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ABSTRACT

Recently many different programming languages have emerged for the development of bioinformatics applications. In addition to the 
traditional languages, languages from open source projects such as BioPerl, BioPython, and BioJava have become popular because 
they provide special tools for biological data processing and are easy to use. However, it is not well-studied which of these
programming languages will be most suitable for a given bioinformatics task and which factors should be considered in choosing a 
language for a project.

Like many other application projects, bioinformatics projects also require various types of tasks. Accordingly, it will be a 
challenge to characterize all the aspects of a project in order to choose a language. However, most projects require some common
and primitive tasks such as file I/O, text processing, and basic computation for counting, translation, statistics, etc. This paper 
presents the benchmarking results of six popular languages, Perl, BioPerl, Python, BioPython, Java, and BioJava, for several 
common and simple bioinformatics tasks. The experimental results of each language are compared through quantitative evaluation 
metrics such as execution time, memory usage, and size of the source code. Other qualitative factors, including writeability, 
readability, portability, scalability, and maintainability, that affect the success of a project are also discussed. The results of this 
research can be useful for developers in choosing an appropriate language for the development of bioinformatics applications. 

Keywords: A programming language comparison, BioPerl, BioJava, BioPython.

1.   INTRODUCTION

 Bioinformatics is the application of mathematical and 
computational techniques to the area of molecular biology to 
solve problems arising from the management and analysis of 
biological data, eventually to understand biological processes [2, 
9, 31]. Common tasks in bioinformatics include the creation, 
search, retrieval, and analysis of biological data, mapping, 
manipulating, and analyzing DNA and protein sequences,
alignment of those sequences to compare them, 3-D modeling of 
protein structures, etc. [1], [9], [14], [21], [26]. To perform these 
tasks, many different programming languages can be used. Out 
of all the different programming languages, Perl [29], Python 
[11], and Java [27] have received the most attention from 
developers of bioinformatics applications mainly because those 
languages are platform independent and support flexible and 
powerful features such as string manipulation, text processing, 
file handling, etc.
     Perl is a high-level, general-purpose, and interpreter-based
programming language that was originally developed by Larry 
Wall in 1987, as a Unix scripting language to make report 
processing easier [24]. Since then, it has undergone many 
revisions and has become widely popular among programmers
for system administration, web application, and text and file 
processing for many other applications. Particularly, for 
bioinformatics application development, as developers write 
similar code to implement common bioinformatics tasks [20], 
they have formed a community for bioinformatics application 
developers using Perl and started an open source project called 
BioPerl [6, 12]. This community allows for the sharing of 
reusable code that reduces the amount of development time and 
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effort. BioPerl is basically a collection of Perl modules for many 
of the typical tasks of bioinformatics programming. It is one of 
the active open source software projects supported by the Open 
Bioinformatics Foundation [20]. With a basic understanding of 
Perl, including how to use Perl references, modules, objects and 
methods, a developer can take advantage of BioPerl to 
implement sophisticated tasks by using only a few lines of code,
significantly saving time and effort in developing applications
compared to using the standard Perl.
     Java is a general-purpose, object-oriented and compiler-
based programming language that derives much of its syntax 
from C and C++. Similar to BioPerl, BioJava is also an open 
source project that provides Java-based library for processing 
biological data and other various mundane bioinformatics tasks
[4], [5].
     Python is a general-purpose high-level programming 
language with a design focusing on code readability [11]. 
Python provides a large and comprehensive standard library 
supporting multiple paradigms that are primarily object-oriented, 
imperative, and functional. The language has an open, 
community-based development model managed by the non-
profit Python Software Foundation. BioPython is another open 
source project based on the Python programming language and 
is also supported by the Open Bioinformatics Foundation [7].
For our convenience in this paper, the open source projects, 
BioPerl, BioJava, and BioPython will be referred to as 
Bio*languages and their base languages, Perl, Java, and Python 
as native languages.
      For a given project, choosing a right language is important 
since the selected programming language can, in part, affect the 
success of the project. With a wide range of open source 
projects and traditional programming languages available, 
application developers may have difficulty in choosing the right 
programming language for a project, leading them to ask: what 
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factors do we need to consider when choosing a language? 
Some important factors to be considered may include the 
available project period, available computer resources, ease of 
collaboration with other team members especially for a large 
project, efficiency and maintainability of programs, and so on.
Furthermore, when it comes to implementation of 
bioinformatics tasks, one can be easily tempted to use 
Bio*languages, mainly for quick implementation without 
realizing whether or not the implemented codes will comply 
with the intended project goals. 
    However, while a comparison of languages C, C++, C#, Java, 
Perl, and Python has been done [13], [23], the pros and cons of 
each language, especially a comparison between the 
Bio*languages and their native languages based on these factors
in implementing various bioinformatics tasks were not well 
studied in the past. 
      Therefore, the main objective of this paper is to provide
developers with the valuable information needed in selecting an
appropriate language for their projects by evaluating each of the
six popular languages including the Bio*languages discussed 
above. The quantitative evaluation metrics, execution time, 
memory usage, and size of the source code for each language 
are measured in several common and basic bioinformatics tasks
including: (1) performing disk input/output (I/O) with GenBank 
and FASTA files, (2) finding a sequence in a GenBank file with 
a LOCUS name [3], (3) computing the reverse complement of a 
DNA sequence, (4) counting the residues in a sequence, and (5) 
translating a DNA sequence to proteins [2], [19]. The paper 
presents benchmarking results of the six languages for each of 
these tasks. For some bioinformatics applications, many other 
complex tasks than these may need to be implemented. However, 
this research was not intended to cover all aspects of 
bioinformatics applications but rather to focus on the language-
related issues in implementing simple tasks. Therefore, we 
intentionally avoided sophisticated tasks, especially those 
involving other systems or special hardware such as database 
management systems [10], visualization, and specialized 
computations [30], in order to simplify the experiment without 
being biased by external systems or hardware. Although these 
tasks, among many other bioinformatics tasks, are rather simple 
and elementary, they are also fundamental and sufficient in 
measuring the strength and weakness of a language used. In 
addition, other qualitative factors such as writeability, 
readability, portability, scalability, and maintainability that also 
affect the project success will be discussed.
     The rest of the paper is organized as follows. Section 2 gives 
the detailed benchmarking results and discussion. Section 3 
concludes the paper with a summary and an overall analysis of 
the research.

