
Dongwoo Lee: Rule-Based Cooperation of Distributed EC Systems 79

International Journal of Contents, Vol.5, No.3, Sep 2009

Rule-Based Cooperation of Distributed EC Systems

Dongwoo Lee

Department of Computer Information Science

Woosong University, Daejeon, 300-718, Korea

ABSTRACT

Emergent requests or urgent information among enterprises require their intimate collaboration in B2B EC (electronic

commerce). This paper analyzes the needs of intimate cooperation of distributed EC systems in terms of business contracts and

presents an active rule-based methodology of close cooperation among EC systems and an active rule component to support it. Since

the rule component provides high level rule patterns and event-based immediate processing, system administrators and programmers

can easily program and maintain intimate cooperation of distributed EC systems independently to the application logic. The

proposed active rule component facilitates HTTP protocol. Its prototype is implemented in B2B EC environment and evaluated using

basic trigger facility of a commercial DBMS.

Keywords: Distributed EC System, Rule-Based Cooperation, Active Rule Component, Distributed Processing.

1. INTRODUCTION

 The distributed EC systems need to be coordinated and

integrated for enterprises to gain their common business goals.

Especially emergent requests or urgent information among

them require their intimate cooperation and should be

processed in an immediate mode. For example, consider that a

shopping mall becomes short of an item suddenly and requests

a partner supplier to provide it. Then the supplier should

provide the item quickly within a predefined time period

according to business contracts between them. If, however, the

item is out of stock in the supplier's warehouse and not able to

be supplied within the predefined time period, it should be

notified to the shopping mall promptly so that the shopping

mall can try to find an alternate supplier to fill the item. Most

current systems, however, due to the systems' security and

autonomy, cannot handle these requirements appropriately, but

handle them in a batch processing mode or ad hoc manners [1].

In this paper the needs of intimate cooperation of distributed

EC systems are analyzed in terms of business contracts and an

active rule component based on active database abstraction [2],

[3] is proposed to provide the distributed EC systems with

flexible coordination and immediate processing in WWW

environment. Since high level rule programming is supported

by the component, the close cooperation of distributed EC

systems and event-based immediate processing can be

implemented independently to application logic.

The active rule component is designed and integrated into

distributed EC systems using HTTP protocol to be applied

* Corresponding author. E-mail : dwlee@wsu.ac.kr

Manuscript received Aug. 10, 2009 ; accepted Aug. 22, 2009

through firewalls. Thus the security and autonomy of

distributed EC systems of individual enterprise are assured.

Since most of business systems have database systems to store

persistent data and commercial DBMSs provide basic trigger

functionalities of active capability, the component is designed

and implemented using a commercial DBMS for practical

purpose.

The rest of the paper is organized as follows. Section 2

discusses related work. Section 3 describes the need for

intimate cooperation of distributed EC systems, the proposed

mechanism to meet it, and requirements to provide the

mechanism. In section 4, one of the requirements, elements of

an active rule program and examples of active rule programs

are presented. Section 5 discusses architecture of the active rule

component and implementation and evaluation of a pilot

system is described. Finally in section 6, we conclude with

future work.

2. RELATED WORK

The advent of the internet, WWW, and distributed

computing technologies has been enabled business

organizations to conduct business electronically. And a lot of

researches on B2B E-Commerce have been carried on [4]. But

the most of researches have been mainly focused on

interoperability problems among distributed business systems.

The issues of intimate cooperation among distributed EC

systems have not been addressed comprehensively.

 There are many researches on exception handling issues

on business processes [5]-[7]. The exception is defined as

deviation from the normal workflow, such as system errors or

failures that interrupt normal processing of workflows. The

80 Dongwoo Lee: Rule-Based Cooperation of Distributed EC Systems

International Journal of Contents, Vol.5, No.3, Sep 2009

exceptions are classified into basic failure on system level,

application failure, expected exception on workflow level, and

unexpected exception. Especially [5], [7] propose rule based

exception handling methods. However, these researches are

focused on normal processing of workflows with the

exceptions, i.e., fault-tolerant workflow processing. That is

different from intimate cooperation issues in this paper.

