
6
Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics Tasks

and Choosing a Suitable Language

International Journal of Contents, Vol.5, No.2, Jun 2009

Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for
Primitive Bioinformatics Tasks and Choosing a Suitable Language

Taewan Ryu
Dept of Computer Science, California State University, Fullerton, CA 92834, USA

ABSTRACT

Recently many different programming languages have emerged for the development of bioinformatics applications. In addition to the
traditional languages, languages from open source projects such as BioPerl, BioPython, and BioJava have become popular because
they provide special tools for biological data processing and are easy to use. However, it is not well-studied which of these
programming languages will be most suitable for a given bioinformatics task and which factors should be considered in choosing a
language for a project.

Like many other application projects, bioinformatics projects also require various types of tasks. Accordingly, it will be a
challenge to characterize all the aspects of a project in order to choose a language. However, most projects require some common
and primitive tasks such as file I/O, text processing, and basic computation for counting, translation, statistics, etc. This paper
presents the benchmarking results of six popular languages, Perl, BioPerl, Python, BioPython, Java, and BioJava, for several
common and simple bioinformatics tasks. The experimental results of each language are compared through quantitative evaluation
metrics such as execution time, memory usage, and size of the source code. Other qualitative factors, including writeability,
readability, portability, scalability, and maintainability, that affect the success of a project are also discussed. The results of this
research can be useful for developers in choosing an appropriate language for the development of bioinformatics applications.

Keywords: A programming language comparison, BioPerl, BioJava, BioPython.

1. INTRODUCTION

 Bioinformatics is the application of mathematical and
computational techniques to the area of molecular biology to
solve problems arising from the management and analysis of
biological data, eventually to understand biological processes [2,
9, 31]. Common tasks in bioinformatics include the creation,
search, retrieval, and analysis of biological data, mapping,
manipulating, and analyzing DNA and protein sequences,
alignment of those sequences to compare them, 3-D modeling of
protein structures, etc. [1], [9], [14], [21], [26]. To perform these
tasks, many different programming languages can be used. Out
of all the different programming languages, Perl [29], Python
[11], and Java [27] have received the most attention from
developers of bioinformatics applications mainly because those
languages are platform independent and support flexible and
powerful features such as string manipulation, text processing,
file handling, etc.
 Perl is a high-level, general-purpose, and interpreter-based
programming language that was originally developed by Larry
Wall in 1987, as a Unix scripting language to make report
processing easier [24]. Since then, it has undergone many
revisions and has become widely popular among programmers
for system administration, web application, and text and file
processing for many other applications. Particularly, for
bioinformatics application development, as developers write
similar code to implement common bioinformatics tasks [20],
they have formed a community for bioinformatics application
developers using Perl and started an open source project called
BioPerl [6, 12]. This community allows for the sharing of
reusable code that reduces the amount of development time and

* Corresponding author. E-mail : tryu@fullerton.edu

Manuscript received Feb. 12, 2009 ; accepted Jun. 3, 2009

effort. BioPerl is basically a collection of Perl modules for many
of the typical tasks of bioinformatics programming. It is one of
the active open source software projects supported by the Open
Bioinformatics Foundation [20]. With a basic understanding of
Perl, including how to use Perl references, modules, objects and
methods, a developer can take advantage of BioPerl to
implement sophisticated tasks by using only a few lines of code,
significantly saving time and effort in developing applications
compared to using the standard Perl.
 Java is a general-purpose, object-oriented and compiler-
based programming language that derives much of its syntax
from C and C++. Similar to BioPerl, BioJava is also an open
source project that provides Java-based library for processing
biological data and other various mundane bioinformatics tasks
[4], [5].
 Python is a general-purpose high-level programming
language with a design focusing on code readability [11].
Python provides a large and comprehensive standard library
supporting multiple paradigms that are primarily object-oriented,
imperative, and functional. The language has an open,
community-based development model managed by the non-
profit Python Software Foundation. BioPython is another open
source project based on the Python programming language and
is also supported by the Open Bioinformatics Foundation [7].
For our convenience in this paper, the open source projects,
BioPerl, BioJava, and BioPython will be referred to as
Bio*languages and their base languages, Perl, Java, and Python
as native languages.
 For a given project, choosing a right language is important
since the selected programming language can, in part, affect the
success of the project. With a wide range of open source
projects and traditional programming languages available,
application developers may have difficulty in choosing the right
programming language for a project, leading them to ask: what

Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics

Tasks and Choosing a Suitable Language
7

International Journal of Contents, Vol.5, No.2, Jun 2009

factors do we need to consider when choosing a language?
Some important factors to be considered may include the
available project period, available computer resources, ease of
collaboration with other team members especially for a large
project, efficiency and maintainability of programs, and so on.
Furthermore, when it comes to implementation of
bioinformatics tasks, one can be easily tempted to use
Bio*languages, mainly for quick implementation without
realizing whether or not the implemented codes will comply
with the intended project goals.
 However, while a comparison of languages C, C++, C#, Java,
Perl, and Python has been done [13], [23], the pros and cons of
each language, especially a comparison between the
Bio*languages and their native languages based on these factors
in implementing various bioinformatics tasks were not well
studied in the past.
 Therefore, the main objective of this paper is to provide
developers with the valuable information needed in selecting an
appropriate language for their projects by evaluating each of the
six popular languages including the Bio*languages discussed
above. The quantitative evaluation metrics, execution time,
memory usage, and size of the source code for each language
are measured in several common and basic bioinformatics tasks
including: (1) performing disk input/output (I/O) with GenBank
and FASTA files, (2) finding a sequence in a GenBank file with
a LOCUS name [3], (3) computing the reverse complement of a
DNA sequence, (4) counting the residues in a sequence, and (5)
translating a DNA sequence to proteins [2], [19]. The paper
presents benchmarking results of the six languages for each of
these tasks. For some bioinformatics applications, many other
complex tasks than these may need to be implemented. However,
this research was not intended to cover all aspects of
bioinformatics applications but rather to focus on the language-
related issues in implementing simple tasks. Therefore, we
intentionally avoided sophisticated tasks, especially those
involving other systems or special hardware such as database
management systems [10], visualization, and specialized
computations [30], in order to simplify the experiment without
being biased by external systems or hardware. Although these
tasks, among many other bioinformatics tasks, are rather simple
and elementary, they are also fundamental and sufficient in
measuring the strength and weakness of a language used. In
addition, other qualitative factors such as writeability,
readability, portability, scalability, and maintainability that also
affect the project success will be discussed.
 The rest of the paper is organized as follows. Section 2 gives
the detailed benchmarking results and discussion. Section 3
concludes the paper with a summary and an overall analysis of
the research.

2. BENCHMARKING RESULTS

It is well-known that there can be many different ways to
implement an algorithm. In order to evaluate each language
fairly for each task, a common implementation approach
regarding data structure, algorithm, and coding style is first
defined and then implemented in each of the six languages. In
other words, even though a task can be more optimally
implemented through a different technique, the better
implementation is ignored if the standard implementation
approach can be used in the language. As for the experimental
environment, each program was executed on a 500 MHz
Pentium 4 with 512 MB of RAM and Windows XP operating
system. The languages and versions used in this benchmarking

are Perl 5.8.0, BioPerl 1.2.2, Java 1.4.2_01, BioJava 1.3pre1,
Python 2.2.3, and BioPython 1.21.

2.1. Performing Disk I/O with GenBank and
 FASTA files
The main operations in this task are to extract the sequence data
and the annotations from a GenBank file and write them into a
file in FASTA format. This reading and writing are mainly disk
input/output (I/O) operations with some text parsing. The
following source codes present the major statements of
implementation in each language. The complete version of the
source codes and the related information is available on the web:
http://tryu.ecs.fullerton.edu/biolanguagebenchmarking.zip.

(1) Bioperl
@seq_object_array =
read_all_sequences($infilename,'genbank');
write_sequence(">$outfilename", 'fasta',
@seq_object_array);

(2) Biojava
SequenceIterator iter =
(SequenceIterator)SeqIOTools.fileToBiojava(4,

br);
SeqIOTools.writeFasta(new
FileOutputStream("out_biojavaNC_002950.fa"),
iter);

(3) Biopython
feature_parser = GenBank.FeatureParser()
gb_iteratorFeature = GenBank.Iterator(gb_handle,
feature_parser)

......
fasta = Fasta.Record()
while 1:

cur_feature = gb_iteratorFeature.next()
if cur_feature is None:

break
titleStr = cur_feature.name + " " +

cur_feature.description
fasta.title = titleStr
fasta.sequence = cur_feature.seq.data
wfile.write(str(fasta))
wfile.write('\n')
......

(4) Perl
foreach my $line (@GenBankFile) {

if($line =~ /^LOCUS/) { # Beginning of gi
number

 } elsif($in_origin) {
 $origin = substr($line, 10, 66);
 $origin =~ s/\s//g;
 $origin = uc($origin);
 print OUT "$origin\n";
 }
}

(5) Java
......
BufferedReader reader = new BufferedReader(r);
BufferedWriter writer = new BufferedWriter(w);
......
while (null != line) {

if(line.startsWith("LOCUS")) {
......