2.   BENCHMARKING RESULTS

It is well-known that there can be many different ways to
implement an algorithm. In order to evaluate each language 
fairly for each task, a common implementation approach 
regarding data structure, algorithm, and coding style is first 
defined and then implemented in each of the six languages. In 
other words, even though a task can be more optimally
implemented through a different technique, the better
implementation is ignored if the standard implementation 
approach can be used in the language. As for the experimental 
environment, each program was executed on a 500 MHz 
Pentium 4 with 512 MB of RAM and Windows XP operating 
system. The languages and versions used in this benchmarking 

are Perl 5.8.0, BioPerl 1.2.2, Java 1.4.2_01, BioJava 1.3pre1, 
Python 2.2.3, and BioPython 1.21. 

2.1.   Performing Disk I/O with GenBank and
        FASTA files
The main operations in this task are to extract the sequence data 
and the annotations from a GenBank file and write them into a 
file in FASTA format. This reading and writing are mainly disk 
input/output (I/O) operations with some text parsing. The 
following source codes present the major statements of 
implementation in each language. The complete version of the 
source codes and the related information is available on the web: 
http://tryu.ecs.fullerton.edu/biolanguagebenchmarking.zip. 

(1) Bioperl 
@seq_object_array = 
read_all_sequences($infilename,'genbank');
write_sequence(">$outfilename",  'fasta', 
@seq_object_array);

(2) Biojava
SequenceIterator iter = 
(SequenceIterator)SeqIOTools.fileToBiojava(4, 

br);
SeqIOTools.writeFasta(new 
FileOutputStream("out_biojavaNC_002950.fa"), 
iter);

  

(3) Biopython 
feature_parser = GenBank.FeatureParser() 
gb_iteratorFeature = GenBank.Iterator(gb_handle, 
feature_parser)

......
fasta = Fasta.Record()
while 1: 

cur_feature = gb_iteratorFeature.next() 
if cur_feature is None: 

break
titleStr = cur_feature.name + " " + 

cur_feature.description
fasta.title = titleStr
fasta.sequence = cur_feature.seq.data
wfile.write( str(fasta))
wfile.write( '\n')
......

