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Abstract: Named entity recognition (NER) is a crucial task for Natural Language Processing (NLP), which 
aims to extract information from texts. To build NER systems, deep learning (DL) models are learned with 
dictionary features by mapping each word in the dataset to dictionary features and generating a unique index. 
However, this technique might generate noisy labels, which pose significant challenges for the NER task. In 
this paper, we proposed DL-dictionary features, and evaluated them on two datasets, including the OntoNotes 
5.0 dataset and our new infectious disease outbreak dataset named GFID. We used (1) a Bidirectional Long 
Short-Term Memory (BiLSTM) character and (2) pre-trained embedding to concatenate with (3) our proposed 
features, named the Convolutional Neural Network (CNN), BiLSTM, and self-attention dictionaries, 
respectively. The combined features (1-3) were fed through BiLSTM - Conditional Random Field (CRF) to 
predict named entity classes as outputs. We compared these outputs with other predictions of the BiLSTM 
character, pre-trained embedding, and dictionary features from previous research, which used the exact 
matching and partial matching dictionary technique. The findings showed that the model employing our 
dictionary features outperformed other models that used existing dictionary features. We also computed the 
F1 score with the GFID dataset to apply this technique to extract medical or healthcare information. 

Keywords: BiLSTM Dictionary; CNN Dictionary; Self-attention Dictionary; GFID Dataset; Biomedical NER. 
 

1. Introduction 

In Natural Language Processing (NLP), a use of deep learning models has allowed Artificial Intelligence 
(AI) to surpass human levels on several important tasks, for example, Question & Answering (QA), Machine 
Translation (MT), and Information Extraction (IE). Named Entity Recognition (NER) is a sub-task of IE that 
extracts entities mentioned in an unstructured text into a category such as organization, person, and location. 
There are four different types of NER techniques: a rule-based approach that relies on hand-crafted rules, an 
unsupervised learning approach that is based on an algorithm without any label data, a feature-based supervised 
learning approach that focuses on a supervised learning algorithm, and DL approach that detects results from 
raw input [1,2].   

Recently, along with the development of DL models, neural network models have been successfully used 
for the NER task.  It has been shown that the injection dictionary as features in a sequence tagger was able to 
improve the performance in NER (e.g., Ratinov and Roth, 2009, Cohenand Sarawagi, 2004, Chui and Nichols, 
2015, and Tianyu et al., 2019) [5-8]. It also provides valuable information for handling unseen cases and rare 
words because the dictionary feature demonstrates human knowledge [1,9]. Therefore, the previous research 
commonly concatenated the dictionary with other features before passing it to the model.  

We hypothesized that if DL-based dictionary properly classified the named entities, the accuracy of the 
model could be improved. To investigate the performance of the dictionary on DL, we studied the effect of a 
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dictionary representation being fed into a model (CNN/BiLSTM/Self-Attention). The model was concatenated 
with other representations (FastText, ELMo, and Character Embedding). In this experiment, we used a DL 
model designed by DeLFT [10] using BiLSTM for learning the model and the Conditional Random Field (CRF) 
for decoding the results. This research was conducted with a purpose to: 

1. Learn and evaluate the Bidirectional Long Short-Term Memory (BiLSTM) CRF model for BiLSTM 

character-level and FastText word representation [11] with/without context embedding (BERT, ELMo) [12,13]. 

The models were used as baselines for our experiments. 

2. Concatenate the BiLSTM character-level, FastText, with/without context embedding (called 

previous representations) with a dictionary representation. In this task, we divided the dictionary representation 

into two categories: 

2.1. Baseline representation: The previous representations were combined with partial matching [7,14], 

exact matching [5,15,16], and token matching [2].  

2.2. Dictionary feature representation: The previous representations were concatenated with (1) Found - 

not Found, (2) SoftMax, and (3) Hyperbolic tangent (Tanh) dictionary feature. In this study, the Found- not 

Found dictionary feature was applied from Ronran et al., 2020 [17], while the SoftMax and Tanh dictionary 

features are presented as new experiments. 

2.3. Then, they were passed through CNN, BiLSTM, and Self-Attention models. 

The combinations (BiLSTM character-level, FastText, with/without context-embedding, and dictionary 
representation) were injected into the BiLSTM CRF, and we verified the performance of each model by using 
F1-score. 

For evaluation, we conducted experiments with the OntoNotes 5.0 dataset, and GFID dataset. The GFID 
dataset is generated from electronic literature and biomedical news, which has annotation of entities on 
infectious disease outbreak. In this task, we rely on handcrafted to identify 20 classes including date, disease, 
duration, died, GPE, infected, location, money, nationality, number, ordinal, organization, outbreak, pathogen, 
percent, person, probable, suspected, time and title.  

