바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

작업기억 부하에 의한 방추상얼굴영역의방해자극 관련 정보처리의 감소

Working Memory Load Can Reduce Task-Irrelevant Processing in Human Fusiform Gyrus

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2013, v.25 no.1, pp.1-24
https://doi.org/10.22172/cogbio.2013.25.1.001
민수정 (연세대학교)
Kamin Kim (University of Michigan)
이도준 (연세대학교)
김민식 (연세대학교)
  • 다운로드 수
  • 조회수

Abstract

How does working memory (WM) load affect concurrent visual selection? A previous study has shown that high WM load increases functional magnetic resonance imaging (fMRI) signals for task-irrelevant information, suggesting that visual selection is impaired with a WM load. In contrast, recent behavioral experiments demonstrated that visual selection can be enhanced if the type of WM load overlaps with distractor processing. Using fMRI, the current experiment extends the previous behavioral findings by demonstrating that loading WM with face images can reduce task-irrelevant face processing in the face-selective cortical region, the fusiform face are (FFA). In Experiment 1, while remembering a famous (low load) or novel (high load) face, participants performed a politician-athlete classification for names overlaid on distractor faces. In Experiment 2, participants remembered one novel face (low load) or three different novel faces (high load) for the WM task. In both experiments, high WM load enhanced target selection. The FFA responses were reduced to face distractors when WM was demanded. We further demonstrated that these results were not driven by load-dependent baseline shifts in the FFA activity in Experiment 3. In conjunction with previous studies, the current findings suggest that WM load can attenuate distractor interference and improve target selection when the contents of WM shares limited-capacity processing with distractors.

keywords
주의, 작업기억 부하, 인지 통제, 스트룹 간섭, 기능적 자기공명영상, attention, working memory load, cognitive control, Stroop interference, fMRI

참고문헌

1.

Baker, S. C., Frith, C. D., Frackowiak, R. S., & Dolan, R. J. (1996). Active representation of shape and spatial location in man. Cerebral Cortex, 6, 612-619.

2.

Bar, M., Aminoff, E., & Ishai, A. (2008). Famous Faces Activate Contextual Associations in the Parahippocampal Cortex. Cerebral Cortex, 18, 1233-1238.

3.

Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using an SPM toolbox. Neuroimage, 16, 497.

4.

Courtney, S. M., Petit, L., Maisog, J. M., Ungerleider, L. G., & Haxby, J. V. (1998). An area specialized for spatial working memory in human frontal cortex. Science, 279, 1347-1351.

5.

de Fockert, J. W., Rees, G., Frith, C. D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291, 1803-1806.

6.

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual Review of Neuroscience, 18, 193-222.

7.

Druzgal, T. J., & D'Esposito, M. (2003). Dissecting contributions of prefrontal cortex and fusiform face area to face working memory. Journal of Cognitive Neuroscience, 15, 771-784.

8.

Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784-1790.

9.

Eng, H. Y., Chen, D., & Jiang, Y. (2006). Effects of familiarityon visual working memory of upright and inverted faces. Journal of Vision, 6, 359A.

10.

Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 8, 555- 562.

11.

Han, S. H., & Kim, M. -S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15, 623-628.

12.

Jackson, M. C., & Raymond, J. E. (2008). Familiarity enhances visual working memory for faces. Journal of Experimental Psychology: Human Perception and Performance, 34, 556-568.

13.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302-4311.

14.

Kerns, J. G., Cohen, J. D., MacDonald, A. W., 3rd, Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023-1026.

15.

Kim, S. -Y., Kim, M. -S., & Chun, M. M. (2005). Concurrent working memory load can reduce distraction. Proceedings of the National Academy of Sciences, 102, 16524-16529.

16.

Lavie, N., Hirst, A., de Fockert, J. W., & Viding, E. (2004). Load theory of selective attention and cognitive control. Journal of Experimental Psychology: General, 133, 339-354.

17.

Lavie, N., & de Fockert, J. (2005). The role of working memory in attentional capture. Psychonomic bulletin & review, 12, 669-674.

18.

Logan, G. D. (1979). On the use of a concurrent memory load to measure attention and automaticity. Journal of Experimental Psychology: Human Perception and Performance, 5, 189-207.

19.

Logan, G. D. (1988). Automaticity, resources, and memory: Theoretical controversies and practical implications. Human Factors, 30, 583-598.

20.

MacDonald, A. W., 3rd, Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 1835-1838.

21.

Mitchell, J. P., Macrae, C. N., & Gilchrist, I. D. (2002). Working memory and the suppression of reflexive saccades. Journal of Cognitive Neuroscience, 14, 95-103.

22.

Oh, S. H., & Kim, M. -S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic bulletin & review, 11, 275-281.

23.

Park, S., Kim, M. -S., & Chun, M. M. (2007). Concurrent working memory load can facilitate selective attention: Evidence for a specialized load theory. Journal of Experimental Psychology: Human Perception and Performance, 33, 1062-1075

24.

Peterson, M. S., Beck, M. R., & Wong, J. H. (2008). Were you paying attention to where you looked? The role of executive working memory in visual search. Psychonomic bulletin & review, 15, 372-377.

25.

Posner, M. I., & Petersen, S. E. (1990). The attention systems of the human brain. Annual Review of Neuroscience, 13, 25-42.

26.

Puce, A., Allison, T., Asgari, M., Gore, J. C., & McCarthy, G. (1996). Differential sensitivity of human visual cortex to faces, letterstrings, and textures: a functional magnetic resonance imaging study. Journal of Neuroscience, 16, 5205-5215.

27.

Raczkowski, D., Kalat, J. W., & Nebes, R. (1974). Reliability and validity of some handedness questionnaire items. Neuropsychologia, 12, 43-47.

28.

Roberts, R. J., Hager, L. D., & Heron, C. (1994). Prefrontal cognitive processes: Working memory and inhibition in the antisaccade task. Journal of Experimental Psychology: General, 123, 374-393.

29.

Smith, E. E., Jonides, J., Koeppe, R. A., Awh, E., Schumacher, E. H., & Minoshima, S. (1995). Spatial versus object working memory: PET investigations. Journal of Cognitive Neuroscience, 7, 337-356.

30.

Treisman, A. (1969). Strategies and models of selective attention. Psychological Review, 76, 282-299.

31.

Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12, 219-224.

32.

Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic bulletin & review, 11, 269-274.

33.

Yi, D. -J., Turk-Browne, N. B., Flombaum, J. I., Scholl, B. J., Kim, M. -S., & Chun, M. M. (2008). Spatiotemporal object continuity in human ventral visual cortex. Proceedings of the National Academy of Sciences, 105, 8840-8845.

한국심리학회지: 인지 및 생물