In summary, previous work addressed either general

interoperability issues of businesses or exception handling of

business processes' failures. Few of them comprehensively

address close cooperation issues among EC systems in WWW.

3. INTIMATE COOPERATION AMONG

DISTRIBUTED EC SYSTEMS

3.1 The Need for Intimate Cooperation

Fig. 1. Typical B2B E-Commerce

Consider typical B2B E-Commerce environment shown in

Fig.1 as a motivating example. All participants are connected

by solid lines which denote internet and information flow. The

dotted arrows denote material flow among participants. Each

participant does business with each other by its own B2B and

B2C systems. That is, a shopping mall takes customers' orders

and provides services by a B2C system, while it places orders

to suppliers, requests delivery of items to shippers and money

transfer to banks, inquires customers' credit to credit card

company based on the agreement or contracts which were made

with other participants. A supplier receives orders from

shopping malls by its B2B system.

In Fig. 1 each participant has fire-wall for security and is

connected each other via the fire-walls and internet. In general,

the fire-walls close most of ports except special ports such as

HTTP 80. Therefore the systems of each enterprise should use

HTTP protocol and fixed ports to interact with other

organizations' systems [8].

In the above B2B E-Commerce there are two kinds of job

processing modes in enterprises. One is a batch-processing

mode in which an enterprise collects jobs and processes them at

a time. The other is an immediate processing mode in which an

enterprise processes jobs promptly when they come in. In the

former mode human or systems work efficiently while the

processing time of each job becomes longer. In the latter mode

human or systems should always wait for a job while each job

is processed promptly. The choice of processing modes

depends on the characteristics of jobs, policy of an enterprise,

and contracts between enterprises.

Intimate cooperation among EC systems, i.e. immediate

request - immediate cooperation, can be seen as exceptions out

of enterprises' normal cooperation. That is, emergency request

or critical information among EC systems should be

transmitted to partners’ systems promptly and processed by the

systems in an immediate mode. They are not frequent, but once

they occur they may require special treatment and affect

customers' or enterprises' profits in a large degree. Since

enterprises cooperate with each other by contract fulfillment,

the cases for the intimate cooperation can be classified as

following in terms of service contracts:

1. unable to fulfill a normal contract service

2. need to modify or compensate a normal contract service

3. need to cancel a normal contract service

4. need a special service instead of a normal contract service

For the above cases, new contracts, which require intimate

cooperation, can be added into systems incrementally. Most

current systems, however, due to the systems' security and

autonomy, cannot handle these requirements appropriately, but

handle them in a batch processing mode or ad hoc manners [1].

That is, they use login method by allowed users or Email. Or

low-level ad hoc programs, which are coded into application

logic, handle the cases. It causes software modularity problems.

3.2 Intimate Cooperation by Active Rule Paradigm

We derived the intimate cooperation procedure among

distributed EC systems shown in Fig. 2, which consists of 4

phases:

1. Detection: a phase to detect that an enterprise wants to make

emergency requests for partner's cooperation or critical

information occurs, which should be transmitted promptly.

2. Transmission: a phase to transmit the detected situation to a

partner promptly.

3. Evaluation: a phase to evaluate cooperation constraints

whether they should be processed in an immediate mode.

There are two kinds of constraints, time constraints and

resource constraints.

4. Processing: a phase to execute or process the requested job

or the information in an immediate mode.

As shown above, in order to cooperate in an immediate mode,

the situation for intimate cooperation should be detected,

notified or transmitted to each other, evaluated and recognized,

and processed promptly. It shows that close cooperation among

distributed EC systems is suitable application to active rule

mechanism [2], [3]. That is, the intimate cooperation can be

represented in active rules, such as occurrence of the situation

for close cooperation as event, cooperation constraints as

condition, and the processing of the job as action. Then, an

active rule component, which processes active rules, detects

automatically the occurrences of the event and notifies the

occurrence to partner's system. The component of the partner

evaluates the condition. If the condition is satisfied, then it

Dongwoo Lee: Rule-Based Cooperation of Distributed EC Systems 81

International Journal of Contents, Vol.5, No.3, Sep 2009

executes the action promptly for intimate cooperation. That is,

the cooperation among EC systems can be processed in an

immediate mode without interference of application or users.