The rest of the paper is structured as follows. Related works are reviewed in section 2. We present our 
model architecture and hyperparameters in section 3. The experimental results are shown in section 4. A 
discussion is given in section 5. Section 6 gives the conclusion. 

2. Related Works 

2.1 Dictionary Features  

The dictionary features are used to map an entity of word or token in a dictionary with a word in text and 
generate the unique index. There are three common matching methods. The first is an exact matching, the 
second is a partial matching, and the third is a token matching. 

2.1.1  Exact matching: this method injects a dictionary as features into a model [5,6] and labels the object with 

a CRF. Given a dictionary of named entities, a dictionary feature is set to a word or a phrase in the input 

sentence. The dictionary feature of the first word in the named entity is assigned to Begin tag (B), while the 

dictionary feature of the remaining words in the named entity is assigned to Inside tag (I). The other words in 

the input sentence which are not part of any named entity in the dictionary are set to Outside tag (O). If multiple 

matches are found in an entity, the longest word or phrase is preferred [18]. With the exact matching technique, 

the correct type of word is selected as much as the n-gram covers the ground truth [1]. However, a longer match 

requires additional bits to categorize each word type [19]. 

2.1.2  Partial matching: n-gram is used to find a partial match in text with a dictionary entry. The standard model 

of this technique was proposed by Chiu and Nichols, 2015 [7].  
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Table 1. Example of how partial matching is applied. B, I, E, and S tags indicate that the token matches an entry 

in the dictionary 

Entity John studies at Washington And Lee University 

LOC - - - B I I E 
GPE - - - S - - - 
PER S - - - - - - 
ORG - - - - - - - 

To generate dictionary features, the Begin tag (B), Inside tag (I), End tag (E), and Single tag (S) indicate 
a token of an entry in the dictionary, as shown in Table 1. The overall model’s performance could be improved 
by a partial matching dictionary. In contrast, some researchers forgo the dictionary because it produces many 
wrong matches [5].  

2.1.3  Token matching: Ronran et al., 2020 [2] proposed the token matching strategy. To avoid the problem of 

tag mismatch, especially for a person that commonly assigned the first name as B, the last name is typically 

classified with an I or E. However, text is possibly assigned the last name as B, I, E, or S. They omitted the tag 

position and used 0 and 1 to indicate the presence or absence of a word in the dictionary as illustrated in Table 

2.  

Table 2. Example of how token matching is applied. The 1 indicates that the token is found and 0 indicates that 

the token is not found in the dictionary. 

Entity John studies at Washington And Lee University 

LOC 0 0 0 1 1 1 1 
GPE 0 0 0 1 0 0 0 
PER 1 0 0 0 0 0 0 
ORG 0 0 0 0 0 0 0 

2.2 Architecture for NER extraction on BiLSTM model 

A DL-based NER architecture was introduced by Collobert et al., 2011 [20]. The authors proposed vanilla 
neural networks over word embedding. The bidirectional model was used and extended by concatenating pre-
trained word embedding with the CNN Character-BiLSTM-CRF (Ma and Hovy, 2016, Peters et al., 2018) 
[13,21], the BiLSTM Character-BiLSTM-CRF (Lample et al., 2016, Liu et al., 2018) [22,23], the CNN 
Character-BidLSTM-CNN (Chiu & Nichols, 2016) [7], and the BiGRU-CRF (Peters et al., 2017) [24].  

The BiLSTM for NER was used to extract information from various unstructured texts. For example, 
Hamada et al., 2019 utilized pre-trained word representation, character representation, disease-dictionary 
information, and BiLSTM CRF for disease recognition [25]. Wu et al., 2020 proposed a DL based on BiLSTM-
CRF and domain dictionary-matching correction to extract cyber threat information [26]; Cui et al., 2021 and 
Wu et al.,2021 applied BiLSTM with Attention-CRF to extract the named entities of job-skill and Chinese-
clinic, respectively [27,28].   

In DeLFT NER (2020), the authors re-implemented several state-of-the-art algorithms for NER, including 
the usage of ELMo and BERT architecture. DeLFT offered validate-reported results for benchmarking several 
methods under the same criteria and conditions. From the F1-score obtained by DeLFT, we found that the model 
of Lample et al., 2016 achieved the best score in this task.  

3. Materials and Methods  

3.1 Features  

3.1.1 Embedding Features. 
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We used three kinds of pretrained embedding: (1) FastText (cc300.vec) is a distributed representation of 
words in a vector space that captures syntactic and semantic information [11]. (2) ELMo is a contextualized 
embedding and character-level embedding method. ELMo analyzes entire sentences before assigning 
embedding for each sentence [13]. (3) BERT is a representation that takes sub-words as inputs and learns 
embeddings from them, returning sentence embedding [12]. 

