
Sam Jin Jeong : Parallelism for Nested Loops with Simple Subscripts 1

International Journal of Contents, Vol.4, No. 4, Dec 2008

Parallelism for Nested Loops with Simple Subscripts

Sam Jin Jeong*

Division of Information and Communication Engineering, BaekSeok University

Anseo-dong 115, Cheonan City, Korea 330-704

ABSTRACT

In this paper, we propose improved loop splitting method for maximizing parallelism of single loops with non-constant

dependence distances. By using the iteration and distance for the source of the first dependence, and by our defined theorems,

we present generalized and optimal algorithms for single loops with non-uniform dependences (MPSL). By the extension of

the MPSL method, we also apply to exploit parallelism from nested loops with simple subscripts, based on cycle shrinking

and loop interchanging method. The algorithms generalize how to transform general single loops with non-uniform

dependences as well as nested loops with simple subscripts into parallel loops.

Keywords: Parallelizing Compiler, Loop Splitting, Nested Loop, Multiple Dependences, Non-uniform Dependences

1. INTRODUCTION

Partitioning of loops requires efficient and exact data

dependence analysis [1][2]. A precise dependence analysis

helps in identifying dependent/independent iterations of a

loop. And it is important that appropriate dependence

analysis be applied to exploit maximum parallelism within

loops. We can consider some tests that examine the

dependence of one-dimensional subscripted variables – the

separability test, the GCD test and the Banerjee test [5][7].

In general, the GCD test is applied first because of its

simplicity, even if it is an approximate test. Next, for the

case that the gcd test is true, the separability test is

attempted again, and through this exact test, it can be

obtained additional information such as solution set, and

minimum and maximum distances of dependence, as well

as whether the existence of dependence or not.

When we consider the approach for single loops, we can

review two partitioning techniques proposed in [3] which

are fixed partitioning with minimum distance and variable

partitioning with ceil(d(i)). However, these leave some

parallelism unexploited, and the second case has some

constraints.
 The rest of this paper is organized as follows. Chapter two

describes our loop model, and introduces the concept of

data-dependence computation in actual programs. In

chapter three, we review some partitioning techniques of

single loops such as loop splitting method by thresholds

and Polychronopoulos’ loop splitting method. In chapter

four, we propose a generalized and optimal method to make

the iteration space of a loop into partitions with variable

* Corresponding author. E-mail : sjjeong@bu.ac.kr
Manuscript received Sep. 30, 2008 ; accepted Oct. 21, 2008

sizes (MPSL). We also apply to exploit parallelism from

nested loops with simple subscripts by the extension of the

MPSL method. The algorithms generalize how to transform

general single loops with non-uniform dependences as well

as nested loops with simple subscripts into parallel loops.

Finally, we conclude in chapter five with the direction to

enhance this work.

2. PROGRAM MODEL AND DATA DEPENDENCE

ANALYSIS

For data-dependence computation in actual programs, the

most common situation occurs when we are comparing two

variables in a single loop and those variables are elements

of a one-dimensional array, with subscripts linear in the

loop index variable. Then this kind of loop has a general

form is shown in figure 1. Here, l, u, a1, a2, b1 and b2, are

integer constants known at compile time.

DO I = l, u

S1 : A(a1*I + a2) = ∙∙∙

S2 : ∙∙∙ = A(b1*I + b2)

END

Fig. 1 A single loop model.

For dependence between statements S1 and S2 to exist, we

must have an integer solution (i, j) to equation (1) that is a

linear diophantine equation in two variables. The method

for solving such equations is well known and is based on

the extended Euclid's algorithm [4].

a1i + a2 = b1j + b2 where l ≤ i, j ≤ u (1)

This equation may have infinitely many solutions (i, j)

2 Sam Jin Jeong : Parallelism for Nested Loops with Simple Subscripts

International Journal of Contents, Vol.4, No. 4, Dec 2008

given by a formula of the form:

(i, j) = ((b1/g)t + i 1, (a1/g)t + j 1

where (i 1, j 1) = ((b2-a2) i 0/g, (b2-a2) j 0/g) (2)

i 0, j0 are any two integers such that a1 i 0 - b1j0 = g(gcd(a1,

b1)) and t is an arbitrary integer [5][6]. Acceptable solutions

are those for which l ≤ i, j ≤ u, and in this case, the range

for t is given by

max(min(α, β), min(γ, δ)) ≤ t ≤ min(max(α, β), max(γ, δ))

where α = -(l - i 1)/(b1/g), β = -(u - i 1)/(b1/g),

 γ = -(l - j 1)/(a1/g), δ = -(u - i 1)/(a1/g). (3)

3. RELATED WORKS

Now, we review some partitioning techniques of single

loops. We can exploit any parallelism available in such a

single loop in figure 1, by classifying the four possible

cases for a1 and b1, coefficients of the index variable I, as

given by (4).