(4) Perl 
foreach my $line (@GenBankFile) {

if( $line =~ /^LOCUS/ ) { # Beginning of gi 
number

   ......
  } elsif( $in_origin ) { 
     $origin = substr($line, 10, 66);
     $origin =~ s/\s//g;
     $origin = uc($origin);
     print OUT "$origin\n";
  }
}

(5) Java 
......
BufferedReader reader = new BufferedReader(r);
BufferedWriter writer = new BufferedWriter(w);
......     
while ( null != line ) {

if( line.startsWith("LOCUS") ) { 
......

  } else if( 1 == in_origin ) { 
if(line.length() >= 10){
StringTokenizer st = new 

StringTokenizer(line.substring(10));
int count = st.countTokens();
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while( count > 0){

writer.write(st.nextToken().toUpperCase());
count--;

}
writer.write("\n");

  }
}

(6) Python 
while ( line != ""):

......
elif line.startswith('LOCUS'):# Beginning of 

gi number
  locus = line[10:20]
  locus2= locus.strip() # Removes trailing 

& leading hitespaces
  print >>  outfile, '>' + locus2,
......
elif in_origin == 1: 
  origin = line[10:76] 
  origin = origin.strip()
  origin = origin.replace(' ', '')
  print >> outfile, origin.upper()

Execution Time
Figure 1. shows the results of experiment on execution time. 
The six test data sets used in this study include (A) 
AF165912.gbk (10k) with 1 sequence, (B) 
HomoSapiens5_rs.gbk (120k) with 5 sequences, (C) 
HomoSapiens71_rs.gbk (519k) with 71 sequences, (D) 
AC125735.gbk (726k) with 1 sequence, (E) NC_002950.gbk
(4,925k) with 1 sequence, and (F) HomoSapiens500_rs.gbk
(7,022k) with 500 sequences, in the order of their size. Note that 
the unit of the data size represented in k means KB. To avoid 
any effect from other running processes, programs were 
executed right after the system was booted. All programs ran 
more than five times to minimize the variance among different
runs, and their execution times were averaged for four runs 
excluding the first execution time. The first execution time is 
intentionally excluded as it might be adversely affected by 
additional loading time. According to the experimental results, it 
is apparent that the implementations of Perl, Java, and Python 
have performance advantages over their corresponding open 
source projects regardless of the data set sizes. For data set C, 
Perl ran about 5 ~ 19 times faster than BioPerl, Java ran about 
10 times faster than BioJava, and Python ran about 30 ~ 40
times faster than BioPython. BioPython had the worst 
performance of all the test data sets. The possible cause of a 
poor performance seen in open source projects may be due to 
the extra overhead for loading unnecessary modules included in 
the language into the system. One interesting result is that Perl, 
BioPerl, and Python slightly outperformed Java and BioJava for 
small data sets A, B, C, and D while Java and BioJava 
outperformed Perl and BioPerl for larger data sets E and F. The 
result is somewhat contradictory to the idea that script languages, 
such as Perl and Python, are usually slower than compiler-based 
languages such as Java. To further identify why Java performs 
poorly compared to Perl when handling small data sets, 
additional experiments to test the performance of only I/O 
operations for each language were conducted.
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Fig. 1. Comparison of average execution times

Consistent with the results of the previous experiment, as shown 
in Table 1, Perl outperformed Java for small data sets while Java 
outperformed Perl for large data sets.

Table 1. Comparison of execution times for I/O operations
      Exec. 

Time
(msec)              

Language

Data Set A B

Size(K) 10 7,022

Perl 2.50 1,449.50
Java 15.00 463.00 
Python 1.54 402.36 

On the other hand, the results show that Python significantly 
outperformed both Perl and Java for both data sets A and B. 
However, Java slightly outperformed Python for larger data sets,
E and F. In Java, the BufferedReader class was wrapped around 
the FileReader class in order to convert the underlying character 
stream to buffered I/O, which can be more efficient than the one 
without buffering. Python uses the buffered I/O operations 
provided by the C library. We think that the management of 
buffering in Python may be more efficient than the ones in other 
languages. 