3.1.2 Dictionary Features. 

In this section, we discuss how dictionaries employed by our system were constructed. First, we classified 
the dictionary into 11 entity types for OntoNotes 5.0 and 7 entity types for GFID. Then, we crawled data from 
Wikipedia, Geoname, and Kaggle to extract all possible vocabularies. All vocabularies were grouped for each 
entity type. Each vocabulary was searched on the Google search engine, and the number of pages found was 
counted. Table 3 and Table 4 shows the number of vocabularies from three sources mentioned above found in 
both datasets respectively. 

Table 3. The coverage of the dictionary on the OntoNotes5.0 dataset 

Entity Type Found Found (%) Not Found Not Found (%) 

GPE 1,411 73.30 514 26.70 
Event 197 33.68 388 66.32 
Law 146 34.11 282 65.89 
Faculty 246 29.71 582 70.29 
Language 22 47.83 24 52.17 
Location 134 21.04 503 78.96 
NORP 302 45.76 358 54.24 
Organization 3,437 72.69 1,291 27.31 
Product 156 32.70 321 67.30 
Person 3,481 49.76 3,514 50.24 
Work of art 791 53.05 700 46.95 
Total 10,323 54.91 8,477 45.09 

 

Table 4. The coverage of the dictionary on the GFID dataset 

Entity Type Found Found (%) Not Found Not Found (%) 

Disease 375 1.82 1,086 5.26 
GPE 3,815 18.47 2,078 10.06 
Location 236 1.14 3,041 14.73 
National 144 0.70 83 0.40 

Organization 2,363 11.44 2,140 10.36 
Pathogen 271 1.31 999 4.84 
Person 2,071 10.03 1,948 9.43 

Total  9,275 44.92 11,375 55.08 
 

After that, we assigned a page count into a token using Algorithm 1. 

Algorithm 1: The pseudo-code for finding a page count of each token 
Input:  Entity types and the page count of each vocabulary from Google Search 
Output: A page count of each token categorized composing entity types  
Begin 
   dic ← dictionary 
        for entity in entity types: 
            for vocabulary in entity: 
                number ← vocabulary’s count of each entity type 
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                tokens ← tokenize(vocabulary) 
                for token in tokens: 
                    if token was found in dic 
                        dic[token] ← dic[token] + number 
                    else: 
                        dic[token] ← number 
          return (dic) 
End 

 
A token and page count of each token (from Algorithm 1) is used to find a possible value by using three 

techniques: Found and Not Found [2,17], (2) Softmax, and (3) Tanh function. 
 

 Found and Not Found: It finds the existence of a token in each entity. In equation 1, T is a token, and i is the 

index of entity type. 

                               𝑻𝒊
𝟏
𝟎

𝑷𝒂𝒈𝒆 𝒄𝒐𝒖𝒏𝒕 𝒐𝒇 𝑻𝒐𝒌𝒆𝒏 𝟎
𝑶𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆                      

       (1) 

 Softmax: The input values for Softmax can be positive, negative, or zero. To interpret the value as probability, 

the values should be between 0 and 1. This SoftMax formula is shown in equation 2: [29] 

𝝈 𝒕
→

𝒊
𝒆𝒕𝒊

∑ 𝒆𝒕𝒋𝒌
𝒋 𝟏

                  (2)  

where all the ti values are the page count of a token in each entity type, K is the number of classes in the multi-class 

classifier. The term  ∑ 𝑒  is the normalization term to ensures that all the output values of the Softmax 

function will be equal to 1.                                      

 Tanh: Equation 3 uses the Tanh function to generate an output range from -1 to 1. The Tanh advantage is that 

inputs will be mapped strongly positive and negative inputs nearly 1 and -1 respectively in the Tanh graph. In 

this experiment, we calculated a Tanh of a token using the following equation. 

𝑇𝑖 Tanh ( )                                                

   (3)   

where the ei value is the page count of an entity token, emax is the maximum value of a page count in an 

entity-type. Figure 1 summarizes the process of dictionary representation creation. 