(a) a1 = b1 = 0

(b) a1 = 0, b1 ≠ 0 or a1 ≠ 0, b1 = 0

(c) a1 = b1 ≠ 0

(d) a1 ≠ 0, b1 ≠ 0, a1 ≠ b1 (4)

In case 4(a), because there is no cross-iteration dependence,

the resulting loop can be directly parallelized. In the

following subsections, we briefly review several loop

splitting methods for the cases of 4(b) through 4(d).

3.1 Loop splitting by thresholds

A threshold indicates the number of times the loop may be

executed without creating the dependence. In case 4(b), for

a dependence to exist, there must be an integer value i of

index variable I such that b1 * i + b2 = a2 (if a1 = 0) or a1 * i

+ a2 = b2 (if b1 = 0) and l ≤ i ≤ u. If there is no solution,

then there is no cross-iteration dependence and the loop can

also be parallelized. And if integer exists, then there exist a

flow dependence (or anti-dependence) in the range of I, [l,

u] and an anti-dependence (or flow dependence) in [i, u]. In

this case, be breaking the loop at the iteration I = i (called

turning threshold), the two partial loops can be transformed

into parallel loops.

In case 4(c), let (i, j) be an integer solution to (1), then there

exists a dependence in the range of I and the dependence

distance (d) is ｜j - i｜ = ｜(a2 - b2)/a1｜. Here, the loop

can be transformed into two perfectly nested loops; a serial

outer loop with stride d (called constant threshold) and a

parallel inner loop [5].

In case 4(d), an existing dependence is non-uniform since

there is a non-constant distance, that is, such that it varies

between different instances of the dependence. And we can

consider exploiting any parallelism for two cases when a1 *

b1 < 0 and a1 * b1 > 0. Suppose now that a1 * b1 < 0. If (i, i)

is a solution to (1), then there may be all dependence

sources in (l, i) and all dependence sinks in [i, u].

Therefore, by splitting the loop at the iteration I = i (called

crossing threshold), the two partial loops can be directly

parallelized [5]. Figure 2(c) shows the general form of loop

splitting by the crossing threshold.

 DOALL I = 1, 4

 A(I+5) = …

DO I = 1, 10 … = A(9)

A(I+5) = … => ENDDO

… = A(9) DOALL I = 5, 10

ENDDO …

ENDDO

(a) Using turning threshold.

DO I’ = 1, N, abs((b2-a2)/a1)

DO I = 1, N DOALL I = I’, I’+(abs((b2-a)/a1)-1

A(a1*I+ a2) = … A(a1*I+ a2) = …

… = A(b1*I+ b2) => … = A(b1*I+ b2)

ENDDO ENDDO

ENDDO

(b) Using constant threshold.

DOALL I = 1, floor((b2 - a2)/ (a1+ b1))+1,N

A(a1*I+ a2) = …

DO I = 1, N … = A(b2+ b1*I)

A(a1*I+ a2) = … => ENDDO

… = A(b2+ b1*I) DOALL I = floor((b2 - a2)/ (a1+ b1))+1,N

ENDDO …

ENDDO

(c) Using crossing threshold.

Fig. 2 The loop splitting by thresholds.

3.2 Polychronopoulos' loop splitting

We can also consider exploiting any parallelism for the

case 4(d) when a1 * b1 ≥ 0. We will consider three cases

whether it exists only flow dependence, anti-dependence,

or both in the range of I. First, let (i, j) be an integer

solution to (1). If the distance, d(i) depending on i, as given

by (5), has a positive value, then there exists a flow

dependence, and if da(j) depending on j, as given by (6),

has a positive value, then there exists an anti-dependence.

