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ABSTRACT

In this paper, we propose improved loop splitting method for maximizing parallelism of single loops with non-constant 

dependence distances. By using the iteration and distance for the source of the first dependence, and by our defined theorems, 

we present generalized and optimal algorithms for single loops with non-uniform dependences (MPSL). By the extension of 

the MPSL method, we also apply to exploit parallelism from nested loops with simple subscripts, based on cycle shrinking 

and loop interchanging method. The algorithms generalize how to transform general single loops with non-uniform

dependences as well as nested loops with simple subscripts into parallel loops. 
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1. INTRODUCTION

Partitioning of loops requires efficient and exact data 

dependence analysis [1][2]. A precise dependence analysis 

helps in identifying dependent/independent iterations of a 

loop. And it is important that appropriate dependence 

analysis be applied to exploit maximum parallelism within 

loops. We can consider some tests that examine the 

dependence of one-dimensional subscripted variables – the 

separability test, the GCD test and the Banerjee test [5][7]. 

In general, the GCD test is applied first because of its 

simplicity, even if it is an approximate test. Next, for the 

case that the gcd test is true, the separability test is 

attempted again, and through this exact test, it can be 

obtained additional information such as solution set, and 

minimum and maximum distances of dependence, as well 

as whether the existence of dependence or not.

When we consider the approach for single loops, we can 

review two partitioning techniques proposed in [3] which 

are fixed partitioning with minimum distance and variable 

partitioning with ceil(d(i)). However, these leave some 

parallelism unexploited, and the second case has some 

constraints. 
 The rest of this paper is organized as follows. Chapter two 

describes our loop model, and introduces the concept of 

data-dependence computation in actual programs. In 

chapter three, we review some partitioning techniques of 

single loops such as loop splitting method by thresholds 

and Polychronopoulos’ loop splitting method. In chapter 

four, we propose a generalized and optimal method to make 

the iteration space of a loop into partitions with variable 
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sizes (MPSL). We also apply to exploit parallelism from 

nested loops with simple subscripts by the extension of the 

MPSL method. The algorithms generalize how to transform 

general single loops with non-uniform dependences as well 

as nested loops with simple subscripts into parallel loops.

Finally, we conclude in chapter five with the direction to 

enhance this work. 

2. PROGRAM MODEL AND DATA DEPENDENCE 

ANALYSIS

For data-dependence computation in actual programs, the 

most common situation occurs when we are comparing two 

variables in a single loop and those variables are elements 

of a one-dimensional array, with subscripts linear in the 

loop index variable. Then this kind of loop has a general 

form is shown in figure 1. Here, l, u, a1, a2, b1 and b2, are 

integer constants known at compile time.

DO I = l, u

S1 :   A(a1*I + a2) = ∙∙∙

S2 :          ∙∙∙ = A(b1*I + b2)

END

Fig. 1 A single loop model.

For dependence between statements S1 and S2 to exist, we 

must have an integer solution (i, j) to equation (1) that is a 

linear diophantine equation in two variables. The method 

for solving such equations is well known and is based on 

the extended Euclid's algorithm [4]. 

a1i + a2 = b1j + b2 where l ≤ i, j ≤ u        (1) 

This equation may have infinitely many solutions (i, j) 
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given by a formula of the form: 

(i, j) = ((b1/g)t + i 1, (a1/g)t + j 1

where (i 1, j 1) = ((b2-a2) i 0/g, (b2-a2) j 0/g) (2) 

i 0, j0 are any two integers such that a1 i 0 - b1j0 = g(gcd(a1, 

b1)) and t is an arbitrary integer [5][6]. Acceptable solutions 

are those for which l ≤ i, j ≤ u, and in this case, the range 

for t is given by

max(min(α, β), min(γ, δ)) ≤ t ≤ min(max(α, β), max(γ, δ))

where α = -( l - i 1)/(b1/g), β = -(u - i 1)/(b1/g),

     γ = -( l - j 1)/(a1/g), δ = -(u - i 1)/(a1/g).          (3)

3. RELATED WORKS

Now, we review some partitioning techniques of single 

loops. We can exploit any parallelism available in such a 

single loop in figure 1, by classifying the four possible 

cases for a1 and b1, coefficients of the index variable I, as 

given by (4). 