 

                          Processes Results 

 

 

 

 

Dictionary 

 e.g.  PER: (1) Gorge Washington: 5,000,000,  

                  (2) Gorge: 10,000,000 

        LOC: (1) Gorge Washington University: 

1,000,000 

 

 

 

 

 

Token Dictionary 

e.g.  PER: (1) Gorge: 15,000,000,  

                 (2) Gorge: 10,000,000 

       LOC: (1) Gorge Washington University: 

1,000,000 

Tokenization 

Crawled the page and count of each 

entity 
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Three Dictionary Features  

1 Found not Found  
Vocabulary PER LOC  
Gorge ( 1 1 ) 
Washington ( 1 1 ) 
University ( 0 1 ) 

2 SoftMax 
Vocabulary PER LOC  
Gorge ( 0.5 0.33 ) 
Washington ( 0.5 0.33 ) 
University ( 0 0.33 ) 

3 Tanh 
Vocabulary PER LOC  
Gorge ( 0.67 0.33 ) 
Washington ( 0.67 0.33 ) 
University ( 0 1 ) 

 

Figure 1 The process of dictionary representation. 

The experiments are conducted using three dictionary features with three models as follows: 

 CNN: CNN is one of the models that is used for the dictionary [2], which attempts to transform a sentence 

from a sequence of entity dictionaries into a sequence of dense vectors. In the CNN layer, an embedded 

matrix E ∈ Rvxd is used to map a token in the dictionary into a vector, where v is the vocabulary size, and 

d is the embedded dimension.  

We denoted an input sentence as s = [w1, w2, ...,wN ], where N is the sentence length and wi ∈ RV is the one-

hot vector of the di dictionary. The output of this layer is a sequence of vectors [x1, x2, ..., xN], where xi = 

Ewi ∈ Rd. We used the CNN to capture the local context information for NER. w ∈ 𝑅𝑘𝑑is a filter in the 

CNN where k is the window, then the contextual representation of the di dictionary learned by this filter 

is: di = f (w T × x[i - 
𝑘 1

2
]:   [𝑖 ] ), where x[i - 

𝑘 1

2
]:[i + 

𝑘 1

2
] represents the concatenation of the 

embeddings in the dictionary from [i - 
𝑘 1

2
] to [i + 

𝑘 1

2
], and f is the Tanh activation function.  

In this layer, the embeddings are passed through the CNN. We used embedding size = 25 with three filter lengths 

and followed by global max pooling to learn contextual dictionary representations. Let m be the filter 

number. The dictionary representation of the i (denoted as di) is the combination of the outputs of all filters 

at this position. The output of the CNN layer is c = [d1, d2, ..., dN], where di ∈ Rm [30]. 

 BiLSTM: As shown in equation 4, BiLSTM is used to capture future and past information for each time 

step. 

      H = 𝐿𝑆𝑇𝑀 𝑋
→

 || 𝐿𝑆𝑇𝑀
←

𝑋                           (4) 

where  

 𝐿𝑆𝑇𝑀
→

1 and 𝐿𝑆𝑇𝑀
←

2 denote the cells in forward and backward order. 

 X = [x1, x2, ...,xN ] denote the sequence of vector where N is the sentence length. 

 H denotes the resulting feature matrix for BiLSTM, and || denotes row-wise combination.  

For BiLSTM we assign dictionary types as an input dimension, where the number of units in the hidden layer 

is 128 [28].  

 

 

Encoded Dictionary Features: 

 

1. Found-not Found by  

 

2. SoftMax 
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 Self-Attention: It is a process relating various positions in a single sequence intent to compute a 

representation from the sequence [31-33]. Given the hidden feature H of a sequence, each hidden state is 

projected to different sub-spaces as (1) the query to communicate other hidden states for a token of each 

word, (2) the key vector for calculating ‘dot similarities’ with incoming queries, or (3) the value vector for 

weighted and conveyed information to the query token. Formally, let dc be the sub-space dimension and 

m be the number of attention heads. For each head 𝑖 ∈{1..m}, the attention weight and context matrix are 

computed as the following equations (5-6). 

           𝛼 𝜎                                                  (5)                  

             𝐶 𝛼𝐻𝑊                                                       (6) 

where 𝑊 , 𝑊 , 𝑊 ∈ 𝑅  are three (query, key, and value) projections matrices and 𝜎 performs 

the sigmoid function. Each row of the 𝛼 , 𝛼 , … , 𝛼 ∈ 𝑅  is the result. It contains a token's attention weights 

to its context. For each row of 𝐶 , 𝐶 , … , 𝐶 ∈ 𝑅  is the context vector. We used the default 

hyperparameter setup from Keras Self-Attention [34] for processing sequential data that considers the context 

for each timestamp. 

3.1.3 BiLSTM Character Feature 

This character word representation has been introduced to represent morphological and orthographical 
elements [25]. We followed Ma and Hovy and DeLFT and used a BiLSTM to extract features from 25 
dimensions. The BiLSTM Character Feature is combined with the dictionary representation and pre-trained 
embedding before feeding it into BiLSTM CRF model as introduced in section 3.2. 

