
SeongHoon Lee : A Load Sharing Algorithm Including An Improved Response Time using Evolutionary

Information in Distributed Systems
13

International Journal of Contents, Vol.4, No. 2, Jun 2008

A Load Sharing Algorithm Including An Improved Response Time using
Evolutionary Information in Distributed Systems

SeongHoon Lee

Department of Computer Science
Baekseok University, Cheonan. Korea

ABSTRACT
A load sharing algorithm is one of the important factors in computer system. In sender-initiated load sharing algorithms, when a
distributed system becomes to heavy system load, it is difficult to find a suitable receiver because most processors have additional
tasks to send. The sender continues to send unnecessary request messages for load transfer until a receiver is found while the system
load is heavy. Because of these unnecessary request messages it results in inefficient communications, low cpu utilization, and low
system throughput. To solve these problems, we propose a self-adjusting evolutionary algorithm for improved sender-initiated load
sharing in distributed systems. This algorithm decreases response time and increases acceptance rate. Compared with the
conventional sender-initiated load sharing algorithms, we show that the proposed algorithm performs better.

KeyWords: Evolutionary Information, Response Time, Distributed System.

1. INTRODUCTION

Distributed systems consist of a collection of autonomous

computers connected network. The primary advantages of these

systems are high performance, availability, and extensibility at

low cost. To improve a performance of distributed systems, it is

essential to keep the system load to each processor equally.

An objective of load sharing in distributed systems is to

allocate tasks among the processors to maximize the utilization

of processors and to minimize the mean response time. Load

sharing algorithms can be largely classified into three classes:

static, dynamic, and adaptive. Our approach is based on the

dynamic load sharing algorithm. In dynamic scheme, an

overloaded processor(sender) sends excess tasks to an

underloaded processor(receiver) during execution.

Dynamic load sharing algorithms are specialized into three

methods: sender-initiated, receiver-initiated,

symmetrically-initiated. Basically our approach is a

sender-initiated algorithm.

Under sender-initiated algorithms, load sharing activity is

initiated b y a sender trying to send a task to a receiver[1],[2].

In sender-initiated algorithm, decision of task transfer is made

in each processor independently. A request message for the

task transfer is initially issued from a sender to an another

processor randomly selected. If the selected processor is

receiver, it returns an accept message. And the receiver is ready

* Corresponding author. E-mail : shlee@bu.ac.kr
Manuscript received May. 15, 2008 ; accepted Jun. 20, 2008

to receive an additional task from sender. Otherwise, it returns

a reject message, and the sender tries for others until receiving

an accept message. If all the request messages are rejected, no

task transfer takes place. While distributed systems remain to

light system load, a sender-initiated algorithm performs well.

But when a distributed system becomes to heavy system load, it

is difficult to find a suitable receiver because most processors

have additional tasks to send. So, many request and reject

messages are repeatedly sent back and forth, and a lot of time is

consumed before execution. Therefore, much of the task

processing time is consumed, and causes low system

throughput, low cpu utilization

To solve these problems in sender-initiated algorithm, we use a

new evolutionary algorithm. A new evolutionary algorithm

evolves strategy for determining a destination processor to

receive a task in sender-initiated algorithm. In this scheme, a

number of request messages issued before accepting a task are

determined by proposed evolutionary algorithm. The proposed

evolutionary algorithm applies to a population of binary strings.

Each gene in the string stands for a number of processors which

request messages should be sent off.

The rest of the paper is organized as follows. Section 2 presents

the Evolutionary Algorithm-based sender-initiated approach.

Section 3 presents several experiments to compare with

conventional method. Finally the conclusions are presented in

Section 4.

14
SeongHoon Lee: A Load Sharing Algorithm Including An Improved Response Time using Evolutionary Information in

Distributed Systems

International Journal of Contents, Vol.4, No. 2, Jun 2008

2. EVOLUTIONARY ALGORITHM-BASED APPROACH

In this section, we describe various factors to be needed for

EA-based load sharing. That is, load measure, representation

method, fitness function and algorithm.

2.1 Load Measure

We employ the CPU queue length as a suitable load
index because this measure is known the most suitable
index[5]. This measure means a number of tasks in CPU
queue residing in a processor.