(a) a1 = b1 = 0 

(b) a1 = 0, b1 ≠  0 or a1 ≠ 0, b1 = 0 

(c) a1 = b1 ≠ 0 

(d) a1 ≠ 0, b1 ≠ 0, a1 ≠ b1          (4) 

In case 4(a), because there is no cross-iteration dependence, 

the resulting loop can be directly parallelized. In the 

following subsections, we briefly review several loop 

splitting methods for the cases of 4(b) through 4(d). 

3.1 Loop splitting by thresholds 

A threshold indicates the number of times the loop may be 

executed without creating the dependence. In case 4(b), for 

a dependence to exist, there must be an integer value i of 

index variable I such that b1 * i + b2 = a2 (if a1 = 0) or a1 * i

+ a2 = b2 (if b1 = 0) and l ≤ i ≤ u. If there is no solution, 

then there is no cross-iteration dependence and the loop can 

also be parallelized. And if integer exists, then there exist a 

flow dependence (or anti-dependence) in the range of I, [l, 

u] and an anti-dependence (or flow dependence) in [i, u]. In 

this case, be breaking the loop at the iteration I = i (called 

turning threshold), the two partial loops can be transformed 

into parallel loops. 

In case 4(c), let (i, j) be an integer solution to (1), then there 

exists a dependence in the range of I and the dependence 

distance (d) is ｜j - i｜ = ｜(a2 - b2)/a1｜. Here, the loop 

can be transformed into two perfectly nested loops; a serial 

outer loop with stride d (called constant threshold) and a 

parallel inner loop [5]. 

In case 4(d), an existing dependence is non-uniform since 

there is a non-constant distance, that is, such that it varies 

between different instances of the dependence. And we can 

consider exploiting any parallelism for two cases when a1 * 

b1 < 0 and a1 * b1 > 0. Suppose now that a1 * b1 < 0. If (i, i) 

is a solution to (1), then there may be all dependence 

sources in (l, i) and all dependence sinks in [i, u]. 

Therefore, by splitting the loop at the iteration I = i (called 

crossing threshold), the two partial loops can be directly 

parallelized [5]. Figure 2(c) shows the general form of loop 

splitting by the crossing threshold.

                              DOALL I = 1, 4

                                A(I+5) = …

DO I = 1, 10                        … = A(9)

A(I+5) = …        =>       ENDDO

… = A(9)                 DOALL I = 5, 10

ENDDO                        …

ENDDO

(a) Using turning threshold.

DO I’ = 1, N, abs((b2-a2)/a1)

DO I = 1, N                     DOALL  I = I’, I’+(abs((b2-a)/a1)-1

A(a1*I+ a2) = …                  A(a1*I+ a2) = …

… = A(b1*I+ b2)   =>             … = A(b1*I+ b2)

ENDDO           ENDDO

ENDDO

(b) Using constant threshold.

DOALL I = 1, floor((b2 - a2)/ (a1+ b1))+1,N

A(a1*I+ a2) = …

DO I = 1, N        … = A(b2+ b1*I)

A(a1*I+ a2) = …    =>    ENDDO

… = A(b2+ b1*I)        DOALL I = floor((b2 - a2)/ (a1+ b1))+1,N

ENDDO   …

ENDDO

(c) Using crossing threshold.

Fig. 2 The loop splitting by thresholds.

3.2 Polychronopoulos' loop splitting 

We can also consider exploiting any parallelism for the 

case 4(d) when a1 * b1 ≥ 0. We will consider three cases 

whether it exists only flow dependence, anti-dependence, 

or both in the range of I. First, let (i, j) be an integer 

solution to (1). If the distance, d(i) depending on i, as given 

by (5), has a positive value, then there exists a flow 

dependence, and if da(j) depending on j, as given by (6), 

has a positive value, then there exists an anti-dependence. 