3.2 BiLSTM CRF Model 

We concatenated the character BiLSTM with pre-trained word embedding with and without context 

embedding before passing through the BiLSTM CRF model. This model was used to assess the model 

performance without the dictionary. After that, we evaluated the performance of the previous research 

dictionary representation by combining all the features in subsection 3.1 and feeding them into a BiLSTM CRF 

as shown in Figure 2. The previous dictionary results are compared with the results of our dictionary model that 

the dictionary information is passed through a deep learning model (CNN/BiLSTM/Self Attention) before using 

BiLSTM CRF to predict the last results. 

The CRF layer is used after the output BiLSTM layer, which denotes H. Given the prediction of the label, 

the sequence is computed using equation 7 [35].  

 

                                              P(Y|X) = 
 ∑

,

∑  ∑
,

                             (7) 

where y’ denotes an arbitrary label sequence. 𝑊𝐶𝑅𝐹

𝑦𝑖  and 𝑏𝐶𝑅𝐹

𝑦𝑖 1,𝑦𝑖
 are trainable parameters. 
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Input    BiLSTM 

Character 

 Pretrained 

 

Dictionary  BiLSTM  CRF Output

 

 

At 

Vector of A           

   
 

  Embedding Feature       

Vector of t +    
 

+ LSTM LSTM     
 

O 

   

 

          

 

 

UK 

Vector of U          

   
 

Embedding Feature       

Vector of K +    
 

+ LSTM LSTM     
 

B-LOC

   
 

        

 

 

 

 

Port 

Vector of P          

   
 

         

Vector of o          

   
 

Embedding Feature       

Vector of r +    
 

+ LSTM LSTM     
 

I-LOC 

   
 

          

Vector of t           

   
 

          

Figure 2 The model with dictionary 

3.3 Experimental Setup     

3.3.1. Dataset 

OntoNotes 5.0 dataset consists of a million-token corpus from a variety source of newswires, broadcast 
news, broadcast conversation, etc. This dataset has seven values (date, time, percent, money, quantity, ordinal, 
and cardinal) and 11 types of entities: Organization, Work_of_Art, Product, Person, Norp, Location, Law, 
Language, GPE, Facility, and Event.  

In this task, we followed Chiu and Nichols, 2016, that utilized the dataset with the gold standard of 
annotations [36]. Statistics of this dataset are shown in Table 5. 

Table 5. The statistics of the OntoNotes5.0 dataset 

 Train Dev Test 

Sentence 59,924 8,528 8,262 
Token 1,088,503 147,724 152,728 
Entity 81,828 11,066 11,257 

 
GFID dataset, we focused on distinguishing disease and pathogen for extracting cause of sickness in each 

location. In this task, we build it manually. GFID dataset is for detecting infectious disease outbreak events. So, 
it has annotation of named entities like disease, GPE, location, nationality, organization, outbreak, pathogen, 
person, and title; values like date, time number, ordinal, money, duration, and percent; as well as event triggers 
like probable, suspected, infected, and died - by using Stanford CoreNLP (NER) and dictionary to list of 
infectious disease and pathogen names. Additionally, the datasets are isolated within train, development, and 
test set as shown in Table 6. 

 
Table 6. The statistics of the GFID dataset 
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 Train Dev Test 

Sentence 162,664 19,631 18,234 
Token 2,006,518 243,440 232,333 
Entity 268,955 32,795 29,302 

3.3.2. Hyperparameter Setup 

All our experiments used the BiLSTM CRF model given in section 3.2. To avoid bias from hyperparameter 
tuning, we borrowed the parameters from DeLFT NER as shown in Table 7. 

Table 7. DeLFT’s hyperparameter setup 

Hyper-parameter  

Char_emb_size 25 
Char_lstm_units 25 
Max_char_length 30 
Char_cnn_filler size  3 
FastText embeddings_name cc300.vec 
FastText embedding_dimension 300 
ELMo embeddings_name 5.5B word corpus 
ELMo embedding_dimension 1024 
BERT embeddings_name Cased 
BERT Base embedding_dimension 768 
BERT Large embedding_dimension 1024 
Hidden unit 128 
Max_sequence_length 300 
Learning_rate 0.001 
Lr_decay  0.9 
Clip_gradients 5.0 
Patience 5 
Optimizer Adam 
Epoch 200 

 

For the dictionary, we applied the hyperparameter from the previous model except for emb_size and 
dic_length. We changed these values to the number of entity types in the dictionary as shown in Table 8. 

Table 8. Hyperparameter setup of the dictionary model. 