We use a 3-level scheme to represent a load state on its

own CPU queue length of a processor. Table 1 shows the

3-level load measurement scheme. Tup and Tlow are algorithm

design parameters, called upper and lower thresholds

respectively.

Table 1. 3-level load measurement scheme

Load state Meaning Criteria

L-load light-load CQL≤Tlow

N-load normal-load Tlow＜CQL≤Tup

H-load heavy-load CQL＞Tup

(CQL : CPU Queue Length)

The transfer policy use the threshold that makes decisions

based on the CPU queue length. The transfer policy is triggered

when a task arrives. A node identifies as a sender if a new task

originating at the node makes the CPU queue length exceed Tup.

A node identifies itself as a suitable receiver for a task

acquisition if the node's CPU queue length will not cause to

exceed Tlow.

2.2 Representation

Each processor in distributed systems has its own population

which evolutionary operators are applied to. There are many

encoding methods; Binary encoding, Character and real-valued

encoding and tree encoding[12]. We use binary encoding

method in this paper. So, a string in population can be defined

as a binary-coded vector <vo,v1,...,vn-1> which indicates a set of

processors to which the request messages are sent off. If the

request message is transferred to the processor Pi(where 0≤i

≤n-1, n is the total number of processors), then vi=1, otherwise

vi=0. Each string has its own fitness value. We select a string

by a probability proportional to its fitness value, and transfer

the request messages to the processors indicated by the string.

When ten processors exist in distributed system, the

representation is displayed as Fig. 1.

Fig. 1. Representation for processors

2.3 Load Sharing Approach

2.3.1 Overview

In sender-based load sharing approach using
evolutionary algorithm, Processors received the request
message from the sender send accept message or reject
message depending on its own CPU queue length. In
case of more than two accept messages returned, one is
selected at random.

Suppose that there are 10 processors in distributed systems, and

the processor P0 is a sender. Then, evolutionary algorithm is

performed to decide a suitable receiver. It is selected a string by

a probability proportional to its fitness value. Suppose a

selected string is <-, 1, 0, 1, 0, 0, 1, 1, 0, 0>, then the sender P0

sends request messages to the processors (P1, P3, P6, P7). After

each processor(P1, P3, P6, P7) receives a request message from

the processor P0, each processor checks its load state. If the

processor P3 is a light load state, the processor P3 sends back

an accept message to the processor P0. Then the processor P0

transfers a task to the processor P3.

2.3.2 Fitness Function

Each string included in a population is evaluated by the fitness

function using following formula in sender-initiated approach.
α, β, γ used above formula mean the weights for parameters

such as TMP, TMT, TTP. The purpose of the weights is to be

operated equally for each parameter to fitness function Fi.

Firstly, TMP(Total Message Processing time) is the summation

of the processing times for request messages to be transferred.

This parameter is defined by the following formula. The ReMN

is the number of messages to be transferred. It means the

number of bits set '1' in selected string. The objective of this

parameter is to select a string with the fewest number of

messages to be transferred.

(where, x={i｜vi=1 for 0≤i ≤n-1})

Secondly, TMT(Total Message Transfer time) means the

summation of each message transfer times(EMTT) from the

sender to processors corresponding to bits set '1' in selected

string. The objective of this parameter is to select a string with

the shortest distance eventually. So, we define the TMT as the

÷÷
ø

ö
çç
è

æ

´+´+´
=

TTPTMTTMP
Fi

gba

1

()å
Î

´=
xk

k UnitTimeMNTMP Re

SeongHoon Lee : A Load Sharing Algorithm Including An Improved Response Time using Evolutionary

Information in Distributed Systems
15

International Journal of Contents, Vol.4, No. 2, Jun 2008

following formula.

(where x={i｜vi=1 for 0≤i ≤n-1})

Last, TTP(Total Task Processing time) is the summation of the

times needed to perform a task at each processor corresponding

to bits set '1' in selected string. This parameter is defined by the

following formula. The objective of this parameter is to select a

string with the fewest loads. Load in parameter TTP is the

volume of CPU queue length in the processor.