Next, if (x, x) is a solution to (1) (x may not be an integer.), 

then d(x) = da(x) = 0 and there may exist a flow (or anti-)

and an anti-dependence (or flow) before and after I = 

ceil(x), and if x is an integer, then there exists a loop-

independent dependence at I = x. Here, suppose that Then 

for each value of I, the element A(a1*I + a2) defined by that 

iteration cannot be consumed before ceil(d(i)) iterations 

later, and this indicates that ceil(d(i)) iterations can execute 

in parallel. 

d(i) = j - i = D(i)/b1, where D(i) = (a2 - b1) * i + (a2 - b1)       (5)

da(j) = i - j = Da(j)/a1, where Da(j) = (b1 - a1) * j + (b2 - a2)      (6)

Consider the loop, as given in figure 3, in which there exist 

flow dependences. d(i) = D(i)/b1 = (i +5)/2 > 0 for each 

value of I and d(i) have integer values, 3, 4, 5, … as the 

value of I is incremented.

DO I =1, N 

S1 : A(3I+1) = … 
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S2 : … = A(2I-4) 

ENDDO 

Fig. 3 An example of a single loop.

Figure 4 shows the results of applying two transformations 

using minimum distance and ceil(d(i)) proposed in [3] to 

the loop in Fig. 3, respectively. However these leave some 

parallelism unexploited. Moreover, the transformed loop in 

figure 4(b) has some constraints: It must be only a flow 

dependence in the original loop, the first iteration of the 

original loop must be the iteration at which a dependence 

source exists, and d(i) ≥ 1 for each value of I.

DO I’ = 1, N, 3            I’ = 1

DOALL I = I’, min(N, I’+2)       L: inc = min(N-I’, ceil((I’+5)/2)-1)

A(3I+1) = …            DOALL I = I’+inc

… = A(2I-4)              A(3I+1)= …

ENDDO       … =A(2I-4)

ENDDO ENDDO

I’ = I’+inc+1

If I’ < N then goto L

(a) Using minimum distance. (b) Using ceil(d(i)).

Fig. 4 Polychronopoulos’ loop splitting.

4. PARALLELISM FOR NESTED LOOPS

From a single loop with non-constant distance such that it 

satisfies the case (d) in (4) and a1*b1 > 0, we can get the 

following Lemmas. For convenience' sake, suppose that 

there is a flow dependence in the loop. 

Lemma 1: The number of iterations between a dependence 

source and the next source, sd is given by ｜b1｜/g 

iterations where g = gcd(a1, b1). 

And we can know the facts that if we obtain the iteration 

for the source of the first dependence, then we can compute 

the others easily, and i ≡ j(mod sd) for i, j are arbitrary 

iterations for all sources. 

Lemma 2: The dependence distance, that is, the number of 

iterations between the source and the sink of a dependence, 

is D(i)/b1 where D(i) = (a1 - b1) * i + (a2 - b2), and the 

increasing rate of a distance per one iteration, d' is given by 

(a1 - b1)/ b1. And the difference between the distance of a 

dependence and that of the next dependence, dinc is ｜a1 -

b1｜/g. 

Hence, if we obtain the distance for the source of the first 

dependence, then we can compute the others easily. Also 

for the case of anti-dependence, similarly, Lemma 1 and 2 

can be represented. Namely, sd is given by ｜a1｜/g 

iterations where g = gcd(a1, b1), the distance is given by (6), 

and d' is (b1-a1)/a1. And dinc = d' * sd = (b1-a1)/a1 * ｜a1｜/g 

= ｜b1 - a1｜/g. 

By using the iteration and distance for the source of the 

first dependence, and concepts defined by Lemma 1 and 2, 

we obtain the generalized and optimal algorithm to 

maximize parallelism from single loops with non-uniform 

dependences. 