Hyper-parameter   

Dictionary OntoNotes_emb_size 11 
Dictionary GFID_emb_size 7 
Dictionary _lstm_units 25 
Max_ Dictionary _length 11 
Dictionary _cnn_filler size  3 
Attention_activation Sigmoid 

 

In the experiment, we used the last two layers of BERT-BASE and the last one layer of BERT-LARGE 
without finetuning due to the limitation of our hardware. We also increased the epochs to 200 for all models. 
The model performances were evaluated with F1- Score. We trained each model to obtain the precision, recall, 
F1-Score. 
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4. Results 

4.1. Baseline 

We divided our baseline into two parts: (1) the Lample model with and without context embedding (BERT 
or ELMo), and (2) the Lample model with partial [7,14] and exact matching dictionary representation [5,15,16] 

For reference, we executed the baseline method with FastText, ELMo+FastText, BERT+FastText 
BiLSTM combined with Character BiLSTM before passing through the CRF to predict the last result. F1-scores 
of the baseline are shown in Table 9. 

Table 9 The results of the baseline model (Lample) with/without contextual embedding (BERT and ELMo) 

Model 

Dataset 
Dimension Precision Recall F1-Score 

BiLSTM Char + FastText OntoNotes 25+300 86.150 85.296 85.722 (±0.198)
BiLSTM Char+ ELMo+ Fasttext  OntoNotes 25+1,024+300 88.504 88.928 88.713 (±0.106)

BiLSTM Char +BERT LARGE 

1Layer+ Fasttext  

OntoNotes 25+1,024+300 87.585 88.105 87.845 (±0.035)

BiLSTM Char + BERT BASE  

2 Layers+ Fasttext 

OntoNotes 25+1,536+300 88.458 88.948 88.700 (±0.083)

BiLSTM Char + FastText GFID 25+300 87.557 90.070 88.793 (±0.191)

The results show that the re-implemented Lample FastText model from DELFT provided the F1 score at 
85.722%, whereas ELMo, BERT-LARGE-cased 1 Layer and BERT-BASE-cased 2 Layers performed better in 
this task at 88.713%, 88.700%, and 88.793%, respectively. (*We used frozen ELMo and BERT without fine-
tuning due to hardware limitation.) 

We re-implemented the second baseline using (1) the partial matching dictionary and (2) the exact 
matching dictionary. Each dictionary was combined with pre-trained embedding and BiLSTM-Character before 
feeding them into BiLSTM-CRF. Table 10 provides the F1-score of these models. The results of the partial and 
exact matching dictionary with BiLSTM Character – FastText showed 0.118% and 0.568% improvement 
respectively.  

Table 10 The results of baseline model (Lample) with partial or exact matching dictionary 

Model Dataset Matching 
Dictionary

Precision Recall F1-Score 

BiLSTM Char + FastText OntoNotes Partial 86.208 85.470 85.840 (±0.550)
BiLSTM Char + FastText OntoNotes Exact 86.630 85.950 86.290 (±0.344)
BiLSTM Char + FastText  GFID Partial 87.463 90.100 88.727 (±0.087)
BiLSTM Char + FastText  GFID Exact 87.737 90.503 88.953 (±0.246)

We believe that a dictionary with the DL model may influence the performance of the NER. According to 
this, we further experimented on dictionary models and compared the results with the baseline as discussed in 
the next sub-section. 

4.2 Dictionary Model  

We conducted experiments by creating a dictionary representation with three different models (CNN, 
BiLSTM and Self-Attention) and combined them with BiLSTM Character+FastText without ELMo. The F1-
Score results are shown in Table 11 and Table 12.  

In Table 11 and 12, the results of CNN Found -not Found dictionary are the technique from Ronran et al., 
2020. This CNN Dictionary was better than the partial model. The exact matching dictionary seemed to get a 
higher F1-Score. 

We found that the F1-Scores of our model, except the Tanh CNN dictionary, were better than the partial, 
and the exact match dictionary. 
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Table 11 The OntoNotes 5.0’s results of our CNN/BiLSTM/Self-Attention dictionary with FastText BiLSTM-

CRF compared with Partial and Exact matching (Different =F1-Score – Partial/Exact matching F1-Score of 

Table 10)  

Dictionary Precision Recall F1-Score 
Different 

Partial Exact 

CNN  

Found-not Found 86.635 85.855 86.245*(±0.021) 0.405 -0.045 
SoftMax 86.845 86.155 86.500 (±0.014) 0.660 0.210 
Tanh 86.570 85.597 86.083 (±0.129) 0.243 -0.207 