Fig. 2. Intimate Cooperation Procedure among Distributed

EC Systems

The intimate cooperation among distributed EC systems can be

supported by the following two main elements;

1. Active rule programming facility: an interface or

programming facility which a system administrator or

programmers can use to program each EC system to cooperate

with others. That is, facility to represent event, condition, and

action as a rule for close cooperation.

2. Active rule component: which includes capability to detect

and manage events, evaluates condition, and executes action

so that it executes and manages active rules. In addition, it

utilizes communication infrastructure accessible through

HTTP protocol for implementing cross-organizational

interactions via fire-walls. In the next sections active rule

programming and active rule component are described.

4. ACTIVE RULE PROGRAMMING FOR INTIMATE

COOPERATION

 In this research new active rule language is not

developed. Instead an existent ECA (event condition action)

rule language is extended at the minimum to express intimate

cooperation. We adopt ECAA (Event Condition Action

Alternative Action) rule language which is one of ECA rule

languages [2], [3]. Fig. 3 depicts active rule structure.

Alternative Action part is for flexible representation of close

cooperation. Even though an enterprise makes an intimate

cooperation request, its partner may not be able to cooperate

because of the cooperation constraints. In this case the partner

should notify the inability for cooperation to requester as an

alternative action. Therefore it is optional.

Rule rule-name;

 Event event-expression;

 Condition condition-expression;

 Action Begin action-block End

 [Alternative Action Begin alternative-action-block End]

Fig. 3. Active Rule Structure

The rule-name does not have a major role in its execution since

it is triggered by an event. Rule names are used mainly for

management purpose.

Event : A rule is triggered by detection of occurrence of an

event described in event-expression. The need for the intimate

cooperation among EC systems is represented as an event. In

this paper the events are classified into local and remote in

terms of occurrence and subscription. If a local event occurs

and is subscribed by a remote system, it is transmitted to the

system. This information is registered into Event-Schema-

Table of Event-Manager in an active rule component when it is

defined. In terms of contents, the events are furthermore

classified as request event and notification event as in [Table 1].

Since events for close cooperation are application-related, the

wrapper codes are required to generate them and transfer to

Event-Manager. The syntax of the event-expression is

event-expression ::= event-name(type1 par1, type2 par2, ...);

Table 1. Events and Actions for Intimate Cooperation

Request Events & Notification

Events
Immediate Cooperative Action

Notify-Able-Service No-Action

Notify-Unable-Service Find-Alternate-Service

Request-Modify-Service Modify-Service

Request-Cancel-Service Cancel-Service

Request-Special-Service Special-Service

Condition : Once an event has been detected, a condition part

is evaluated. For close cooperation, cooperation constraints

should be checked. Even though an EC system requests

intimate cooperation to its partner system, the partner may not

be able to cooperate because of cooperation constraints. There

are two kinds of constraints. One is time constraints that the

partner system should provide requested service within a

predefined time period. Another is resource constraints that the

partner should have resources such as man power, required

system, or items to fulfill the requested service.

Action : If the condition is satisfied, the action block is invoked.

An action block consists of a set of actions or call statements

which execute the requested service for intimate cooperation.

[Table 1] shows kinds of requested events and notification

events and corresponding action types. Some actions may

generate events again.

Alternative Action : If the condition is not satisfied, which

means the partner system cannot cooperate immediately, the

alternative action block is invoked. It is used to notify the

inability of cooperation to the requester or remedy it.

Example of active rule programs : Consider the previous

example that a shopping mall becomes short of an item

suddenly and requests a partner supplier to provide it. Then the

supplier should provide the item quickly within a predefined

time period. If, however, the item is out of stock in the

82 Dongwoo Lee: Rule-Based Cooperation of Distributed EC Systems

International Journal of Contents, Vol.5, No.3, Sep 2009

supplier's warehouse and not able to be supplied within the

time period, it should be notified to the shopping mall promptly

so that the shopping mall can try to find an alternate supplier to

fill the item.

