
Woo-Seop Rhee : An Implementation of the 3D Game Engine based on DirectX 9 35

International Journal of Contents, Vol.4, No.3, Sep 2008

The Implementation of a 3D Game Engine

based on DirectX 9

Hyun Myung Kang

Div. of Multimedia Engineering

Hanbat National University, Daejeon, Korea

Woo Seop Rhee

Div. of Multimedia Engineering

Hanbat National University, Daejeon, Korea

ABSTRACT

Recently, almost games are using the 3D environment. Therefore, it required strongly that well-structured 3D engine or tools for

development of some complicate 3D applications efficiently. In this paper, we design and implement a 3D engine (PLay engine)

using the DirectX 9 SDK of the Microsoft corporation. The PLay engine has independent module structure, which has object oriented

characteristics, and has not only 3D rendering functions but efficient algorithms. Moreover, we implement some tools what has

compatibility with our engine for convenience. Therefore, it helps development of a 3D application easily and efficiently. We also

describe each module with 2-layer structure, and each tool with compatible module, and make a simple game using PLay engine for

testify.

Keywords: Game Engine, 3D Graphics, DirectX, Game Programming, Game Algorithm

1. INTRODUCTION

Recently, almost games are presented by the visual

environments using the 3D graphics. Console games, package

games and also online games are with no exception. There are

many user groups which support that environment. For the

good examples, 'Lineage2' of NC soft, 'Doom3' of ID soft and

'Gears of War' of Epic are existed.
 3D graphics technology as well as user's demands has been

contributed in the 3D game development. In hardware, the

graphic acceleration card technique grew rapidly with the GPU

(Graphics Processing Unit) what can process high speed

rendering. In software, the API (Application Programming

Interface) or rendering optimization algorithms are researched

for the best hardware performance. Programmers can

implement the 3D games using the API and the optimization

algorithms. These know-hows and techniques are used to make

a game, and used to make some other games by supplement.

Therefore, these know-hows and techniques are managed by

encapsulation like a software engine. This is a game engine and

has many advantages. So, almost game companies develop it

themselves or buy a testified commercial game engine

[1],[2],[3]. But commercial game engines are too expensive and

dependent on its target game. If the open source game engines

* Corresponding author. E-mail : wsrhee@hanbat.ac.kr
Manuscript received Aug. 20, 2008 ; accepted Sep. 22, 2008

are exist, it is also dependent on its own libraries. Therefore, it

is hard to generalization.

In this paper, we implement the game engine using DirectX

9 that use by many popular game engines base on the low level

API. The implemented game engine is generalized by use of

API directly and eliminated library dependencies except the

DirectX. Therefore, it can be not only a basis for game

development but for integration with other engine easily.

Moreover, it can be a basis of other game engine.

The rest of this paper is organized as follows. Section 2

describes background of general 3D game engines, section 3

describes implementation and the game engine's

layers/modules, section 4 explains about experimentation and

short conclusion remark.

2. BACKGROUND

2.1 DirectX SDK

The DirectX SDK (Software Development Kit) is Microsoft

foundation software development kit, Windows OS based API

made by C++, for the 3D application development [4],[5]. As it

has built-in communication techniques to use a 3D graphic

acceleration card directly, a programmer can access to

hardware by function call easily according to existing rules.

The DirectX SDK also provides many classes and utility

36 Woo-Seop Rhee : An Implementation of the 3D Game Engine based on DirectX 9

International Journal of Contents, Vol.4, No.3, Sep 2008

functions to implement 3D, sound, I/O and network. It can be

used for basis of library efficiently in an application programs.

2.2 General Requests for Game Engine

The general required functions for Game engine are follows

[1],[3]:

- Access to rendering pipeline for represent 3D

- Easily use for mathematical model used in 3D graphics

- Management and easy mesh loading,

- Outer/inner terrain

- Management of animation character

- Collision detect

- Sound, special effect, physics modeling, etc.

And, implementation with optimized algorithms for real-time

rendering is also requested. In other words it should be

implemented with least loss quality and most operation speed

[1],[6],[7].

3. IMPLEMENTATION

The game engine implemented in this paper include embed

the algorithms that are guaranteed performance and used

generally. And it composed the independent modules according

to the functions and never has long program than need be due

to include necessary module. Also, it has scalability and

reusability due to implemented with layered structure. We

named our engine "Pickable & Layered 3D engine" (PLay

engine). PLay engine composed of lower based modules (1st

layer), special function extended modules with integrated those

modules (2nd layer), and simple tools that provides the user

interface can use those modules easily (interface tool) as shown

in the figure 1. The base modules consist the basis layer (1st

layer) and extension layer (2nd layer) is on the basis layer, 2-

layer structure. Therefore, it can extend easily by redesigning

of 2nd layer as occasion demands.

3.1 First Layer

First layer has basis abilities of the engine. That is, rendering,

I/O, sound modules were isolated. Therefore, it can use not

only games but any application programs, and it has good

scalability and reusability due to include just necessary

modules.