Next, if (x, x) is a solution to (1) (x may not be an integer.),

then d(x) = da(x) = 0 and there may exist a flow (or anti-)

and an anti-dependence (or flow) before and after I =

ceil(x), and if x is an integer, then there exists a loop-

independent dependence at I = x. Here, suppose that Then

for each value of I, the element A(a1*I + a2) defined by that

iteration cannot be consumed before ceil(d(i)) iterations

later, and this indicates that ceil(d(i)) iterations can execute

in parallel.

d(i) = j - i = D(i)/b1, where D(i) = (a2 - b1) * i + (a2 - b1) (5)

da(j) = i - j = Da(j)/a1, where Da(j) = (b1 - a1) * j + (b2 - a2) (6)

Consider the loop, as given in figure 3, in which there exist

flow dependences. d(i) = D(i)/b1 = (i +5)/2 > 0 for each

value of I and d(i) have integer values, 3, 4, 5, … as the

value of I is incremented.

DO I =1, N

S1 : A(3I+1) = …

Sam Jin Jeong : Parallelism for Nested Loops with Simple Subscripts 3

International Journal of Contents, Vol.4, No. 4, Dec 2008

S2 : … = A(2I-4)

ENDDO

Fig. 3 An example of a single loop.

Figure 4 shows the results of applying two transformations

using minimum distance and ceil(d(i)) proposed in [3] to

the loop in Fig. 3, respectively. However these leave some

parallelism unexploited. Moreover, the transformed loop in

figure 4(b) has some constraints: It must be only a flow

dependence in the original loop, the first iteration of the

original loop must be the iteration at which a dependence

source exists, and d(i) ≥ 1 for each value of I.

DO I’ = 1, N, 3 I’ = 1

DOALL I = I’, min(N, I’+2) L: inc = min(N-I’, ceil((I’+5)/2)-1)

A(3I+1) = … DOALL I = I’+inc

… = A(2I-4) A(3I+1)= …

ENDDO … =A(2I-4)

ENDDO ENDDO

I’ = I’+inc+1

If I’ < N then goto L

(a) Using minimum distance. (b) Using ceil(d(i)).

Fig. 4 Polychronopoulos’ loop splitting.

4. PARALLELISM FOR NESTED LOOPS

From a single loop with non-constant distance such that it

satisfies the case (d) in (4) and a1*b1 > 0, we can get the

following Lemmas. For convenience' sake, suppose that

there is a flow dependence in the loop.

Lemma 1: The number of iterations between a dependence

source and the next source, sd is given by ｜b1｜/g

iterations where g = gcd(a1, b1).

And we can know the facts that if we obtain the iteration

for the source of the first dependence, then we can compute

the others easily, and i ≡ j(mod sd) for i, j are arbitrary

iterations for all sources.

Lemma 2: The dependence distance, that is, the number of

iterations between the source and the sink of a dependence,

is D(i)/b1 where D(i) = (a1 - b1) * i + (a2 - b2), and the

increasing rate of a distance per one iteration, d' is given by

(a1 - b1)/ b1. And the difference between the distance of a

dependence and that of the next dependence, dinc is ｜a1 -

b1｜/g.

Hence, if we obtain the distance for the source of the first

dependence, then we can compute the others easily. Also

for the case of anti-dependence, similarly, Lemma 1 and 2

can be represented. Namely, sd is given by ｜a1｜/g

iterations where g = gcd(a1, b1), the distance is given by (6),

and d' is (b1-a1)/a1. And dinc = d' * sd = (b1-a1)/a1 * ｜a1｜/g

= ｜b1 - a1｜/g.

By using the iteration and distance for the source of the

first dependence, and concepts defined by Lemma 1 and 2,

we obtain the generalized and optimal algorithm to

maximize parallelism from single loops with non-uniform

dependences.

4.1 Transformation of Single Loops

Procedure MaxSplit shows the transformation of single

loops satisfying the case (d) in (4) and a1*b1 > 0 into partial

parallel loops [8].

The following Procedure MaxSplit_2 generalizes how to

transform general single loops, as shown in figure 1, into

parallel loops.

Procedure MaxSplit_2
/* A generalized transformation of single loops into parallel loops */

BEGIN

/* (1) Testing for data dependence. */

Step 1:

If (gcd test) is not true then

{Transform a loop into a parallel loop directly; Stop};

If (separability test) is not true then

{Transform a loop into a parallel loop directly; Stop};

/* (2) Data dependence computation and transformation for each of cases

in (4). */

Step 2:

If case (a) is true then

{Transform a loop into a parallel loop directly; Stop};

If case (b) or case (c) or a1*b1 <0 is true then

{Compute a turning threshold or a constant threshold or a crossing

threshold and process the loop splitting by using those, respectively;

Stop};

Step 3: /* The case satisfying (d) in (4) and a1*b1 >0 */

If (x, x) is a solution to (1) then

go to Step 5;