(where x={i｜vi=1 for 0≤i ≤n-1})

So, in order to have a largest fitness value, each parameter such

as TMP, TMT, TTP must have small values as possible as. That

is, TMP must have the fewer number of request messages, and

TMT must have the shortest distance, and TTP should have the

fewer number of tasks.

Eventually, a string with the largest fitness value in population

is selected. And after evolutionary_operation is performed, the

request messages are transferred to processors corresponding to

bits set '1' in selected string.

2.3.3 Algorithm

This algorithm consists of five modules such as Initialization,

Check_load, String_evaluation, Evolutionary_operation and

Message_evaluation. Evolutionary_operation module consists

of three sub-modules which are Local_improvement_operation,

Reproduction, Crossover. These modules are executed at each

processor in distributed systems.

The algorithm of the proposed method for sender-initiated load

sharing is presented as Fig. 2.

Algorithm : EA-based sender-initiated load sharing
algorithmProcedure Evolutionary_Algorithm Approach

 { Initialization();
 while (Check_load())
 if (Loadi > Tup) {
 Individual_evaluation();
 Evolutionary_operation();
 Message_evaluation(); }
 Process a task in local processor;
 }

Procedure Evolutionary_operation()
 { Local_improvement_operation();
 Reproduction();
 Crossover();
 }

Fig. 2 Proposed algorithm

An Initialization module is executed in each processor. A

population of strings is randomly generated without

duplication.

A Check_load module is used to observe its own processor's

load by checking the CPU queue length, whenever a task is

arrived in a processor. If the observed load is heavy, the load

sharing algorithm performs the following modules.

A Individual_evaluation module calculates the fitness value of

strings in the population.

A Evolutionary_operation module such as

Local_improvement_operation, Reproduction, Crossover is

executed on the population in such a way as follows.

Distributed systems consist of groups with autonomous

computers. When each group consists of many processors, we

can suppose that there are p parts in a string corresponding to

the groups. The following evolutionary operations are applied

to each string, and new population of strings is generated:

 Local_Improvement_Operation⑴

String 1 is chosen. A copy version of the string 1 is generated

and part 1 of the newly generated string is mutated. This new

string is evaluated by proposed fitness function. If the

evaluated value of the new string is higher than that of the

original string, replace the original string with the new string.

After this, the local improvement of part 2 of string 1 is done

repeatedly. This local improvement is applied to each part one

by one. When the local improvement of all the parts is finished,

new string 1 is generated. String 2 is then chosen, and the

above-mentioned local improvement is done. This

local_improvement_operation is applied to all the strings in

population.

/* Algorithms for local_improvement_operation */

for (i=1; i<=total_string_number; i++)

{

 select string[i];

 generate copy version of the selected string[i];

 for (j=1; j<=total_part_number; j++)

 /* total_part_number = p */

 {

 select a part[j] of the copy version;

 apply mutation operator to part[j];

 evaluate the mutated new string;

 if (fitness of new string > fitness of original string)

 original string ← new string;

 }

}

 Reproduction⑵

The reproduction operation is applied to the newly

generated strings. We use the "wheel of fortune" technique[4].

å
Î

=
xk

kEMTTTMT

()å
Î

´=
xk

k TimeUnitLoadTTP

16
SeongHoon Lee: A Load Sharing Algorithm Including An Improved Response Time using Evolutionary Information in

Distributed Systems

International Journal of Contents, Vol.4, No. 2, Jun 2008

 Crossover⑶

The crossover operation is applied to the newly generated

strings. These newly generated strings are evaluated. We

applied to the "one- point" crossover operator in this paper[4].

One-point crossover used in this paper differs from the

pure one-point crossover operator. In pure one-point crossover,

crossover activity generates based on randomly selected

crossover point in the string. But boundaries between parts(p)

are used as an alternative of crossover points in this paper. So

we select a boundary among many boundaries at random. And

a selected boundary is used as a crossover point. This purpose

is to preserve an effect of the Local_improvement_operation of

the previous phase. Therefore, the crossover activity in this

paper is represented as Fig. 3.

after crossover (based on B)

0 00 0 0 0 0 0 01 1 1 1 1 1 1

0 01 0 1 1 0 1 11 0 0 0 0 0 0

0 00 0 0 0 0 0 11 1 1 1 0 0 0

0 01 0 1 1 0 1 01 0 0 0 1 1 1

string i

string j

string i

string j

B1 B 2 B 3 B4

3

Fig. 3. Crossover Activity

Suppose that there are 5 parts in distributed systems. A
boundary among the many boundaries(B1, B2, B3, B4) is
determined at random as a crossover point. If a boundary B3 is
selected as a crossover point, crossover activity generate based
on the B3. So, the effect of the local_improvement_operation in
the previous phase is preserved through crossover activity.