This example shows that a shopping mall and a supplier

should cooperate in an immediate mode. It can be implemented

by the following two rules ;

Rule Find-Alternate-Service /* rule on a Shopping Mall */

Event unable-special-supply(string supplier, string item-1,

integer n);

 Condition true;

 Action Begin find-alternate-service(string item-1, integer n)

End

Rule Request-Special-Service /* rule on a Supplier */

Event request-special-supply(string requester, string item-1,

integer n);

 Condition no. of item-1 > n;

 Action Begin special-order-processing(string requester,

string item-2) End

Alternative Action Begin raise-event('notify-unable-special-

supply') End

5. ACTIVE RULE COMPONENT

5.1 Architecture of Active Rule Component

The intimate cooperation written in active rules is processed

by an active rule component. The architecture of the

component consists of five modules, Communication-Manager,

Event-Manager, Rule-Manager, Event-Rule-Interface, and

Actions/Applications. The overall architecture is shown in Fig.

4. In the following we describe each module with its structure

as a figure.

Fig.4. Overall Architecture of Active Rule Component

Communication-Manager: Using HTTP protocol the

Communication-Manager sends and receives event messages

for intimate cooperation in the form of XML with

Communication-Manager of partner's active rule component. It

is implemented in Java servlet[9] of a web server and contains

two roles. Firstly it receives XML messages through a web

server, extracts events, and transfer to local Event-Manager.

Secondly it receives event from local Event-Manager,

transforms into XML format, and using HTTP post command

transmits to the Communication-Manager of partner's

system[10]. Send_Event and Raise_Event in Fig. 5 take the two

roles respectively.

Fig. 5. Communication Manager

Fig. 6. Event Manager

Event-Manager : It manages schema definition of events and

their subscription, identifies whether subscription of an event is

local or remote, and transfers the identified event to

corresponding Rule-Manager which subscribes it. It is

implemented in Java servlet of a web server. Events are defined

and registered for subscription by system administrators or

programmers via Event-Rule-Interface. Then the definition and

subscription are recorded into Event-Schema-Table by Event-

Manager. At run time the Event-Schema-Table is referenced by

Event-Manager to check whether an event is local or remote.

The Event-Schema-Table consists of four tables to store all

information related to events. Four tables are;

event-schema=(event-name, no-of-parameters)

publisher-schema=(event-name, publisher)

subscriber-schema=(event-name, subscribers)

parameter-schema=(event-name, para-name, type, position)

Since Event-Schema-Tables are stored in database, Event-

Manager uses JDBC to connect database for storing and

retrieving events. The structure of Event-Schema-Table is

shown in Fig. 6.

Dongwoo Lee: Rule-Based Cooperation of Distributed EC Systems 83

International Journal of Contents, Vol.5, No.3, Sep 2009

Fig. 7. Rule Manager

Rule-Manager : The Rule-Manager evaluates and executes

active rules. It is implemented with basic trigger facilities of the

underlined DBMS and contains Event-Instance-Tables, a Rule-

Table, and triggers on the Event-Instance-Tables. An active

rule for intimate cooperation is defined via Event-Rule-

Interface and recorded into the Rule-Table. When an event is

defined, its Instance-Table is created together.

A rule for close cooperation is written using triggers on the

Instance-Table. For example, the rule 'find-alternate-supplier'

can be written as a trigger on the Instance-Table 'unable-

special-supply-instance-table' in the syntax of Oracle 9i[11];

create trigger find-alternate-supplier after insert on

unable-special-supply-instance-table

begin

if condition is true

then call find-alternate-supplier();

end;

The structure of Rule-Manager is shown in Fig. 7.

Fig. 8. Event Rule Interface

Event-Rule-Interface : The Event-Rule-Interface is an

interface for system administrator or programmers to define

events and rules as well as to manage them, i.e., search, delete,

and update. It utilizes facilities of Event-Manager and Rule-

Manager, that is, Event-Table-Editor and Rule-Table-Trigger-

Editor, respectively. It is shown in Fig. 8.