Memory Usage
Since the memory usage varies significantly over runtime, we 
measured the peak memory usage [32]. Figure 2 shows the 
memory usage of six languages for six different data sets. It is 
apparent that BioPerl and BioPython used higher consumption 
of memory than the others. Among the six languages, Python 
consumed the least amount of memory for I/O operations. 
BioPython consumed the most memory, followed by BioPerl. In 
general, the Bio* languages consumed more memory than their 
native languages. Again, the main reason for this can be that 
Bio* languages require loading many unnecessary modules to 
perform the task. Intuitively, one can expect that memory usage 
would be increased as input data size grows. However, the 
experimental results with the relatively large data set F using 
BioJava and BioPython proved to be counterintuitive. Our 
observation is that processing a single larger sequence seems to 
require more memory than multiple smaller sequences. 
Particularly, the reduction in memory usage in BioPython was 
significant. It is also interesting to see that the memory usages of
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Python and Java were not affected by the size of inputs; they 
had constant memory usages of about 6K and 3K bytes for all 
data sets.
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Fig. 2. Comparison of memory usages

Size of Code
The size of a program is an important factor in choosing a 
language because it indicates the complexity of code and the 
development time. Fig. 3 illustrates the total number of lines of 
source code in the six languages to perform this task. As 
expected, the Bio* languages required less lines of code than 
their native languages. Of the non-Bio* languages, Perl required 
the least lines of code required by the defined coding style. 
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Fig. 3. Comparison of code size for each language

Java, a compiler-based language, required the largest number of 
lines of code. Compared to BioPerl, Java required almost twelve 
times as many lines of code. Other experiments showed similar 
results to figure 3.

2.2.   Finding a Sequence in a GenBank File with a
        LOCUS Name
This task is to search for a particular sequence with the LOCUS 
name by processing one line at a time, which requires both basic 
string processing and I/O operation. The major statements for 
this task in each of the languages are given below:

(1)  BioPerl

@seq_object_array = 
read_all_sequences($infilename,'genbank');
foreach my $seq_object (@seq_object_array) {
   if ($seq_object->id() eq $findID) {

#print "FOUND\n";
last;

   }
}

(2) BioJava
SequenceIterator seqs = 
SeqIOTools.readGenbank(br);
String findID = "AZ574568";
while (seqs.hasNext()) {
   Annotation anno = 
seqs.nextSequence().getAnnotation();
   if (findID.equals(((String)
anno.getProperty("LOCUS")))) {

break; //found
   }
}  

(3)  BioPython
gb_file = "HomoSapiens1000_rs.gbk" 
gb_handle = open(gb_file, 'r') 
feature_parser = GenBank.FeatureParser() 
gb_iteratorFeature = GenBank.Iterator(gb_handle, 
feature_parser)
findID = "AZ574568"
while 1: 
   cur_Feature = gb_iteratorFeature.next() 
   if cur_Feature is None: 

break
   if(findID == cur_Feature.name):
       break #print "Found"

(4)  Perl
open ( IN , "HomoSapiens1000_rs.gbk" ) or die 
( "Cannot open file!");
my @GenBankFile = ();
my $findID = "AJ574568";   
@GenBankFile = <IN>;
foreach my $line (@GenBankFile) {
   if ($line =~ /^LOCUS/) { 

$name = substr($line, 12, 34);
$name =~ s/\s//g; #Remove all 

the spaces between characters
if ($findID eq $name) {
    print "FOUND";
    last;

       }
   }
}

(5)  Java
FileReader r = new FileReader( new 
File("HomoSapiens1000_rs.gbk") );
BufferedReader reader = new BufferedReader(r);
String line = reader.readLine();
String findID ="AZ574568";
while ( null != line ) {
    if ( line.startsWith("LOCUS")) {

if 
(findID.equals(line.substring(12,34).trim())) {

    break; //FOUND
}

    }
    line = reader.readLine();
}

(6)  Python
try:
   infile  = open( "HomoSapiens1000_rs.gbk", 
"r");
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   except IOError:
print >> sys.stderr, "Input file could 

not be opened"
sys.exit( 1 ) ;

   line = infile.readline() # Get the first 
record
   findID = "AZ574568"

while ( line != ""):
   if line.startswith('LOCUS'): # Beginning of 
ACCESSION

ID = line[12:34]
ID = ID.strip()
if ID == findID :
   break #print "FOUND"
line = infile.readline()
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Fig. 4. Comparison of average execution times. The data sets 
used in this experiment are (A) HomoSapiens500_rs.gbk

(7,022k) with 500 sequences and (B) HomoSapiens1000_rs.gbk
(14,043k) with 1,000 sequences.