The Evolutionary_operation selects a string from the

population at the probability proportional to its fitness, and then

sends off the request messages according to the contents of the

selected string.

A Message_evaluation module is used whenever a

processor receives a message from other processors. When a

processor Pi receives a request message, it sends back an accept

or reject message depending on its CPU queue length.

3. EXPERIMENTS

We executed several experiments on the proposed

evolutionary algorithm approach to compare with a

conventional sender-initiated algorithm

Our experiments have the following assumptions. Firstly,

each task size and task type are the same. Secondly, the number

of parts(p) in a string is four. In evolutionary algorithm,

crossover probability(Pc) is 0.7, mutation probability(Pm) is 0.1.

The values of these parameters Pc, Pm were known as the most

suitable values in various applications[3]. Table 2 shows the

detailed contents of parameters used in our experiments.

Table 2. Contents of parameter

number of processor 24

Pc 0.7

Pm 0.1

number of strings 50

number of tasks to be performed 5000

The parameters and values for fitness value of sender-initiated

load sharing algorithm are the same as the table 3. The load

rating over systems supposed about 60 percent.

Table 3. Weight values for TMP, TMT and TTP

[Experiment 1] We compared the performance of proposed

method with a conventional method in this experiment by using

the parameters on the table 2 and table 3. The experiment is to

observe change of response time when the number of tasks to

be performed is 5000.

Fig. 4. Result of response time

Fig. 4 shows result of the experiment 1. In conventional

methods, when the sender determines a suitable receiver, it

select a processor in distributed systems randomly, and receive

the load state information from the selected processor. The

algorithm determines the selected processor as receiver if the

load of randomly selected processor is Tlow(light-load). These

processes are repeated until a suitable receiver is searched. So,

the result of response time shows the severe fluctuation. In the

proposed algorithm, the algorithm shows the low response time

because the load sharing activity performs the proposed

evolutionary_operation considering load states when it

determines a receiver.

Weights for TMP 0.025

Weights for TMT 0.01

Weights for TTP 0.02

SeongHoon Lee : A Load Sharing Algorithm Including An Improved Response Time using Evolutionary

Information in Distributed Systems
17

International Journal of Contents, Vol.4, No. 2, Jun 2008

[Experiment 2] This experiment is to observe the convergence

of the fitness function for the best string in the population

corresponding to a specific processor in distributed systems.

Fig. 5. Fitness value of the processor P6

In this experiments, we observed the fact that the processor
P6 performs about 550 tasks (550 generations) among 5000
tasks, and the proposed algorithm generally converges through
50 generations. A small scale of the fluctuations displayed in
this experiment result from the change of the fitness value for
the best string selected through each generation.

[Experiment 3] This experiment is to observe the performance

when the probability of crossover is changed.

Fig. 6. Result depending on the changes of Pc

Fig. 6 shows the result of response time depending on the

changes of Pc when Pm is 0.1. In accordance with value of Pc, It

shows a different performance. But the proposed algorithm

shows better performance than that of conventional algorithm

and simple evolutionary algorithm approach.

[Experiment 4] This experiment is to observe the performance

when the probability of mutation is changed.

Fig. 7. Result depending on the changes of Pm

Fig. 7 shows the result of the response time depending on

the changes of Pm when Pc is 0.7. In accordance with value of

Pm, It shows a different performance. But the proposed

algorithm shows better performance than that of conventional

algorithm and simple evolutionary algorithm approach.

[Experiment 5] This experiment is to observe the response

time when the system load is 80percentage. The performance

of proposed algorithm is better than that of the conventional

algorithm and simple GA algorithm.