Actions/Applications : Actions are the treatments of requested

services. Events are generated by applications. And some

actions may generate events again. The actions/applications are

internal if written in underlined DBMS's API or external if not.

Since events for intimate cooperation are related to applications,

wrapper codes to generate their occurrences and function calls

to notify to Event-Manager are needed. Since the action part of

an active rule is to treat the intimate cooperation, it consists of

procedure or call statement for stored procedure, which

provides the cooperation. The general structure of

Actions/Applications is shown in Fig. 9.

Fig. 9. Actions/Applications

5.2 Interactions among component modules

In order to explain how the active rule component processes

the active rules for intimate cooperation, the interaction

procedure among modules is described at build time and run

time in the following, respectively.

Build Time

1. System administrators or programmers define events for

intimate cooperation via Event-Rule-Interface.

2. The definitions of events are recorded into Event-Schema-

Table by Event-Manager. System programmers write

wrapper codes for occurrences of the events.

3. The definition of an event is transferred to Rule-Manager

and its Instance Table is created.

4. Subscription of the event is registered via Event-Rule-

Interface by the partner's programmer. The Subscription is

stored into Event-Schema-Table by Event-Manager.

5. System administrators or programmers define an active rule

on the event via the interface. The definition of a rule is

recorded into Rule-Table by Rule-Manager.

6. System programmer writes triggers on the related Event-

Instance-Table of the defined active rule and codes for the

action part.

Run Time

1. A local event occurrence generated by a local application or

action is notified, or a remote event is transmitted from a

remote system via Communication- Manager.

2. Event-Manager identifies its subscription from Event-

Schema-Table. If its subscription is local, then it is

transferred to the local Rule-Manager. Otherwise, that is,

remote subscription, it is transferred to Communication-

Manager to transmit to a corresponding remote system.

3. Rule-Manager inserts the event instance into its Instance-

Table and invokes a trigger to execute corresponding rule.

4. The trigger executes corresponding action for intimate

cooperation.

84 Dongwoo Lee: Rule-Based Cooperation of Distributed EC Systems

International Journal of Contents, Vol.5, No.3, Sep 2009

Fig. 10. Events and Rules for Intimate Cooperation

5.3 Implementation and Evaluation of a Pilot System

To validate the intimate cooperation mechanism and

applicability of an active rule component, a pilot system has

been implemented and applied to a typical B2B E-Commerce

scenario. During design and implementation of the system, we

considered practicability, interoperability with database, and

platform independence. Therefore Java as an implementation

language, Commercial DBMS Oracle 9i, and Apache Tomcat

Web server were chosen.

Instead of implementing all features of an active rule

component from scratch we utilized basic trigger facilities of a

commercial DBMS. Major functions of the component are

detection of event, evaluation of condition, and execution of

action. In this paper, as described in the previous section 5.1

the condition evaluation and the action execution parts are

designed and implemented by triggers of a underlined DBMS.

That is, Event-Instance-Table for each event is created in DB

and trigger codes on this table are written. The condition

evaluation and action parts are written in trigger body. Thus,

when an event instance is inserted into its Instance-Table, it

invokes the related trigger that evaluates the condition and

executes action part in the body.

For the application scenario, an internet shopping mall with

its suppliers and shippers is used as shown in Fig. 1. Consider

previous shopping mall. It decided to provide flexible service

that customers are allowed to modify(add or delete items) or

cancel their orders, and modify the delivery address within a

predefined time period. In order to provide these services the

shopping mall should cooperate with suppliers and shippers.

Furthermore, since these cooperation affect the normal jobs

processed, being processed, and going to be processed, they

should be processed in an immediate mode. The events and

rules for intimate cooperation among shopping mall, suppliers,

and shippers for the scenario are shown in Fig. 10.

The pilot systems are implemented with Windows 2000

server, and Linux server, respectively. The implemented

systems have been tested to verify their correctness for all cases.

It should be noted that the intimate cooperation mechanism is

intended for emergency and asynchronous close cooperation.

Thus, it is complementary to workflow management system

(WFMS) or business process management system(BPMS)

which is intended for regular synchronous job process[12].