4.1 Transformation of Single Loops

Procedure MaxSplit shows the transformation of single 

loops satisfying the case (d) in (4) and a1*b1 > 0 into partial 

parallel loops [8].

The following Procedure MaxSplit_2 generalizes how to 

transform general single loops, as shown in figure 1, into 

parallel loops.

Procedure MaxSplit_2
/* A generalized transformation of single loops into parallel loops */

BEGIN

/* (1) Testing for data dependence. */

Step 1: 

If (gcd test) is not true then 

{Transform a loop into a parallel loop directly; Stop};

If (separability test) is not true then 

{Transform a loop into a parallel loop directly; Stop};

/* (2) Data dependence computation and transformation for each of cases 

in (4). */

Step 2: 

If case (a) is true then 

{Transform a loop into a parallel loop directly; Stop};

If case (b) or case (c) or a1*b1 <0 is true then 

{Compute a turning threshold or a constant threshold or a crossing 

threshold and process the loop splitting by using those, respectively; 

Stop};

Step 3: /* The case satisfying (d) in (4) and a1*b1 >0 */

If (x, x) is a solution to (1) then 

go to Step 5;

Step 4: /* The case that there exists only a flow dependence (or anti-

dependence) */

    /* There exists flow dependence */

If d(i) > 0 for I = i within the range of loop then 

{sd = ｜b1｜/g; dinc =｜a1- b1｜/g};

  /* There exists anti-dependence */

else {sd = ｜a1｜/g; dinc =｜b1- a1｜/g};

/* α, β: the iteration and distance for the source of the first dependence 

in the loop, respectively */

Compute α, β by the separability test;

Step 4.1: Call MaxSplit(l, u, sd , dinc, α, β);

Stop;

Step 5: /* The case that there exist both flow and anti-dependences in the 

range of loop */

      The same as Step 4 for the range of l ≤ I ≤ ceil(x);

Step 5.1: Call MaxSplit(l,ceil(x), sd , dinc, α, β);

Step 6: The same as Step 4 for the range of ceil(x)+1 ≤ I ≤ u;

Step 6.1: Call MaxSplit(ceil(x) + 1, u, sd , dinc, α, β);

Step 7: Merge the last block splitted by Step 5 and the first block splitted by 

Step 6 together;

Stop;

END MaxSplit_2

In step 5-6, if there exist a flow (or anti-) and an anti-

dependence (or flow) before and after I = ceil(x), as defined 

in step 3, then dividing the loop two parts, and each of parts 

can be transformed by Procedure MaxSplit. No 

dependences are violated by the transformed block in step 7, 

since there may be different type of dependences before 

and after I = ceil(x) and a loop-independent dependence 

may exist at I = x, even if it exists. 

4.2 Transformation of Nested Loops with Simple 

Subscripts



4 Sam Jin Jeong : Parallelism for Nested Loops with Simple Subscripts

International Journal of Contents, Vol.4, No. 4, Dec 2008

In previous sections, we proposed a generalized and 

optimal method for single loops (MPSL) only. This section 

discusses the extension of the MPSL method, in order that 

it can be applied to exploit parallelism from nested loops 

with simple subscripts. However, it is difficult to apply this 

method to nested loops with coupled subscripts due to 

irregular and complex dependence constraints. If we 

consider nested loops with simple subscripts (i.e., the 

dimensionality of arrays in the loop is equal to the nested 

loop depth, and the subscript is the linear function of only a 

corresponding loop variable) as given in figure 5, we can 

derive an efficient method for these loops from enhancing 

the MPSL method, based on cycle shrinking [3][9] and loop 

interchange [10].  