Fig. 8. Response time when system load is 80%

4. CONCLUSIONS

We propose new dynamic load sharing scheme in

distributed system that is based on the new evolutionary

algorithm with a local improvement operation. The proposed

evolutionary algorithm is used to decide to suitable candidate

receivers which task transfer request messages should be sent

off. Several experiments have been done to compare the

proposed scheme with a conventional algorithm and simple

evolutionary algorithm approach. Through the various

experiments, the performances of the proposed scheme is better

than that of the conventional scheme and simple evolutionary

algorithm approach on the response time and mean response

time. The performance of the proposed algorithm depending on

18
SeongHoon Lee: A Load Sharing Algorithm Including An Improved Response Time using Evolutionary Information in

Distributed Systems

International Journal of Contents, Vol.4, No. 2, Jun 2008

the changes of the probability of mutation(Pm) and probability

of crossover(Pc) is also better than that of the conventional

scheme and simple evolutionary algorithm approach. But the

proposed algorithm is sensitive to the weight values of TMP,

TMT and TTP. In future, we will study on method for releasing

sensitivity of weight values.

REFERENCES

[1] D.L.Eager, E.D.Lazowska, J.Zahorjan, "Adaptive Load

Sharing in Homogeneous Distributed Systems," IEEE

Trans on Software Engineering, vol.12, no.5, May 1986,

pp.662-675.

[2] N. G.Shivaratri, P.Krueger, and M.Singhal, "Load

Distributing for Locally Distributed Systems," IEEE

COMPUTER, vol.25, no.12, December 1992, pp.33-44.

[3] J.Grefenstette, "Optimization of Control Parameters for

Genetic Algorithms," IEEE Trans on SMC, vol.SMC-16,

no.1, January 1986, pp.122-128.

[4] J.R. Filho and P. C. Treleaven, "Genetic-Algorithm

Programming Environments," IEEE COMPUTER, June

1994, pp.28-43.

[5] T. Kunz, "The Influence of Different Workload

Descriptions on a Heuristic Load Balancing Scheme,"

IEEE Trans on Software Engineering, vol.17, No.7, July

1991, pp.725-730.

[6] T.Furuhashi, K.Nakaoka, Y.Uchikawa, "A New Approach

to Genetic Based Machine Learning and an Efficient

Finding of Fuzzy Rules," Proc. WWW'94, 1994,

pp.114-122,.

[7] J A. Miller, W D. Potter, R V. Gondham, C N. Lapena,

"An Evaluation of Local Improvement Operators for

Genetic Algorithms," IEEE Trans on SMC, vol.23, No 5,

Sept 1993, pp.1340-1351.

[8] N.G.Shivaratri and P.Krueger, "Two Adaptive Location

Policies for Global Scheduling Algorithms," Proc. 10th

International Conference on Distributed Computing

Systems, May 1990, pp.502-509.

[9] Terence C. Fogarty, Frank Vavak, and Phillip Cheng,

"Use of the Genetic Algorithm for Load Balancing of

Sugar Beet Presses," Proc. Sixth International Conference

on Genetic Algorithms, 1995, pp.617-624.

[10] Garrism W. Greenwood, Christian Lang and steve Hurley,

"Scheduling Tasks in Real-Time Systems using

Evolutionary Strategies," Proc. Third Workshop on

Parallel and Distributed Real-Time Systems, 1995,

pp.195-196.

[11] Gilbert Syswerda, Jeff Palmucci, "The application of

Genetic Algorithms to Resource Scheduling," Proc.

Fourth International Conference on Genetic Algorithms,

1991, pp.502-508.

[12] Melanie Mitchell, An Introduction to Genetic Algorithms,

MIT Press, 1996.

[13] M.Srinivas, and L.M.Patnait, "Adaptive Probabilities of

Crossover and Mutation in Genetic Algorithms," IEEE

Trans on SMC, vol.24, no.4, April 1994, pp.656-667.

Seong Hoon Lee

He received the M.S. degree and the
Ph.D. degree in Computer Science from
Korea University, Korea. Since 1993, he
has been a professor in division of
Computer Science, Chonan University,
Choongnam, Korea. His current research
interests are in genetic algorithm,

distributed systems and mobile computing.