Step 4: /* The case that there exists only a flow dependence (or anti-

dependence) */

 /* There exists flow dependence */

If d(i) > 0 for I = i within the range of loop then

{sd = ｜b1｜/g; dinc =｜a1- b1｜/g};

 /* There exists anti-dependence */

else {sd = ｜a1｜/g; dinc =｜b1- a1｜/g};

/* α, β: the iteration and distance for the source of the first dependence

in the loop, respectively */

Compute α, β by the separability test;

Step 4.1: Call MaxSplit(l, u, sd , dinc, α, β);

Stop;

Step 5: /* The case that there exist both flow and anti-dependences in the

range of loop */

 The same as Step 4 for the range of l ≤ I ≤ ceil(x);

Step 5.1: Call MaxSplit(l,ceil(x), sd , dinc, α, β);

Step 6: The same as Step 4 for the range of ceil(x)+1 ≤ I ≤ u;

Step 6.1: Call MaxSplit(ceil(x) + 1, u, sd , dinc, α, β);

Step 7: Merge the last block splitted by Step 5 and the first block splitted by

Step 6 together;

Stop;

END MaxSplit_2

In step 5-6, if there exist a flow (or anti-) and an anti-

dependence (or flow) before and after I = ceil(x), as defined

in step 3, then dividing the loop two parts, and each of parts

can be transformed by Procedure MaxSplit. No

dependences are violated by the transformed block in step 7,

since there may be different type of dependences before

and after I = ceil(x) and a loop-independent dependence

may exist at I = x, even if it exists.

4.2 Transformation of Nested Loops with Simple

Subscripts

4 Sam Jin Jeong : Parallelism for Nested Loops with Simple Subscripts

International Journal of Contents, Vol.4, No. 4, Dec 2008

In previous sections, we proposed a generalized and

optimal method for single loops (MPSL) only. This section

discusses the extension of the MPSL method, in order that

it can be applied to exploit parallelism from nested loops

with simple subscripts. However, it is difficult to apply this

method to nested loops with coupled subscripts due to

irregular and complex dependence constraints. If we

consider nested loops with simple subscripts (i.e., the

dimensionality of arrays in the loop is equal to the nested

loop depth, and the subscript is the linear function of only a

corresponding loop variable) as given in figure 5, we can

derive an efficient method for these loops from enhancing

the MPSL method, based on cycle shrinking [3][9] and loop

interchange [10].

Cycle shrinking method is one of methods of extracting

parallelism from nested loops with uniform dependences,

and there are three types in it: simple cycle shrinking,

selective cycle shrinking, and true dependence cycle

shrinking. Cycle shrinking is useful when the minimum of

the dependences λ is greater than unity; it transforms a

sequential DO loop into two perfectly nested loops: a

sequential outer loop and a parallel inner loop. For example,

let a single loop have u iterations, i.e., index set J={1,2, ∙∙∙ ,

u}, than iterations in sets {1,2, ∙∙∙ , λ}, or {λ + 1, ∙∙∙ , 2λ}, ∙∙∙

can be executed in parallel without violating data

dependence relations. If the algorithm has a cyclic

dependence structure, then the size of the dependence cycle

is shrunk by a reduction factor λ. More examples for the

intuitive concepts behind cycle shrinking can be found in

[3].

DO I1 = l1, u1

 DO I2 = l2, u2

 ∙∙∙

 DO In = ln, un

 A(f1(I1), ∙∙∙ , fn(In)) = ∙∙∙

 ∙∙∙ = A(g1(I1), ∙∙∙ , gn(In))

 ENDDO

 ∙∙∙

 ENDDO

ENDDO

Fig. 5 A type of nested loop with simple subscripts.

Since our loop model given in figure 5 is the type of nested

loop with simple subscript, here the data dependence is

considered separately for each individual loop in the nest.