3.1.1 Direct3D(D3D) Module

The Direct3D module manages the rendering pipeline which

is the basic function for representing of 3D. The Direct3D9 and

Direct3DDevice9 are interfaces of these functions in the

DirectX [5]. So, the Direct3D module manages these two

classes. It also manages the Material, Light and the Display

mode automatically, and can communicate with devices for

advanced setting by the user.

Fig. 1. Structure diagram of the PLay engine.

3.1.2 Camera Module

The camera module manages View and Projection

transforms of the 3D graphics. So, user can use this module

easily like camera control. It also optimized by minimized

necessary calculation due to check on the camera's movement.

3.1.3 DirectInput(DI) Module / Sound Module

The DirectInput module provides correspondence with

keyboard/mouse by the DirectInput interface.

The sound module can manage simple sound files like wav,

midi, based on the DirectMusic interface.

3.1.4 List Module

The list module is made for use the data structures easily. It

is quietly the light module due to the independent module,

different from STL (Standard Template Library). It provides a

choice of dynamic/static structures, the integration of

array/stack/queue functions flexibly.

3.1.5 Mesh Module

The mesh module provides loading and management

function of 3D models. The figure 2 shows an example of the

3D object, designed through the 3DS MAX, loading and

rendering by the mesh module.

Woo-Seop Rhee : An Implementation of the 3D Game Engine based on DirectX 9 37

International Journal of Contents, Vol.4, No.3, Sep 2008

Fig. 2. Make a mesh with 3DS MAX and loading/rendering by

the mesh module.

3.1.6 Object Module

The object module manages the special object's conceptional

position, rotation, scale information easily. It supports interact

with other mesh and the mesh module of the PLay engine.

3.1.7 Map Module

The map module is the outdoor terrain engine and manages

the outdoor terrain totally. It creates a map using the height

texture (height map) basically. It also includes the LOD (Level

Of Detail) method that controls the polygon details according

to distance based on the camera position and the Quad-tree

frustum culling method that enhance the rendering speed

without quality loss due to exclusion of the external region

view frustum in the rendering using the map block [8],[9].

When we draw a sky, it can be large load to rendering a huge

sky, so usually a trick is used. This module provides the skybox

trick method [10]. The figure 3 shows examples of rendering

terrain with sky and optimized rendering by culling.

3.1.8 UI Module:

The UI module provides the function of a general user

interface. It helps drawing letters or 2D sprites on the screen

and manages this easily. The figure 4 shows an examples of

drawing fonts on a sprite and transformed sprite using the UI

module.

Fig. 3. A created map by the map module, a part of optimized

map by culling.

Fig. 4. Draw transformed sprite and fonts.

3.1.9 Crash Module

The crash module provides the functions of collision

detection. It defines various collision objects and helps the

collision detection of them.

This module has the BS (Bounding Sphere), the AABB

(Axis Aligned Bounding Box), the OBB(Oriented Bounding

Box) basically. It can use the definition of additional collision

object by inheritance of this module and the collision formula

between each other. This module use the optimized collision

detection algorithm for OBB called "Fast Overlap Test for

OBBs" [11].

38 Woo-Seop Rhee : An Implementation of the 3D Game Engine based on DirectX 9

International Journal of Contents, Vol.4, No.3, Sep 2008

3.2 Second Layer / Tools

The second layer is a more powerful layer than the first layer

that provides a basic function by the modification/integration of

the first layer's modules as occasion demands. The second layer

is reusable in the other application program but more restrictive

than the first layer.

We made the tools for integration from the first layer to the

second layer easily and directly. It can make with visual

interface and can load in the second layer by the self defined

exporting data format. These tools support the enhancement of

engine capability efficiently.

Fig. 5. Loading and processing a mesh by the object tool.

3.2.1 Object Tool

The object tool integrates mesh/object/crash modules and

provides the object that can apply the collision processing. It

also supports visual interfaces that can make basic size, rotation,

central point of object. The figure 5 shows an example scene of

loading a mesh and link up the building object with the BS and

the OBB by the object tool.

3.2.2 CrashObject Module

The CrashObject module defines a crashable object and can

load the files made by the object tool. The process of collision

detection processing is constituted two tests, the BS is first and

the OBB is second. The BS is used to decide a necessity of

collision test due to the fastest collision test, and the OBB

decides the real collision test. This module includes the Mesh

Container internally and manages the mesh data automatically

since it needs only once loading of the redundant mesh data.

3.2.3 Map Tool

The map tool makes the real map through the integration of

the Map/CrashObject modules and indicates the on-map objects.

The map is composed of tile type using the texture mapping

method on the designated tile. And it can place objects on the

map voluntary. The figure 6 shows examples of a tile map and

place on-map objects by the map tool.

Fig. 6. Make a tile map and place on-map objects by the map

tool.

3.2.4 TileMap Module

The TileMap module defines the map based on the tile type

and can load the files made by the map tool. This module

optimizes the on-map objects through the Quad-tree culling

technique provided by the map module. And it also manages

and optimizes the objects on the map internally using the same

technique. This module includes the TileTexture Container

inside and manages automatically once loading to the

redundant texture data.