 } else if(1 == in_origin) {
if(line.length() >= 10){
StringTokenizer st = new

StringTokenizer(line.substring(10));
int count = st.countTokens();

8
Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics Tasks

and Choosing a Suitable Language

International Journal of Contents, Vol.5, No.2, Jun 2009

while(count > 0){

writer.write(st.nextToken().toUpperCase());
count--;

}
writer.write("\n");

 }
}

(6) Python
while (line != ""):

......
elif line.startswith('LOCUS'):# Beginning of

gi number
 locus = line[10:20]
 locus2= locus.strip() # Removes trailing

& leading hitespaces
 print >> outfile, '>' + locus2,
......
elif in_origin == 1:
 origin = line[10:76]
 origin = origin.strip()
 origin = origin.replace(' ', '')
 print >> outfile, origin.upper()

Execution Time
Figure 1. shows the results of experiment on execution time.
The six test data sets used in this study include (A)
AF165912.gbk (10k) with 1 sequence, (B)
HomoSapiens5_rs.gbk (120k) with 5 sequences, (C)
HomoSapiens71_rs.gbk (519k) with 71 sequences, (D)
AC125735.gbk (726k) with 1 sequence, (E) NC_002950.gbk
(4,925k) with 1 sequence, and (F) HomoSapiens500_rs.gbk
(7,022k) with 500 sequences, in the order of their size. Note that
the unit of the data size represented in k means KB. To avoid
any effect from other running processes, programs were
executed right after the system was booted. All programs ran
more than five times to minimize the variance among different
runs, and their execution times were averaged for four runs
excluding the first execution time. The first execution time is
intentionally excluded as it might be adversely affected by
additional loading time. According to the experimental results, it
is apparent that the implementations of Perl, Java, and Python
have performance advantages over their corresponding open
source projects regardless of the data set sizes. For data set C,
Perl ran about 5 ~ 19 times faster than BioPerl, Java ran about
10 times faster than BioJava, and Python ran about 30 ~ 40
times faster than BioPython. BioPython had the worst
performance of all the test data sets. The possible cause of a
poor performance seen in open source projects may be due to
the extra overhead for loading unnecessary modules included in
the language into the system. One interesting result is that Perl,
BioPerl, and Python slightly outperformed Java and BioJava for
small data sets A, B, C, and D while Java and BioJava
outperformed Perl and BioPerl for larger data sets E and F. The
result is somewhat contradictory to the idea that script languages,
such as Perl and Python, are usually slower than compiler-based
languages such as Java. To further identify why Java performs
poorly compared to Perl when handling small data sets,
additional experiments to test the performance of only I/O
operations for each language were conducted.

0

10,000

20,000

30,000

40,000

50,000

60,000

BioPerl BioJava BioPython Perl Java Python

Language

E
xe

cu
ti

o
n

 T
im

e(
m

se
c) Input A

Input B

Input C

Input D

Input E

Input F

Fig. 1. Comparison of average execution times

Consistent with the results of the previous experiment, as shown
in Table 1, Perl outperformed Java for small data sets while Java
outperformed Perl for large data sets.

Table 1. Comparison of execution times for I/O operations
 Exec.

Time
(msec)

Language

Data Set A B

Size(K) 10 7,022

Perl 2.50 1,449.50
Java 15.00 463.00
Python 1.54 402.36

On the other hand, the results show that Python significantly
outperformed both Perl and Java for both data sets A and B.
However, Java slightly outperformed Python for larger data sets,
E and F. In Java, the BufferedReader class was wrapped around
the FileReader class in order to convert the underlying character
stream to buffered I/O, which can be more efficient than the one
without buffering. Python uses the buffered I/O operations
provided by the C library. We think that the management of
buffering in Python may be more efficient than the ones in other
languages.

Memory Usage
Since the memory usage varies significantly over runtime, we
measured the peak memory usage [32]. Figure 2 shows the
memory usage of six languages for six different data sets. It is
apparent that BioPerl and BioPython used higher consumption
of memory than the others. Among the six languages, Python
consumed the least amount of memory for I/O operations.
BioPython consumed the most memory, followed by BioPerl. In
general, the Bio* languages consumed more memory than their
native languages. Again, the main reason for this can be that
Bio* languages require loading many unnecessary modules to
perform the task. Intuitively, one can expect that memory usage
would be increased as input data size grows. However, the
experimental results with the relatively large data set F using
BioJava and BioPython proved to be counterintuitive. Our
observation is that processing a single larger sequence seems to
require more memory than multiple smaller sequences.
Particularly, the reduction in memory usage in BioPython was
significant. It is also interesting to see that the memory usages of

Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics

Tasks and Choosing a Suitable Language
9

International Journal of Contents, Vol.5, No.2, Jun 2009

Python and Java were not affected by the size of inputs; they
had constant memory usages of about 6K and 3K bytes for all
data sets.

0

20,000

40,000

60,000

80,000

100,000

120,000

BioPerl BioJava BioPython Perl Java Python

Language

P
ea

k
M

em
o

ry
 U

sa
g

e(
K

B
) Input A

Input B

Input C

Input D

Input E

Input F

Fig. 2. Comparison of memory usages

Size of Code
The size of a program is an important factor in choosing a
language because it indicates the complexity of code and the
development time. Fig. 3 illustrates the total number of lines of
source code in the six languages to perform this task. As
expected, the Bio* languages required less lines of code than
their native languages. Of the non-Bio* languages, Perl required
the least lines of code required by the defined coding style.