Execution Time
Figure 4 compares the results on the execution times of the six 
languages for two different data sets. The resulting graph for this 
task is similar to the ones for the previous task. Consistent with 
the previous result, BioPython again ran the slowest. For data 
set B, the best language (Java) performed about 245 times better 
than the worst language (BioPython). In general, the native
languages ran faster than the Bio* languages.

Memory Usage
As shown in figure 5, BioPython consumes the largest memory 
for both data sets. Given that the size of data set B is 
approximately two times larger than the data set A, it is of 
interest that the memory consumption for this task seems to be 
insensitive to the size of input data set, except when using 
BioPerl and Perl, as shown in Fig. 5. 
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Fig. 5. Comparison of memory usages in each language

2.3.   Computing the Reverse Complement of a
        DNA Sequence
This task requires simple string manipulation (e.g., reverse the 
string and compute the complement of it) without involving I/O 
operations.

Execution time
In this experiment, as shown in figure 6, BioPython and Python 
showed the worst performance among the six languages whereas 
BioJava significantly outperformed all other languages. It is of 
interest that BioJava and Perl both outperformed Java. The 
results indicate that the string manipulation in both BioJava and 
Perl is very efficient.

Memory Usage
As shown in figure 7, BioPython and Python used almost up to 
50% more memory than the other languages for data set A, and 
BioPerl and Python noticeably used more memory than the other 
languages for data set B. As was generally expected, the 
memory usages of Bio* languages was higher than the native 
languages.
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Fig. 6. Comparison of average execution times. The data sets 
used in this experiment are (A) AC125735.fa (387k) with 1 
sequence and (B) NC_002950.fa (2,422k) with 1 sequence.
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Fig. 7. Comparison of memory usages

2.4.   Counting the Residues in a Sequence
In this study, we evaluated the performance in counting a 
specific string in a sequence excluding the I/O operations. 
Execution Time
As with the previous task, shown in figure 8, Python and 
BioPython again exhibited the poorest performance out of the 
six languages. Based on these results, we can speculate that the 
string manipulation in Python may be inefficient. Java including 
BioJava achieved the best performance. 

Memory Usage
Figure 9 shows the comparative results of memory consumption 
for the six languages. According to the results, as the size of 
input data is increased, the memory usage in BioPython, Perl, 
and Python is significantly increased. The results confirm that 
the memory management in the compiler-based languages is 
more efficient than the management in the interpreter-based 
languages, which also implies the good scalability of Java and 
BioJava.
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Fig. 8. Comparison of average execution times. The data sets 
used are (A) AC125735.fa (397k) with 1 sequence and (B) 

NC_002950.fa (2,422k) with 1 sequence.
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Fig. 9. Comparison of memory usages

2.5. Translating a DNA Sequence to Protein
This task involves both string manipulation and I/O operations. 
To implement an efficient genetic code look-up table, the hash 
data structure was used in the native languages. In order to 
measure the overhead of function calls, two functions were 
implemented—one function to read a DNA sequence from a 
FASTA file and return the sequence and another function to
return the protein sequence from the genetic code table. The 
major statements for this task in each of the languages are given 
below:

(1) BioPerl
#$t = Benchmark::Timer->new();
#$t->start('time_tag');
$seqobj = $seq_object->translate();
#$t->stop('time_tag');

(2) BioJava
long start = System.currentTimeMillis();
SymbolList symL = DNATools.createDNA(seqAll);
long start = System.currentTimeMillis();
//transcribe to RNA
symL = RNATools.transcribe(symL);
//translate to protein
symL = RNATools.translate(symL);
long stop = System.currentTimeMillis();

(3) BioPython
my_seq = Seq(seqAll, IUPAC.unambiguous_dna)
start = time.clock() # Timer ON
transcriber = Transcribe.unambiguous_transcriber   
# Get the transcriber
standard_translator = 
Translate.unambiguous_dna_by_id[1] # Get the 
proper translator
result_seq = 
standard_translator.translate(my_seq) # 
Translate a sequence
end = time.clock() # Timer OFF