3.2.5 Character Tool

The character tool provides the hierarchy character

processing interface based on Bone. It can process the realtime-

test with forward/backward play of animation and can link

collision object to each special part of character. The figure 7

Woo-Seop Rhee : An Implementation of the 3D Game Engine based on DirectX 9 39

International Journal of Contents, Vol.4, No.3, Sep 2008

shows examples of the animation of a hierarchical character

and scene of link the collision object to each part with visual

interface by the character tool.

Fig. 7. Load a hierarchical character, link collision object to

each part by the character tool.

3.2.6 BoneCharacter Module

The BoneCharacter module defines a hierarchical animation

character and can load files made by the character tool. This

module manages the current states and provides the play

function of animation in the special frames according to the

state. It also provides the animation controller with Play, Pause

or Rewind, and can support handling the character as an object

by inheritance from the object module. The BoneCharacter

module can also detect the detail collision region. (etc. Head,

Etc1 or Etc2)

4. CONCLUSION

In this paper, we implemented the PLay engine that has a

good scalability and independency. The PLay engine is easy to

use due to the independent composition modules. It also has

good points in the view point of extension or combination with

other game engine. And these merits make decreased time of

development when we implement the real game.

Moreover, the shader, as a GPU's programming language, is

required essentially and provides the powerful function recently.

Therefore, game engines should deploy the shader easily

according to these trends. The PLay engine can not apply the

shader due to usage of basic function. But, it can upgrade to

apply the shader through the inheritance and redefinition due to

the object oriented design. However, the separated shader

management module is better than the inheritance and

redefinition for efficiency and scalability. For that reason,

future studies are needed to achieve a game engine full-

supports the independent shader module for easily usage

without upgrade.

Fig. 8. A scene of the PLay engine test, apply depth shadow

shader to the PLay engine.

The figure 8 shows the screen shot of the FPS (First Person

Shooting) game based on the PLay engine and apply shader for

depth shadow technique by upgrading.

REFERENCES

[1] S. H. Kim and T. J. Park, "Proposal of Game Contents and

Game Engine Technology (Korean)," Journal of the Korea

Multimedia Society Special Edition, vol. 8, no. 1, Mar.

2004, pp. 1-15.

[2] K. B. Lee and J. Hwang, "A Study of Game Technology

and Trend (Korean)," Journal of The Korea Multimedia

Society Special Edition, vol. 9, no. 2, Jun. 2005, pp. 1-7.

[3] D. H. Eberly, 3D Game Engine Design: A Partical

Approach to Real-Time Computer Graphics, Morgan

Kaufmann Publishers, California, 2001.

[4] http://www.microsoft.com/korea/windows/directx/producti

nfo/overview/default.mspx.

[5] F. D. Luna, Introduction to 3D Game Programming with

DirectX 9.0, WordWare Pub., Texas, 2004.

40 Woo-Seop Rhee : An Implementation of the 3D Game Engine based on DirectX 9

International Journal of Contents, Vol.4, No.3, Sep 2008

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W.

Stuetzle, "Mesh Optimization," SIGGRAPH 1993, 1993, pp.

19-26.

[7] H. Hoppe, "Progressive Mesh," SIGGRAPH 1996, 1996,

pp. 99-108.

[8] Y. J. Kim, 3D Game Programming, Hanbit Media Inc.,

Korea, 2007.

[9] M. de Berg and K. T. G. Dobrindt, "On Levels of Detail in

Terrains," Graphical Models and Image Processing, vol. 60,

no. 1, Jan. 1998, pp. 1-12.

[10]J. R. Isidoro and P. V. Sander, "Animated Skybox

Rendering and Lighting Techniques," SIGGRAPH 2006,

2006, pp. 19-22.

[11]http://user.chollian.net/~manilee/Fast_Overlap_Test_for_O

BBs.pdf.

Hyun Myung Kang

He received the B.S. in the department of

Multimedia Engineering from Hanbat

National University, Daejeon, Korea in

2008. And he is currently a M.S. student

in the department of Multimedia

Engineering at Hanbat National

University. His research interests are

concerned with broadband network architecture, quality of

service in Internet and mobility management with multicast.

Woo Seop Rhee
He received B.S. degree in Computer

Science from Hong Ik University, Seoul,

Korea, in 1983 and M.S., and Ph.D.

degree in 1995 and 2003, respectively, in

Computer Science from Chungnam

National University, Daejeon, Korea.

From 1983 to 2005, he was with the

Electronics and Telecommunication Research Institute (ETRI).

He involved in development of TDX switching system,

HANbit ACE ATM switching system and Optical access

system as a project leader.

In 2005, He joined Hanbat National University, Daejeon, Korea

and is currently assistant professor of Multimedia engineering

department. His research interests are concerned with

broadband network architecture, quality of service in Internet

and mobility management with multicast. He is an active

member of ITU-T SG 13 as Editor and member of KICS,

KOCON in Korea and IEEE.