5

18 19

37

60

42

0

10

20

30

40

50

60

70

BioPerl BioJava BioPython Perl Java Python

Language

L
in

es
 o

f
C

o
d

e(
li

n
es

)

Fig. 3. Comparison of code size for each language

Java, a compiler-based language, required the largest number of
lines of code. Compared to BioPerl, Java required almost twelve
times as many lines of code. Other experiments showed similar
results to figure 3.

2.2. Finding a Sequence in a GenBank File with a
 LOCUS Name
This task is to search for a particular sequence with the LOCUS
name by processing one line at a time, which requires both basic
string processing and I/O operation. The major statements for
this task in each of the languages are given below:

(1) BioPerl

@seq_object_array =
read_all_sequences($infilename,'genbank');
foreach my $seq_object (@seq_object_array) {
 if ($seq_object->id() eq $findID) {

#print "FOUND\n";
last;

 }
}

(2) BioJava
SequenceIterator seqs =
SeqIOTools.readGenbank(br);
String findID = "AZ574568";
while (seqs.hasNext()) {
 Annotation anno =
seqs.nextSequence().getAnnotation();
 if (findID.equals(((String)
anno.getProperty("LOCUS")))) {

break; //found
 }
}

(3) BioPython
gb_file = "HomoSapiens1000_rs.gbk"
gb_handle = open(gb_file, 'r')
feature_parser = GenBank.FeatureParser()
gb_iteratorFeature = GenBank.Iterator(gb_handle,
feature_parser)
findID = "AZ574568"
while 1:
 cur_Feature = gb_iteratorFeature.next()
 if cur_Feature is None:

break
 if(findID == cur_Feature.name):
 break #print "Found"

(4) Perl
open (IN , "HomoSapiens1000_rs.gbk") or die
("Cannot open file!");
my @GenBankFile = ();
my $findID = "AJ574568";
@GenBankFile = <IN>;
foreach my $line (@GenBankFile) {
 if ($line =~ /^LOCUS/) {

$name = substr($line, 12, 34);
$name =~ s/\s//g; #Remove all

the spaces between characters
if ($findID eq $name) {
 print "FOUND";
 last;

 }
 }
}

(5) Java
FileReader r = new FileReader(new
File("HomoSapiens1000_rs.gbk"));
BufferedReader reader = new BufferedReader(r);
String line = reader.readLine();
String findID ="AZ574568";
while (null != line) {
 if (line.startsWith("LOCUS")) {

if
(findID.equals(line.substring(12,34).trim())) {

 break; //FOUND
}

 }
 line = reader.readLine();
}

(6) Python
try:
 infile = open("HomoSapiens1000_rs.gbk",
"r");

10
Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics Tasks

and Choosing a Suitable Language

International Journal of Contents, Vol.5, No.2, Jun 2009

 except IOError:
print >> sys.stderr, "Input file could

not be opened"
sys.exit(1) ;

 line = infile.readline() # Get the first
record
 findID = "AZ574568"

while (line != ""):
 if line.startswith('LOCUS'): # Beginning of
ACCESSION

ID = line[12:34]
ID = ID.strip()
if ID == findID :
 break #print "FOUND"
line = infile.readline()

0

20,000

40,000

60,000

80,000

100,000

120,000

BioPerl BioJava BioPython Perl Java Python

Language

E
xe

cu
ti

o
n

 T
im

e(
m

se
c)

Input A

Input B

Fig. 4. Comparison of average execution times. The data sets
used in this experiment are (A) HomoSapiens500_rs.gbk

(7,022k) with 500 sequences and (B) HomoSapiens1000_rs.gbk
(14,043k) with 1,000 sequences.

Execution Time
Figure 4 compares the results on the execution times of the six
languages for two different data sets. The resulting graph for this
task is similar to the ones for the previous task. Consistent with
the previous result, BioPython again ran the slowest. For data
set B, the best language (Java) performed about 245 times better
than the worst language (BioPython). In general, the native
languages ran faster than the Bio* languages.

Memory Usage
As shown in figure 5, BioPython consumes the largest memory
for both data sets. Given that the size of data set B is
approximately two times larger than the data set A, it is of
interest that the memory consumption for this task seems to be
insensitive to the size of input data set, except when using
BioPerl and Perl, as shown in Fig. 5.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

BioPerl BioJava BioPython Perl Java Python

Language

P
ea

k
M

em
o

ry
 U

sa
g

e(
K

B
)

Input A

Input B

Fig. 5. Comparison of memory usages in each language

2.3. Computing the Reverse Complement of a
 DNA Sequence
This task requires simple string manipulation (e.g., reverse the
string and compute the complement of it) without involving I/O
operations.

