, S. (1979). The interpretation of visual motion. Cambridge, MA: MIT Press.

109.

VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous? Trends in Cognitive Sciences, 7(5), 207-213.

110.

Van Santen, J. P., & Sperling, G. (1984). Temporal covariance model of human motion perception. Journal of the Optical Society of America A, 1(5), 451-473.

111.

Wade, N., J. (1999). A natural history of vision. Cambridge, Massachusetts: The MIT Press.

112.

Wallach, H. (1959). The perception of motion. Scientific American, 201, 56-60.

113.

Wandell, B. A. (1995). Foundations of vision. Sunderland, Massachusettes: Sinauer Associates, Inc.

114.

Watson, A. B., Ahumada, A. J., Farrell, J. E. (1986). Window of visibility: A psychophysical theory of fidelity in time-sampled visual motion displays. Journal of the Optical Society of America A, 3, 300-307.

115.

Werkhoven, P., Sperling, G., & Chubb, C. (1993). The dimensionality of texture-defined motion: a single channel theory Vision Research, 33(4), 463-485.

116.

Wertheimer, M. (1912). Experimentelle Studien über das Sehen von Bewegung. Zeitschrift für Psychologie, 61, 161-262.

117.

Williams, Z. M., Elfar, J. C., Eskandar, E. N., Toth, L. J., & Assad, J. A. (2003). Parietal activity and the perceived direction of ambiguous apparent motion. Nature Neuroscience, 6(6), 616-623.

118.

Yantis, S., & Nakama, T. (1998). Visual interactions in the path of apparent motion. Nature Neuroscience, 1, 508-512.

119.

Zhuo, Y., Zhou, T. G., Rao, H. Y., Wang, J. J., Meng, M., Chen, M., . . . Chen, L. (2003). Contributions of the visual ventral pathway to long-range apparent motion. Science, 299, 417-420.

120.

Zihl, J., von Carmon, D., & Mai, N. (1983). Selective disturbance of movement vision after bilateral brain damage. Brain, 106, 313-340.

한국심리학회지: 인지 및 생물