BiLSTM  

Found-not Found 86.973 86.190 86.580 (±0.061) 0.740 0.290 
SoftMax 86.997 86.273 86.630 (±0.052) 0.790 0.340 
Tanh 86.893 86.180 86.533 (±0.135) 0.693 0.243 

Self- 

Attention  

Found-not Found 86.755 86.050 86.400 (±0.198) 0.560 0.110 
SoftMax 86.794 86.110 86.452 (±0.423) 0.612 0.162 
Tanh 86.760 85.975 86.370 (±0.170) 0.530 0.080 

* Ronran et al., 2020 model  

Table 12 The GFID’s results of our CNN/BiLSTM/Self-Attention dictionary with FastText BiLSTM-CRF 

compared with Partial and Exact matching (Different = F1-Score – Partial/Exact matching F1-Score of Table 

10)  

Dictionary Precision Recall F1-Score 
Different 

Partial Exact

CNN  

Found-not Found 87.627 90.277 88.933* (±0.404) 0.173 -0.020
SoftMax 88.037 90.327 89.163 (±1.674) 0.403 0.210
Tanh 87.827 90.457 89.120 (±0.157) 0.360 0.167

BiLSTM  

Found-not Found 87.700 90.620 89.140 (±0.436) 0.380 0.187
SoftMax 87.703 90.707 89.180 (±0.964) 0.420 0.227
Tanh 87.667 90.557 89.087 (±0.379) 0.327 0.134

Self- 

Attention  

Found-not Found 87.740 90.540 89.120 (±0.436) 0.393 0.167
SoftMax 87.530 90.300 89.043 (±2.650) 0.317 0.090
Tanh 87.847 90.663 89.233 (±1.464) 0.473 0.280

 * Ronran et al., 2020 model 

The results also showed that the performance of the Self-Attention dictionary was marginally improved 
over those of the Found-not Found CNN dictionary. The Tanh Self-Attention dictionary achieved the best score 
at 89.233% on GFID dataset. This F1-Score significantly improves 0.473% point when compared with partial 
matching and 0.280% point when compared with exact matching. The SoftMax BiLSTM dictionary provides 
the highest score at 86.630% on OntoNotes 5.0 dataset which also significantly improves 0.790% point and 
0.340% point when compared with partial and exact matching, respectively (Wilcoxon rank sum test, p < 0.05). 

Next, we further conducted experiments on the combination of BiLSTM dictionary+ ELMo+ FastText to 
improve our model accuracy on OntoNotes dataset. The results are shown in Table 13. 

Table 13 The OntoNotes 5.0’s results of our BiLSTM dictionary with ELMo+ FastText BiLSTM-CRF   

Dictionary Precision Recall F1-Score 
Different 

Partial Exact 

Partial 88.564 88.822 88.694 
(±0.215)

- -0.078 

Exact 88.504 89.048 88.772 
(±0.119)

0.078 - 
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Dictionary Precision Recall F1-Score 
Different 

Partial Exact 

BiLSTM 

Found-not 
Found 

88.820 89.185 89.005 
(±0.394)

0.311 
0.233 

SoftMax 
88.820 89.200 89.013 

(±0.130)
0.319 

0.241 

Tanh 
88.787 89.137 88.963 

(±0.076)
0.269 

0.191 

In Table 13, the BiLSTM dictionary with SoftMax achieved the best F1-score at 89.013%. The Found-not 
Found is the second best and the Tanh gets the lowest score in these experiments. These F1-scores are higher 
than the partial and exact matching dictionary. We then used these results to analyze the performance of the 
models in the next section. 

5. Discussion 

Our experiments are performed against baseline approaches. The results show that our approach is 
effective in the NER task. Table 11 shows our experimental results on the OntoNotes 5.0 dataset. The results 
show that using our dictionary representation approach can improve the F1-Score of BiLSTM 
Character+FastText with exact matching from 86.290% (Table 10) to 86.630% (SoftMax). In addition, Table 
12 shows the experiment results on the GFID dataset. The results show that using our dictionary representation 
approach can improve the F1-Score of BiLSTM Character+FastText with exact matching from 88.953% (Table 
10) to 89.233% (Tanh). We estimated that the difference in the dictionary performances was caused by (1) the 
DL models, and (2) the functions to create the dictionary representation.   

Moreover, the CNN dictionary was designed for one-word sentences [2] that are not commonly found in 
the OntoNotes 5.0 and GFID dataset. Therefore, the CNN result was less effective than the other models. For 
the Self-Attention dictionary, we followed Keras Self-Attention [32], which has the BiLSTM cells in front of 
the Self-Attention layer. This layer uses the decoder to consider aspect-term information from the whole context. 
By using the Self-Attention mechanism, we achieved a better score than the CNN mechanism.  