Execution time
In this experiment, as shown in figure 6, BioPython and Python
showed the worst performance among the six languages whereas
BioJava significantly outperformed all other languages. It is of
interest that BioJava and Perl both outperformed Java. The
results indicate that the string manipulation in both BioJava and
Perl is very efficient.

Memory Usage
As shown in figure 7, BioPython and Python used almost up to
50% more memory than the other languages for data set A, and
BioPerl and Python noticeably used more memory than the other
languages for data set B. As was generally expected, the
memory usages of Bio* languages was higher than the native
languages.

0

500

1,000

1,500

2,000

2,500

3,000

BioPerl BioJava BioPython Perl Java Python

Language

E
xe

cu
ti

o
n

 T
im

e(
m

se
c)

Input A

Input B

Fig. 6. Comparison of average execution times. The data sets
used in this experiment are (A) AC125735.fa (387k) with 1
sequence and (B) NC_002950.fa (2,422k) with 1 sequence.

Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics

Tasks and Choosing a Suitable Language
11

International Journal of Contents, Vol.5, No.2, Jun 2009

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

BioPerl BioJava BioPython Perl Java Python

Language

P
ea

k
M

em
o

ry
 U

sa
g

e(
K

B
)

Input A

Input B

Fig. 7. Comparison of memory usages

2.4. Counting the Residues in a Sequence
In this study, we evaluated the performance in counting a
specific string in a sequence excluding the I/O operations.
Execution Time
As with the previous task, shown in figure 8, Python and
BioPython again exhibited the poorest performance out of the
six languages. Based on these results, we can speculate that the
string manipulation in Python may be inefficient. Java including
BioJava achieved the best performance.

Memory Usage
Figure 9 shows the comparative results of memory consumption
for the six languages. According to the results, as the size of
input data is increased, the memory usage in BioPython, Perl,
and Python is significantly increased. The results confirm that
the memory management in the compiler-based languages is
more efficient than the management in the interpreter-based
languages, which also implies the good scalability of Java and
BioJava.

0

100

200

300

400

500

600

BioPerl BioJava BioPython Perl Java Python

Language

E
xe

cu
ti

o
n

 T
im

e(
m

se
c)

Input A

Input B

Fig. 8. Comparison of average execution times. The data sets
used are (A) AC125735.fa (397k) with 1 sequence and (B)

NC_002950.fa (2,422k) with 1 sequence.

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

BioPerl BioJava BioPython Perl Java Python

Language

P
ea

k
M

em
o

ry
 U

sa
g

e(
K

B
)

Input A

Input B

Fig. 9. Comparison of memory usages

2.5. Translating a DNA Sequence to Protein
This task involves both string manipulation and I/O operations.
To implement an efficient genetic code look-up table, the hash
data structure was used in the native languages. In order to
measure the overhead of function calls, two functions were
implemented—one function to read a DNA sequence from a
FASTA file and return the sequence and another function to
return the protein sequence from the genetic code table. The
major statements for this task in each of the languages are given
below:

(1) BioPerl
#$t = Benchmark::Timer->new();
#$t->start('time_tag');
$seqobj = $seq_object->translate();
#$t->stop('time_tag');

(2) BioJava
long start = System.currentTimeMillis();
SymbolList symL = DNATools.createDNA(seqAll);
long start = System.currentTimeMillis();
//transcribe to RNA
symL = RNATools.transcribe(symL);
//translate to protein
symL = RNATools.translate(symL);
long stop = System.currentTimeMillis();

(3) BioPython
my_seq = Seq(seqAll, IUPAC.unambiguous_dna)
start = time.clock() # Timer ON
transcriber = Transcribe.unambiguous_transcriber
Get the transcriber
standard_translator =
Translate.unambiguous_dna_by_id[1] # Get the
proper translator
result_seq =
standard_translator.translate(my_seq) #
Translate a sequence
end = time.clock() # Timer OFF

(4) Perl
#$t = Benchmark::Timer->new();
#$t->start('time_tag');
$seqAll =~ tr/T/U/; ## change T into U
my $protein = '';
Translate each three-base codon into an amino
acid, and append to a protein
my $len = length($seqAll) - 2;
for(my $i=0; $i < $len ; $i += 3) {
 $protein .=
$transTable{substr($seqAll,$i,3)};

12
Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics Tasks

and Choosing a Suitable Language

International Journal of Contents, Vol.5, No.2, Jun 2009

}
#$t->stop('time_tag'); ## STEP3:TIMER

(5) Java
long start = System.currentTimeMillis();
seqAll = seqAll.replace('T','U'); //
Transcription
long len = seqAll.length()-2;
StringBuffer protein = new StringBuffer("");

for (int i=0; i < len ; i += 3) {

protein.append(table.get(seqAll.substring(i,i+3
)));
}
long stop = System.currentTimeMillis();