Each loop of this nested loop carries cross-iteration

dependences if and only if there exist two integers (i, j)

satisfying the system of Diophantine equations given by (7)

and the system of inequalities given by (8).

fk(Ik) = gk(Ik) à ak1Ik + ak2 = bk1Ik + bk2 for 1 ≤ k ≤ n (7)

lk ≤ i ≤ uk and lk ≤ j ≤ uk (8)

And each component of the distance vector, dk(i) depending

on i, as given by(9), has a positive value, then there exists a

flow dependence, and if dak(j) depending on j, as given

by(10), has a positive value, then there exists an anti-

dependence. Next, if(x, x) is a solution to (7) (x may not

be an integer.), then dk(x) = dak(x) = 0 and there may exist a

flow (or anti-) and an anti-dependence (or flow) before and

after I = ⌈x⌉, and if x is an integer, then there exists a loop-

independent dependence at I = x.

dk(i) = j – i = Dk(i)/bk1, Dk(i) = (ak1 – bk1)*i + (ak2 – bk2) (9)

dk(j) = j – i = Dak(j)/ak1, Dak(j) = (bk1 – ak1)*i + (bk2 – ak2) (10)

We can briefly present our proposed method as follows.

First, using the procedures in section 4.1, the number of

blocks which can be splitted form iteration space is

computed for each loop in the nest starting with outermost

loop. Next, kth loop which has minimum number of blocks

in the nested loop, and the kth and the outermost loops (Lk

and L1) are interchanged for maximizing parallelism

available in the loop [10]. Then the outermost loop

interchanged (old Lk) is blocked, and all loop nested inside

the outermost loop, i.e., from the second loop the nth loop,

are transformed to DOALL’s. Even if only a loop in the

nest does not have dependence, all loops can be

transformed to DOALL’s.

We can consider the proposed method in two cases: one is

that one type of dependence (flow or anti-dependence)

exists in the loop and the other is that both flow and anti-

dependence exist in the loop.

Here, the number of blocks Bk for each loop in the nest can

be computed by Procedure Compute_NB. When there

exists a loop-independent dependence in the kth loop.

Procedure Compute_NB

/* Computation of the number of blocks for each loop in the nested loop */

BEGIN

 k = 1 ;

 While k ≤ n Do

If (ak1 = bk1 = 0) then {Bk = 1 ; Fk = 0} ;

Orif (ak1 = 0, bk1 ≠ 0 or a k1 ≠ 0, bk = 0) then {

 If (lk ≤ i ≤ uk where i = (bk2 – ak2)/ak1 (if ak1 ≠ 0) or

(ak2 – bk2)/ak1 (if bk1 ≠ 0))

then Bk = 3 else Bk = 2; Fk = 1};

Orif (ak1 = bk1 ≠ 0) then{

 If(ak2 = bk2) then Bk = 1

else Bk = ⌈(uk – lk)/(ak2 – bk2)/bk1⌉ (if (ak2 - bk2)/bk1 > 0) or

⌈(uk – lk)/(bk2 – ak2)/ak1⌉ (if (bk2 - ak2)/ak1 > 0); Fk = 0};

Orif (ak1*bk1 < 0) then { Bk = 2; Fk = 0};

Orif (∃ only a flow or anti-dependence in the kth loop) then {

 Compute Bk by step 1-4 in Procedure MaxSplit; Fk = 0 }

else {Compute Bk by step 5-7 in Procedure MaxSplit_2; Fk = 1}

 k = k+1;

Endwhile

END Compute_NB

First, in case that one type of dependence (flow or anti-

dependence) exists in each loop of a nested loop with

simple subscripts, Procedure MaxSplit_3 can transform a

nested loop into partial parallel loops. As an example, let’s

consider the loop shown in figure 6. There is one type of

dependence exists in each loop of this nested loop. The

number of blocks of L2 is 4 and one of L3 is 3. Hence, L3

is interchanged with the outermost loop L1 for maximizing

parallelism. Figure 7 illustrates the result of applying

Sam Jin Jeong : Parallelism for Nested Loops with Simple Subscripts 5

International Journal of Contents, Vol.4, No. 4, Dec 2008

Procedure MaxSplit_3 to the loop in figure 6.

Procedure MaxSplit_3

/* Transformation of nested loops with simple subscripts into

partial parallel loops */

BEGIN

Step 1: Compute the number of blocks Bk by Procedure

Compute_NB for each loop Lk such that the dependence

distance dk > 1 for 1 ≤ k ≤ n;

Step 2: Find L1 such that Bi = min(Bk) for 1 ≤ k ≤ n ;

Step 3: If i > 1 then interchange the first loop L1

with the ith loop Li ;

Step 4: If the dependence distance of the outermost loop is

constant

then split the outermost loop into partial parallel loops by

the reduction factor λ (assuming the outermost loop is Li, λ =

⌈(ai2 – bi2)/bi1⌉ (if di(i) > 0) or ⌈(bi2 – ai2)/ai1⌉ (if dai(j) > 0))

else split the outermost loop by Procedure MaxSplit_1;

Transform all loops nested inside the outermost loop, i.e.,

from the second loop to the nth loop, to DOALL’s;

End MaxSplit_3

DO I1 = 1, 20

 DO I2 = 1, 20

 DO I3 = 1, 20

 S1: A(I1, 3I2+1, 2I3) = ∙∙∙

 S2: ∙∙∙ = A(I1, 2I2-4, I3-3)

 ENDDO

 ENDDO

 ENDDO

Fig. 6 An example of nested loop with simple subscripts.