Cycle shrinking method is one of methods of extracting 

parallelism from nested loops with uniform dependences, 

and there are three types in it: simple cycle shrinking, 

selective cycle shrinking, and true dependence cycle 

shrinking. Cycle shrinking is useful when the minimum of 

the dependences λ is greater than unity; it transforms a 

sequential DO loop into two perfectly nested loops: a 

sequential outer loop and a parallel inner loop. For example, 

let a single loop have u iterations, i.e., index set J={1,2, ∙∙∙ , 

u}, than iterations in sets {1,2, ∙∙∙ , λ}, or {λ + 1, ∙∙∙ , 2λ}, ∙∙∙ 

can be executed in parallel without violating data 

dependence relations. If the algorithm has a cyclic 

dependence structure, then the size of the dependence cycle 

is shrunk by a reduction factor λ. More examples for the 

intuitive concepts behind cycle shrinking can be found in 

[3].

DO I1 = l1, u1

     DO I2 = l2, u2

       ∙∙∙

         DO In = ln, un

             A(f1(I1), ∙∙∙ , fn(In)) = ∙∙∙

                           ∙∙∙ = A(g1(I1), ∙∙∙ , gn(In))

          ENDDO

       ∙∙∙

     ENDDO

ENDDO

Fig. 5 A type of nested loop with simple subscripts.

Since our loop model given in figure 5 is the type of nested 

loop with simple subscript, here the data dependence is 

considered separately for each individual loop in the nest. 

Each loop of this nested loop carries cross-iteration 

dependences if and only if there exist two integers (i, j) 

satisfying the system of Diophantine equations given by (7) 

and the system of inequalities given by (8).

fk(Ik) = gk(Ik) à ak1Ik + ak2 = bk1Ik + bk2 for 1 ≤ k ≤ n       (7)

lk ≤ i ≤ uk and lk ≤ j ≤ uk            (8)

And each component of the distance vector, dk(i) depending 

on i, as given by(9), has a positive value, then there exists a 

flow dependence, and if dak(j) depending on j, as given 

by(10), has a positive value, then there exists an anti-

dependence.  Next, if(x, x) is a solution to (7) (x may not 

be an integer.), then dk(x) = dak(x) = 0 and there may exist a 

flow (or anti-) and an anti-dependence (or flow) before and 

after I = ⌈x⌉, and if x is an integer, then there exists a loop-

independent dependence at I = x.

dk(i) = j – i = Dk(i)/bk1, Dk(i) = (ak1 – bk1)*i + (ak2 – bk2) (9)

dk(j) = j – i = Dak(j)/ak1, Dak(j) = (bk1 – ak1)*i + (bk2 – ak2) (10)

We can briefly present our proposed method as follows. 

First, using the procedures in section 4.1, the number of 

blocks which can be splitted form iteration space is 

computed for each loop in the nest starting with outermost 

loop. Next, kth loop which has minimum number of blocks 

in the nested loop, and the kth and the outermost loops (Lk

and L1) are interchanged for maximizing parallelism 

available in the loop [10]. Then the outermost loop 

interchanged (old Lk) is blocked, and all loop nested inside 

the outermost loop, i.e., from the second loop the nth loop, 

are transformed to DOALL’s. Even if only a loop in the 

nest does not have dependence, all loops can be 

transformed to DOALL’s.

We can consider the proposed method in two cases: one is 

that one type of dependence (flow or anti-dependence) 

exists in the loop and the other is that both flow and anti-

dependence exist in the loop.

Here, the number of blocks Bk for each loop in the nest can 

be computed by Procedure Compute_NB. When there 

exists a loop-independent dependence in the kth loop. 

Procedure Compute_NB

/* Computation of the number of blocks for each loop in the nested loop */

BEGIN

  k = 1 ;

  While k ≤ n Do

If (ak1 = bk1 = 0) then {Bk = 1 ; Fk = 0} ;

Orif (ak1 = 0, bk1 ≠ 0 or a k1 ≠ 0, bk = 0) then {

      If (lk ≤ i ≤ uk where i = (bk2 – ak2)/ak1 (if ak1 ≠ 0) or

(ak2 – bk2)/ak1 (if bk1 ≠ 0))

then Bk = 3 else Bk = 2; Fk = 1};