However, the Self-Attention achieved the score lower than the BiLSTM on OntoNotes 5.0 dataset. A 
possible reason is that the BiLSTM learns information only from both forward and backward directions. It 
might be easier to understand the structure of an entity that is in sequence [35]. Because of this, the BiLSTM 
obtained the highest F1-Score on OntoNotes 5.0 dataset. While the Self-Attention model may capture an 
important part of a sentence [37], it is useful to classify the boundary of disease and pathogen name which has 
the same pattern, such as ‘Hepatitis A virus, and ‘Hepatitis B virus’. Especially, the Self-Attention model is 
computed with Tanh function that is used to interpret the probability from an entity-type.   

The Found - not Found function is computed from a type of entity in the dictionary as same as the Tanh 
function. The Tanh function also gives a better score than the SoftMax function when encoding with Self-
Attention models on the GFID dataset. The SoftMax function calculates the probability of token values from 
all entities. With this SoftMax computation, the results in Tables 11 and 12 show that SoftMax BiLSTM 
provides the best and second-best result of experiments on the OntoNotes 5.0 and GFID dataset.  

We further conducted experiments on the combination of BiLSTM dictionary+ ELMo+FastText to 
improve our performance on the OntoNotes 5.0 dataset. The results show that ELMo+FastText can improve the 
F1-Score of BiLSTM Character+FastText with exact matching from 86.290% (Table 10) to 88.772%. Then, 
the F1-Score is increased to 89.013% when using our SoftMax dictionary feature on the model. Therefore, the 
experimental results indicated that our dictionary approach can improve the performance of the NER task.  

Table 14. The F1-score of Liu et al. models on OntoNotes 5.0 dataset 

Model F1-Score 

HSCRF 89.38±0.11 
HSCRF+ softdict 89.94±0.16 
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We also compared our model with the model of Liu et al., 2019 [38]. The results are shown in Table 14. 
The performance of our models is less than Liu et al models. A possible reason is that the technique of HSCRF 
generally outperforms conventional CRF [39]. The F1-score of Liu’s HSCRF model without a dictionary is 
better than our model. Furthermore, HSCRF with softdict (the concatenation between gazetteer dictionary 
vector and BILOU scheme token-level label) achieves the improvement at 0.560%. Even the number of 
vocabularies in our dictionary is less than the gazetteer around 300,000 words, our model performance improves 
0.908% and 0.300% when using SoftMax BiLSTM dictionary+FastText and SoftMax BiLSTM 
dictionary+FastText+ELMO, respectively. We believe our model with ELMo is able to improve by fine-tuning. 
Furthermore, the token-level label could increase model performance, so we plan to combine our model with 
Liu’s techniques as our future work. 

6. Conclusions 

Many researchers have examined the effect of dictionaries on the NER model and have shown that the 
large scale of coverage of dictionaries was significant in improving the accuracy of the model. This was because 
the dictionary provided a kind of knowledge base for entity recognition. However, they did not demonstrate 
how to integrate a possible dictionary representation with DL rather than just adding another input feature to 
achieve better performance in NER. In this paper, we introduced three types of dictionary representation 
(Found-Not Found, Tanh, and SoftMax) and integrated them with three DL models consisting of (1) BiLSTM 
(2) Self-Attention, and (3) CNN.  

We compared the proposed models with the previous dictionary representations. We combined these 
representations with (1) pretrained embedding and (2) BiLSTM character and passed them through the BLSTM-
CRF model. Our extensive evaluation confirmed that our DL dictionary feature gives a better result than 
concatenating the representation directly to other embeddings.   

The best-performing system used the SoftMax-BiLSTM dictionary and FastText + ELMo on OntoNotes 
5.0 dataset and Tanh Self-Attention dictionary and FastText on GFID dataset. It achieved an F1-score of 89.013% 
and 89.233%, respectively. This performance of our model significantly improves that of the partial matching 
dictionary and the exact matching dictionary + FastText + ELMo by using the model with the SoftMax BiLSTM 
dictionary (Wilcoxon rank sum test, p < 0.05). We do not claim that our model outperforms the OntoNotes 5.0 
state-of-the-art result. We are aware that our research may have two limitations: first, the insufficient number 
of vocabularies in dictionary. Second, the limitation of our hardware that cannot support large context models 
such as multilayer of BERT LARGE, GPT, ELETRA, RoBERTA, etc.  

We intend to extend this model by using HSCRF and concatenating with (1) BILOU scheme token-level, 
and (2) fine-tuning pre-trained context embedding for our GFID biomedical dataset in the future.  
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