(6) Python
#start = time.clock()
seqAll = seqAll.replace('T', 'U') #
Transcription
i = 0
allProtein = ""
comLen = len(seqAll)-2
while(1):
 #allProtein+=(proteinDict[seqAll[i: i+3]])
 allProtein = ''.join(proteinDict[seqAll[i:
i+3]])
 i += 3
 if (i >= comLen):
 break
end = time.clock()

Execution Time
The experimental results are shown in figure 10. As we expected,
compiler-based language Java and BioJava were faster than the
interpreter-based languages. For large data set like B, BioJava is
about approximately ten times faster than BioPerl.

0

500

1,000

1,500

2,000

2,500

3,000

BioPerl BioJava BioPython Perl Java Python

Language

E
xe

cu
ti

o
n

 T
im

e(
m

se
c)

Input A

Input B

Fig. 10. Comparison of average execution times. The data sets
used include (A) AC125735_2.fa (397k) with 1 sequence and

(B) NC_002950_2.fa (2,422k) with 1 sequence.

Table 2 illustrates the overhead of function calls in three
languages.

Table 2. Comparison of function call overhead. The number of
function calls is defined by the number of codons in a DNA
sequence.

Exec.
Time

(msec)
Language

Data Set A B

of Function
Calls

128,192 781,158

Perl 100.14 595.86
Java 5.00 7.50
Python 121.12 737.49

As expected, the overhead of function calls in Java is
significantly smaller compared to the interpreter-based
languages Perl and Python regardless of the size of input data set.
The result may not be surprising because a compiler-based
language like Java is generally equipped with a powerful code
optimizer. On the other hand, it is known that code optimization
is limited for interpreter-based languages. This result can
explain why Java and BioJava showed the best performance for
this task.

Memory Usage
According to the result shown in figure 11, Python and
BioPython require more memory than other languages.
Moreover, the experimental results show that the memory
consumption in a program depends on the size of the input data
sets.

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

80,000

BioPerl BioJava BioPython Perl Java Python

Language

P
ea

k
M

em
o

ry
 U

sa
g

e(
K

B
)

Input A

Input B

Fig. 11. Comparison of memory usages

This is mainly due to the specific implementation in this study
(e.g., a variable is used to hold the whole sequence for sequence
translation).

2.6. Overall Evaluation
In this section, the overall evaluation of the six languages based
on evaluation metrics is discussed. Figure 12 shows the overall
execution time for all five tasks combined. According to the
results, it is apparent that the native languages run faster than
Bio*languages and the compiler-based languages in general run
faster than the interpreter-based languages.

Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics

Tasks and Choosing a Suitable Language
13

International Journal of Contents, Vol.5, No.2, Jun 2009

0

50,000

100,000

150,000

200,000

250,000

300,000

BioPerl BioJava BioPython Perl Java Python

Language

T
o

ta
l

E
xe

cu
ti

o
n

 T
im

e(
m

se
c)

Fig. 12. The overall execution time for all tasks

In addition, BioPython seems to be the slowest language among
these languages.

0

100,000

200,000

300,000

400,000

500,000

600,000

BioPerl BioJava BioPython Perl Java Python

Language

T
o

ta
l

P
ea

k
M

em
o

ry
 U

sa
g

e(
K

B
)

Fig. 13. The overall memory usage for all tasks

Figure 13 shows that the Bio*languages in general require more
memory than the corresponding native languages. The compiler-
based languages require less memory than the interpreter-based
languages. In general, BioPython requires more memory than
any other language we have used in this experiment. On the
other hand, Java and Python use the least memory for most tasks.
To compare Perl and Python, Python in general outperforms
Perl in terms of execution time and memory usage, which is
consistent with the results of algorithms implemented by
Fourment and Gillings that require string manipulation, I/O, and
memory management [13].
 Figure 14 shows a summary of code size for each language.
According to the results, Bio*languages require much less code
than their corresponding native languages. BioPerl requires the
shortest lines of source code among the six languages while Java,
a strongly-typed language, requires the longest lines of code
[25].