DOALL I3 = 1, 4

 DOALL I2 = 1, 20

 DOALL I1 = 1, 20

 S1 ;

 S2 ;

 ∙∙∙

DOALL I3 = 5, 12

 DOALL I2 = 1, 20

 DOALL I1 = 1, 20

 ∙∙∙

DOALL I3 = 13, 20

 DOALL I2 = 1, 20

 DOALL I1 = 1, 20

Fig. 7 The result of the loop in Fig. 6 transformed by

Procedure MaxSplit_3.

5. CONCLUSIONS

In this paper, we have studied the parallelization of single

loop with non-uniform dependences and nested loops with

simple subscripts for maximizing parallelism. For single

loops, we can review two partitioning techniques which are

fixed partitioning with minimum distance and variable

partitioning with ceil(d(i)). However, these leave some

parallelism unexploited, and the second case has some

constraints. Therefore, we proposed a generalized and

optimal method to make the iteration space of a loop into

partitions with variable sizes (MPSL). By the extension of

the MPSL method, we applied to exploit parallelism from

nested loops with simple subscripts, based on cycle

shrinking and loop interchanging method.

Our future research work is to consider the extension of our

proposed method to n-dimensional space.

6. REFERENCES

[1] W. Zhang, G. Chen, M. Kandeemir, and M. Karakoy,

“Interprocedural Optimizations for Improving Data

Cache Performance of Array-Intensive Embedded

Applications,” in DAC 2003, Anaheim, California,

2003.

[2] D. S. Park, M. H. Choi, “Interprocedural

Transformations for Parallel Computing,” in Journal

of Korean Multimedia Society, vol. 9, no. 12, pp.1700-

1708, Dec., 2006.

[3] C. D. Ploychronopoulos, "Compiler optimizations for

enhancing parallelism and their impact on architecture

design," in IEEE Trans. computers, vol. 37, no. 8, pp.

991-1004, Aug. 1988.

[4] D. E. Knuth, The Art of Computer Programming, vol.

2: Seminumerical Algorithms, Reading, MA: Addison-

Wesley, 1981.

[5] H. Zima and B. Chapman, Supercompilers for Parallel

and Vector Computers, Addison-Wesley, 1991.

[6] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A.

Padua, "Automatic program parallelization,” in

Proceedings of the IEEE, vol. 81, no. 2, pp.211-243,

Feb 1993.

[7] M. J. Wolfe, Optimizing Supercompilers for

Supercomputers, Cambridge, MA: MIT Press, 1989.

[8] S. J. Jeong, “A Loop Transformation for Parallelism

from Single Loops,” in International Journal of

Contents, vol. 2, No. 4, pp.8-11, Dec. 2006.

[9] W. Shang, T. O’Keefe, and J. A. B. Fortes, “On loop

transformations for generalized cycle shrinking,” in

IEEE Trans. Parallel and Distributed Systems, vol. 5,

no. 2, pp. 193-204, Feb. 1994.

[10] M. E. Wolfe, and M. S. Lam, “A loop transformation

theory and algorithm to maximize parallelism,” in

IEEE Trans. Parallel and Distributed Systems, vol. 2,

no. 4, pp. 452-471, Oct. 1991.

6 Sam Jin Jeong : Parallelism for Nested Loops with Simple Subscripts

International Journal of Contents, Vol.4, No. 4, Dec 2008

Sam-Jin Jeong

He received the B.S. in polymer

science from KyungBuk National

university, Korea in 1979, and the

M.S. in computer science from

Indiana university, USA in 1987, and

also received Ph.D. in computer

science from ChungNam National university, Korea in

2000. From 1988 to 1991, he was a senior research staff at

SamSung Electric Co. From 1992 to 1997, he was an

assistant professor at HaeCheon University. Since then, he

has been with BaekSeok University as a professor. His

main research interests include parallelizing compiler,

parallel systems, general compiler, and programming

languages.