Orif (ak1 = bk1 ≠ 0) then{

     If(ak2 = bk2) then Bk = 1

else Bk = ⌈(uk – lk)/(ak2 – bk2)/bk1⌉ (if (ak2 - bk2)/bk1 > 0) or

⌈(uk – lk)/(bk2 – ak2)/ak1⌉ (if (bk2 - ak2)/ak1 > 0); Fk = 0};

Orif (ak1*bk1 < 0) then { Bk = 2; Fk = 0};

Orif (∃ only a flow or anti-dependence in the kth loop) then {

      Compute Bk by step 1-4 in Procedure MaxSplit; Fk = 0 }

else {Compute Bk by step 5-7 in Procedure MaxSplit_2; Fk = 1}

       k = k+1;

Endwhile

END Compute_NB

First, in case that one type of dependence (flow or anti-

dependence) exists in each loop of a nested loop with 

simple subscripts, Procedure MaxSplit_3 can transform a 

nested loop into partial parallel loops. As an example, let’s 

consider the loop shown in figure 6. There is one type of 

dependence exists in each loop of this nested loop.  The 

number of blocks of L2 is 4 and one of L3 is 3.  Hence, L3 

is interchanged with the outermost loop L1 for maximizing 

parallelism. Figure 7 illustrates the result of applying 
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Procedure MaxSplit_3 to the loop in figure 6.

Procedure MaxSplit_3

/* Transformation of nested loops with simple subscripts into 

partial parallel loops */

BEGIN

Step 1: Compute the number of blocks Bk by Procedure 

Compute_NB for each loop Lk such that the dependence 

distance dk > 1 for 1 ≤ k ≤ n;

Step 2: Find L1 such that Bi = min(Bk) for 1 ≤ k ≤ n ;

Step 3: If i > 1 then interchange the first loop L1 

with the ith loop Li ; 

Step 4: If the dependence distance of the outermost loop is 

constant 

then split the outermost loop into partial parallel loops by 

the reduction factor λ (assuming the outermost loop is Li, λ = 

⌈(ai2 – bi2)/bi1⌉ (if di(i) > 0) or ⌈(bi2 – ai2)/ai1⌉ (if dai(j) > 0))

else split the outermost loop by Procedure MaxSplit_1;

Transform all loops nested inside the outermost loop, i.e., 

from the second loop to the nth loop, to DOALL’s;

End MaxSplit_3

DO I1 = 1, 20

    DO I2 = 1, 20

      DO I3 = 1, 20

  S1:   A(I1, 3I2+1, 2I3) = ∙∙∙

  S2:      ∙∙∙ = A(I1, 2I2-4, I3-3)

      ENDDO

    ENDDO

  ENDDO

Fig. 6 An example of nested loop with simple subscripts.

DOALL I3 = 1, 4

  DOALL I2 = 1, 20

    DOALL I1 = 1, 20

      S1 ;

      S2 ;

    ∙∙∙

DOALL I3 = 5, 12

  DOALL I2 = 1, 20

    DOALL I1 = 1, 20

    ∙∙∙

DOALL I3 = 13, 20

  DOALL I2 = 1, 20

    DOALL I1 = 1, 20

Fig. 7 The result of the loop in Fig. 6 transformed by 

Procedure MaxSplit_3.

5. CONCLUSIONS

In this paper, we have studied the parallelization of single 

loop with non-uniform dependences and nested loops with 

simple subscripts for maximizing parallelism. For single 

loops, we can review two partitioning techniques which are 

fixed partitioning with minimum distance and variable 

partitioning with ceil(d(i)). However, these leave some 

parallelism unexploited, and the second case has some 

constraints. Therefore, we proposed a generalized and 

optimal method to make the iteration space of a loop into 

partitions with variable sizes (MPSL). By the extension of 

the MPSL method, we applied to exploit parallelism from 

nested loops with simple subscripts, based on cycle 

shrinking and loop interchanging method. 

Our future research work is to consider the extension of our 

proposed method to n-dimensional space.
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