42

141

99

203

381

220

0

50

100

150

200

250

300

350

400

450

BioPerl BioJava BioPython Perl Java Python

Language

T
o

ta
l

L
in

es
 o

f
C

o
d

e(
li

n
es

)

Fig. 14. The overall code size for all tasks

3. SUMMARY AND CONCLUSIONS

It is well known that no particular language is best suited for all
types of applications. Each language has unique features that
can be better applied to a particular type of application than any
other. Therefore, it is important to consider many different
factors in a given development environment when choosing a
programming language for the project.
 According to the experimental results for the tasks we
selected to measure the quantitative perspective of a language,
compiler-based languages expectedly perform better and are
more scalable than interpreter-based languages in terms of
execution time and memory management because of powerful
code optimization. However, they require more lines of source
code and higher programming skills, which means more
development time, while the interpreter-based languages are
more flexible and have a shorter development time than the
compiler-based languages.
 In comparison to native languages, Bio*languages

obviously require less lines of code but, in general, perform
poorly in terms of both execution time and memory
management. This result may be somewhat surprising,
especially to those who consider the languages as being the
same because Bio*languages are based on the native languages
with additional modules or libraries.
 In an evaluation of individual languages, Java shows the
best overall performance in most tasks in terms of both
execution time and memory management. BioJava effectively
takes advantage of its native language, Java, unlike BioPython.
Interestingly, Perl and BioPerl outperformed Java and BioJava
when processing small data sets. In addition, Perl is very
powerful for string manipulation, even compared to both Java
and Python. According to the experimental results, the string
manipulation operation in Python seems to be inefficient
compared to Perl and Java; the inefficiency is also shown in the
experiment by Fourment and Gillings based on the BLAST
parsing program [13]. On the other hand, Python seems to be
better in memory management than Perl. Compared to other
languages used in this experiment, BioPython performed very
poorly for most tasks. BioPython was much slower and
consumed more memory in all tasks than any other language
used in this experiment. This result is surprising to us and
indicates that BioPython may need a significant improvement in
language implementation.

14
Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics Tasks

and Choosing a Suitable Language

International Journal of Contents, Vol.5, No.2, Jun 2009

Guidelines and other factors to consider in choosing a suitable
language
Other qualitative factors such as writeability, readability,
portability, and scalability need to be considered when
evaluating a programming language. Writeability is related to a
programmer’s learning curve and productivity, which is
important for a project with a tight budget and deadline.
Readability is related to an ease of collaboration and
maintainability, which is important for a large project with many
members involved. Portability is important when a system needs
to run on multiple platforms. Scalability can be defined as how
well a program continues to function with a growing number of
users or input data size. It is an important measurement of a
system’s expandability.

In general Bio*languages are considered to have good
writeability and readability due to code simplicity and the
availability of many built-in modules, requiring shorter lines of
codes and a lower learning curve. These advantages allow easier
maintenance and faster development. In regards to the
readability of Python, the syntax of Python is interesting; in
Python, indentation showing where a block begins and ends is
important, thus ensuring good readability. All six languages are
considered to be portable.

Java is an efficient and reliable an object-oriented
language but requires a higher learning curve; it takes time to
learn the language and needs skilled programmers for
implementation. As a result, BioJava may instead be a better
choice for a large project that involves many members and high
maintainability because of its strongly supported object-oriented
programming equipped with many built-in libraries. BioJava
takes advantage of Java’s quick execution time and effective
memory management as well as the flexibility and easy
programming of Bio*languages. According to the experimental
results considering memory use and execution time, BioJava,
like Java, is scalable. BioJava is also reliable since it is a
strongly-typed language. Python can also be well suited for a
large project involving many programmers since it supports
object-orientation.

Thus, if either program efficiency or good memory
management (because of large input data sets) is a key
consideration, a compiler-based language, such as Java, BioJava,
or C/C++ if necessary [13], [23], would be the best choice. For
beginners, a Bio*language would be a good choice since they
provide built-in, easy-to-use, and usually well-tested modules.
For manipulation of a small data set and quick implementation
of a task, Perl or BioPerl can be a good choice. However, Perl
may not be appropriate for a large project as it can become very
complex and difficult to manage and maintain. On the other
hand, developers may need to be cautious in using BioPython
and wait for an improved version of the language.

Future research will be done to compare languages in
more sophisticated bioinformatics tasks involving databases,
Web, image processing, visualization, and other complex
algorithms.

REFERENCES

[1] P. Baldi and S. Brunak, Bioinformatics: The Machine
Learning Approach, 2nd edition, MIT Press, 2001.

[2] A.D. Baxevanis and B.F.F. Ouellette, eds., Bioinformatics:
A Practical Guide to the Analysis of Genes and Proteins,
3rd edition, Wiley, 2005.

[3] D.A. Benson, M. Boguski, D. J. Lipman, J. Ostell, B.F.
Ouellete, B.A. Rapp, and D.L. Wheeler, “GenBank,”
Nucleic Acids Research, 27, 12-17, 1999.

[4] R.C.G. Holland, T. Down, M. Pocock, A. Prlic, D. Huen, K.
James, S. Foisy, A. Drager, A. Yates, M. Heuer, M.J.
Schreiber, “BioJava: an Open-Source Framework for
Bioinformatics,” Bioinformatics, Vol. 24(18), 2008, pp.
2096-2097.