Since the proposed active rule component is loosely coupled

with other subsystems, it can be easily applied to other systems

which need active functionality.

6. CONCLUSION

In this paper an active rule component based on active

database abstraction is proposed to support intimate

cooperation among distributed EC systems in WWW

environment. Since high level active rule programming is

supported by the component, the cooperation among business

systems and event-based immediate processing can be

implemented independently to application logic. Thus, system

administrators and programmers can easily program and

maintain intimate cooperation among EC systems in WWW.

The active rule component is designed and integrated into

business systems using HTTP protocol to be applied through

firewalls. The security and autonomy of systems in individual

enterprise are assured. Since most of business systems have

commercial database systems to store persistent data and

commercial DBMSs provide basic trigger functionalities of

active capability, the active rule component is implemented to

be practical using a commercial DBMS, Oracle. Even though

the syntaxes of triggers of commercial DBMSs are different

from each other, since the semantics of the triggers are similar,

the proposed component can be implemented in other

commercial DBMSs such as DB2 and MS SQL server.

In order to extend our research, future work includes support

for various phases in business systems' life cycle[13] and

extension of cooperation concept to support client oriented

active rules. In addition, research on security of event

transmission and action execution is needed, since notification

of an event leads action execution directly. It may affect

applications and database. Thus appropriate security method is

required.

REFERENCES

[1] Nobuyuki Kanaya, et. al., "Distributed Workflow

Management Systems for Electronic Commerce",

proceedings of 4th International Enterprise Distributed

Dongwoo Lee: Rule-Based Cooperation of Distributed EC Systems 85

International Journal of Contents, Vol.5, No.3, Sep 2009

Object Computing Conference(EDOC'00), IEEE 2000.

[2] Norman W. Paton and Oscar Diaz, "Active Database

Systems", Computing Surveys, ACM, 1999.

[3] J. Widom and S. Ceri, Active database Systems, Triggers

and Rules for Advanced Database Processing, Morgan

Kaufmann, 1996.

[4] Brahim Medjahed, et al., "Business-to-business

interactions: issues and enabling technologies", VLDB

Journal, Springer-Verlag, April, 2003. pp.59-85.

[5] Fabio Casati, S. Ceri, S. Paraboschi, and G. Pozzi,

"Specification and Implementation of Exceptions in

Workflow Management Systems", ACM Tr. on Database

Systems, Vol. 24, No. 3, September 1999, pp.405-451.

[6] Zongwei Luo, Amit Sheth, Krys Kochut, and Budak

Arpinar, Exception Handling for Conflict Resolution in

Cross-Organizational Workflows, Technical Report,

LSDIS Lab, Computer Science, University of Georgia,

April 10, 2002.

[7] J. Meng, Stanley Y.W. Su, herman Lam and A. Helal,

"Achieving Dynamic Inter-Organizational Workflow

management by Integrating Business processes, Events

and Rules", IEEE HICSS-35'02, 2002.

[8] W3C Recommendation SOAP:The Simple Object Access

Protocol,http://www.w3c.org/TR/soap/, visited December,

2008.

[9] Danny Coward, Java Servlet Specification version 2.3,

Sun Java Technology, Release 8/31/01.

[10] R. Fielding, et al., Hypertext Transfer Protocol --

HTTP/1.1, W3C, 1999.

[11] Oracle9i SQL Reference Release 2 (9.2) Part Number

A96540-02, October 2002.

[12] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin,

"Business Process Coordination: State of the Art, Trends,

and Open Issues", Proceedings of the 27th VLDB

Conference, Roma, Italy, 2001.

[13] David Trastour, Claudio Bartolini, Chris Preist, "Semantic

Web Support for the Business-to-Business E-Commerce

Lifecycle", proceedings of www2002, 2002.

Dongwoo Lee
He received the B.S. and M.S in

electronic engineering and Ph.D. in

computer science from Korea university,

Korea. Since 1995, he has been with the

department of computer information

science, Woosong university, Korea. His

research interests include distributed

processing and systems, database, and reactive systems.