(4) Perl
#$t = Benchmark::Timer->new();
#$t->start('time_tag');
$seqAll =~ tr/T/U/;   ## change T into U
my $protein = '';
# Translate each three-base codon into an amino 
acid, and append to a protein 
my $len = length($seqAll) - 2;
for(my $i=0; $i < $len ; $i += 3) {
    $protein .= 
$transTable{substr($seqAll,$i,3)};
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}
#$t->stop('time_tag'); ## STEP3:TIMER

(5) Java
long start = System.currentTimeMillis();
seqAll = seqAll.replace('T','U'); // 
Transcription
long len = seqAll.length()-2;
StringBuffer protein = new StringBuffer("");

       
for (int i=0; i < len ; i += 3) {
    
protein.append( table.get(seqAll.substring(i,i+3
)) );
}
long stop = System.currentTimeMillis();

(6) Python
#start = time.clock()
seqAll = seqAll.replace('T', 'U') # 
Transcription
i = 0
allProtein = ""
comLen = len(seqAll)-2
while(1):
  #allProtein+=(proteinDict[seqAll[i: i+3]])
  allProtein = ''.join(proteinDict[seqAll[i: 
i+3]])
  i += 3
  if (i >= comLen):
  break
end = time.clock()

Execution Time
The experimental results are shown in figure 10. As we expected, 
compiler-based language Java and BioJava were faster than the 
interpreter-based languages. For large data set like B, BioJava is 
about approximately ten times faster than BioPerl. 
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Fig. 10. Comparison of average execution times. The data sets 
used include (A) AC125735_2.fa (397k) with 1 sequence and 

(B) NC_002950_2.fa (2,422k) with 1 sequence.

Table 2 illustrates the overhead of function calls in three 
languages. 

Table 2. Comparison of function call overhead. The number of 
function calls is defined by the number of codons in a DNA 
sequence. 

Exec. 
Time

(msec)              
Language

Data Set A B

# of Function 
Calls

128,192 781,158

Perl 100.14 595.86
Java 5.00 7.50
Python 121.12 737.49

As expected, the overhead of function calls in Java is 
significantly smaller compared to the interpreter-based
languages Perl and Python regardless of the size of input data set. 
The result may not be surprising because a compiler-based 
language like Java is generally equipped with a powerful code 
optimizer. On the other hand, it is known that code optimization 
is limited for interpreter-based languages. This result can 
explain why Java and BioJava showed the best performance for 
this task. 

Memory Usage
According to the result shown in figure 11, Python and 
BioPython require more memory than other languages. 
Moreover, the experimental results show that the memory
consumption in a program depends on the size of the input data 
sets.
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Fig. 11. Comparison of memory usages

This is mainly due to the specific implementation in this study
(e.g., a variable is used to hold the whole sequence for sequence 
translation). 

2.6.    Overall Evaluation
In this section, the overall evaluation of the six languages based 
on evaluation metrics is discussed. Figure 12 shows the overall 
execution time for all five tasks combined. According to the 
results, it is apparent that the native languages run faster than 
Bio*languages and the compiler-based languages in general run 
faster than the interpreter-based languages.
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Fig. 12. The overall execution time for all tasks

In addition, BioPython seems to be the slowest language among 
these languages. 
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Fig. 13. The overall memory usage for all tasks

Figure 13 shows that the Bio*languages in general require more 
memory than the corresponding native languages. The compiler-
based languages require less memory than the interpreter-based 
languages. In general, BioPython requires more memory than 
any other language we have used in this experiment. On the 
other hand, Java and Python use the least memory for most tasks. 
To compare Perl and Python, Python in general outperforms 
Perl in terms of execution time and memory usage, which is 
consistent with the results of algorithms implemented by 
Fourment and Gillings that require string manipulation, I/O, and 
memory management [13].
       Figure 14 shows a summary of code size for each language. 
According to the results, Bio*languages require much less code 
than their corresponding native languages. BioPerl requires the 
shortest lines of source code among the six languages while Java, 
a strongly-typed language, requires the longest lines of code
[25]. 
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Fig. 14. The overall code size for all tasks