[5] BioJava Web information, http://www.biojava.org, 2009.
[6] BioPerl Web information, http://www.bioperl.org, 2009.
[7] BioPython Web information, http://www.biopython.org,

2009.
[8] M. Catanho, D. Mascarenhas, W. Degrave, A. Miranda,

“BioParser: a tool for processing of sequence similarity
analysis reports,” Applied Bioinformatics, 5 (1): 49–53,
2006.

[9] N. Cristianini and M.W. Hahn, Introduction to
Computational Genomics, Cambridge University Press,
2006.

[10] O. Croce, M. Lamarre, R. Christen, “Querying the public
databases for sequences using complex keywords contained
in the feature lines,” BMC Bioinformatics 7:45, 2006.

[11] H. Deitel, P. Deitel, J. Liperi, and B. Wiedermann, B.,
Python: How to Program, Prentice Hall, 2002.

[12] J. Dugan, Open Source Initiatives in Bioinformatics, A
report submitted to health science initiative application
working group Internet2, 2001.

[13] M. Fourment and M.R. Gillings, “A comparison of
common programming languages used in bioinformatics,”
BMC Bioinformatics, Vol. 9:82, 2008.

[14] W. Keedwell, Intelligent Bioinformatics: The Application
of Artificial Intelligence Techniques to Bioinformatics
Problems, Wiley, 2005.

[15] R. Khaja, J. MacDonald, J. Zhang, S. Scherer, “Methods
for identifying and mapping recent segmental and gene
duplications in eukaryotic genomes,” Methods Molecular
Biology 338: 9–20, 2006.

[16] B. Landsteiner, M. Olson, R. Rutherford, “Current
Comparative Table (CCT) automates customized searches
of dynamic biological databases,” Nucleic Acids Research
33, 2005.

[17] B. Lenhard, W. Wasserman, “TFBS: Computational
framework for transcription factor binding site analysis,”
Bioinformatics 18 (8): 1135–6, 2002.

[18] A.M. Lesk, Introduction to Bioinformatics, Oxford
University Press, 2008.

[19] D.W. Mount, Bioinformatics: Sequence and Genome
Analysis, Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, New York, 2001.

[20] Open Bioinformatics Foundation, http://www.open-bio.org,
2009.

[21] L. Pachter and B. Sturmfels, Algebraic Statistics for
Computational Biology, Cambridge University Press, 2005.

[22] P.A. Pevzner, Computational Molecular Biology: An
Algorithmic Approach, The MIT Press, 2001.

[23] L. Prechelt, “An empirical comparison of C, C++, Java,
Perl, Python, Rexx, and Tcl,” IEEE Computer Vol. 33, 23-
29, 2000.

[24] R. Schwartz, T. Phoenix, and B. Foy, Learning Perl, 5th
Edition, O’Reilly, 2008.

[25] R.W. Sebesta, Concepts of programming languages,
Addison Wesley, 206-208, 2006.

[26] S. Shah, G. McVicker, A. Mackworth, S. Rogic, B.
Ouellette, B., “GeneComber: combining outputs of gene
prediction programs for improved results,” Bioinformatics
19 (10): 1296–7, 2003.

[27] J. Shirazi, Java Performance Tuning, O’Reilly, 2003.
[28] J. Stajich, D. Block, K. Boulez, S. Brenner, S. Chervitz, C.

Dagdigian, G. Fuellen, J. Gilbert, I. Korf, H. Lapp, H.

Taewan Ryu : Benchmarking of BioPerl, Perl, BioJava, Java, BioPython, and Python for Primitive Bioinformatics

Tasks and Choosing a Suitable Language
15

International Journal of Contents, Vol.5, No.2, Jun 2009

Lehväslaiho, C. Matsalla, C. Mungall, B. Osborne, M.
Pocock, P. Schattner, M. Senger, L. Stein, E. Stupka, M.
Wilkinson, E. Birney, “The Bioperl toolkit: Perl modules
for the life sciences” Genome Res 12 (10): 1611–8, 2002.

[29] J.D. Tisdall, Beginning Perl for Bioinformatics, O’Reilly,
2001.

[30] N. Trivedi, K.T. Pedretti, T.A. Braun, T.E. Scheetz, and
T.L. Casavant, “Alternative parallelization strategies in
EST clustering,” Lecture Notes in Computer Science, Vol.
2763, 384 – 394, 2003.

[31] M.S. Waterman, Introduction to Computational Biology:
Sequences, Maps and Genomes, CRC Press, 1995.

[32] J. Zobel, S. Heinz, and H.E. Williams, “In-memory hash
tables for accumulating text vocabularies,” Information
Processing Letters, Vol. 80:6, 271 – 277, 2001.

Taewan Ryu
He received the PhD degree in
Computer Science from University of
Houston, Houston, Texas. Currently,
he is an associate professor of the
Department of Computer Science in
California State University, Fullerton,
California. His research interest
includes data mining, Bioinformatics,
computational finance, and software
engineering.