3.  SUMMARY AND CONCLUSIONS

It is well known that no particular language is best suited for all 
types of applications. Each language has unique features that 
can be better applied to a particular type of application than any 
other. Therefore, it is important to consider many different 
factors in a given development environment when choosing a
programming language for the project.
     According to the experimental results for the tasks we 
selected to measure the quantitative perspective of a language,
compiler-based languages expectedly perform better and are 
more scalable than interpreter-based languages in terms of 
execution time and memory management because of powerful 
code optimization. However, they require more lines of source 
code and higher programming skills, which means more 
development time, while the interpreter-based languages are 
more flexible and have a shorter development time than the 
compiler-based languages.
    In comparison to native languages, Bio*languages 

obviously require less lines of code but, in general, perform 
poorly in terms of both execution time and memory 
management. This result may be somewhat surprising, 
especially to those who consider the languages as being the 
same because Bio*languages are based on the native languages 
with additional modules or libraries. 
       In an evaluation of individual languages, Java shows the 
best overall performance in most tasks in terms of both 
execution time and memory management. BioJava effectively 
takes advantage of its native language, Java, unlike BioPython. 
Interestingly, Perl and BioPerl outperformed Java and BioJava 
when processing small data sets. In addition, Perl is very 
powerful for string manipulation, even compared to both Java
and Python. According to the experimental results, the string 
manipulation operation in Python seems to be inefficient 
compared to Perl and Java; the inefficiency is also shown in the 
experiment by Fourment and Gillings based on the BLAST 
parsing program [13]. On the other hand, Python seems to be 
better in memory management than Perl. Compared to other 
languages used in this experiment, BioPython performed very 
poorly for most tasks. BioPython was much slower and 
consumed more memory in all tasks than any other language
used in this experiment. This result is surprising to us and 
indicates that BioPython may need a significant improvement in 
language implementation. 
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Guidelines and other factors to consider in choosing a suitable
language
Other qualitative factors such as writeability, readability, 
portability, and scalability need to be considered when 
evaluating a programming language. Writeability is related to a
programmer’s learning curve and productivity, which is 
important for a project with a tight budget and deadline. 
Readability is related to an ease of collaboration and 
maintainability, which is important for a large project with many 
members involved. Portability is important when a system needs 
to run on multiple platforms. Scalability can be defined as how 
well a program continues to function with a growing number of 
users or input data size. It is an important measurement of a 
system’s expandability. 

In general Bio*languages are considered to have good 
writeability and readability due to code simplicity and the 
availability of many built-in modules, requiring shorter lines of 
codes and a lower learning curve. These advantages allow easier 
maintenance and faster development. In regards to the 
readability of Python, the syntax of Python is interesting; in 
Python, indentation showing where a block begins and ends is 
important, thus ensuring good readability. All six languages are 
considered to be portable. 

Java is an efficient and reliable an object-oriented 
language but requires a higher learning curve; it takes time to 
learn the language and needs skilled programmers for 
implementation. As a result, BioJava may instead be a better 
choice for a large project that involves many members and high 
maintainability because of its strongly supported object-oriented 
programming equipped with many built-in libraries. BioJava 
takes advantage of Java’s quick execution time and effective 
memory management as well as the flexibility and easy 
programming of Bio*languages. According to the experimental 
results considering memory use and execution time, BioJava, 
like Java, is scalable. BioJava is also reliable since it is a 
strongly-typed language. Python can also be well suited for a 
large project involving many programmers since it supports 
object-orientation. 

Thus, if either program efficiency or good memory 
management (because of large input data sets) is a key 
consideration, a compiler-based language, such as Java, BioJava, 
or C/C++ if necessary [13], [23], would be the best choice. For 
beginners, a Bio*language would be a good choice since they 
provide built-in, easy-to-use, and usually well-tested modules.
For manipulation of a small data set and quick implementation 
of a task, Perl or BioPerl can be a good choice. However, Perl 
may not be appropriate for a large project as it can become very 
complex and difficult to manage and maintain. On the other 
hand, developers may need to be cautious in using BioPython 
and wait for an improved version of the language. 

Future research will be done to compare languages in 
more sophisticated bioinformatics tasks involving databases, 
Web, image processing, visualization, and other complex
algorithms. 
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