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ABSTRACT

In this paper, we propose a hierarchical method for segmenting a given 3D mesh, which hierarchically clusters sharp vertices of the 

mesh using the metric of geodesic distance among them. Sharp vertices are extracted from the mesh by analyzing convexity that 

reflects global geometry. As well as speeding up the computing time, the sharp vertices of this kind avoid the problem of local optima 

that may occur when feature points are extracted by analyzing the convexity that reflects local geometry. For obtaining more 

effective results, the sharp vertices are categorized according to the priority from the viewpoint of cognitive science, and the 

reasonable number of clusters is automatically determined by analyzing the geometric features of the mesh.
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1. INTRODUCTION

 Mesh segmentation is an optimization problem that 

decomposes a given mesh into a disjoint set of sub-meshes 

while satisfying some criteria to the maximum. Since three 

dimensional meshes are represented with vertices and edges 

similarly to graph data structures, the mesh segmentation can 

be regarded as a graph partitioning. The optimization of mesh 

segmentation under some criteria is an NP-class problem [1] 

even if the problems are much limited. Furthermore, the mesh 

segmentation is also input-sensitive; the efficacy of a 

segmentation method varies from artifacts to natural objects. 

By those reasons, mesh segmentation methods take heuristic 

algorithms and need to be more optimized when they are 

combined to a specific application such as mesh modeling, 

metamorphosis, compression, simplification, shape matching, 

collision detection, texture mapping, and skeleton extraction.

Since a lot of heuristic mesh segmentation methods [1-15] 

can be categorized by many criteria or viewpoints, it is very 

difficult to formally summarize and quantitatively analyze all 

of the previous researches. The hierarchical clustering method 

of this paper is a kind of bottom-up approach [1-3] that merge 

the faces of a mesh increasingly, differently to the top-down 

approaches [4-6] that divide the mesh continuously. Our 

method treats only the sharp vertices extracted from the given 

mesh, which is based on the research result [16], [17] that the 
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negative minimum of principal curvatures and the depth of 

concavity directly influence on identifying the boundary of 

some regions. This notion of cognitive science has been 

adopted also in Zhou and Huang [12], Katz et al. [14], and Lien 

and Amato [15]. 

Zhou and Huang [12] designates a root from extreme 

vertices arbitrarily, constructs the shortest path trees of 

geodesic distance from the root to all extreme vertices, 

computes local extreme points and saddle points, and then 

divide the given mesh with backward flooding algorithm. Katz 

et al. [14] transforms a mesh into another mesh by the multi-

dimensional scaling of pose-invariant representation method, 

extracts feature points based on geodesic distance, and finds the

core components with the spherical mirroring providing the 

duality between convexity and concavity. Lien and Amato [15] 

defines a measure for the quantity of concavity, and recursively 

decompose the mesh by finding the greatest concavity. In our 

method, rather than convexity reflecting local geometry [12],

[14] and concavity [15], sharp vertices are extracted by 

analyzing convexity reflecting global geometry, which will be 

explained in Section 2. In Section 3, Mesh segmentation is 

performed by hierarchical clustering of the sharp vertices after 

assigning the priority numbers of cognitive importance to them. 

Especially, we automatically determine an appropriate value 

for the number of clusters by analyzing the geometric features 

of meshes in Section 4. We present our experiments and 

segmented results are visualized with the previous results in 

Section 5.
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2. EXTRACTING SHARP VERTICES

2.1 Local sharp vertices of approximate curvatures

Since the surface curvature is a very important factor for the 

recognition of 3D shapes, usually sharp vertices are extracted 

using the vertex curvatures of meshes The curvatures of mesh 

vertices cannot be computed mathematically differently to the 

curved surfaces, and the approximate curvatures of mesh 

vertices can be computed by two categories of methods; 

continuous approaches [18], [19] fitting the vertices into a 

parametric curved surface, and discrete approaches [20], [21] 

computing normal curvatures in the directions of edges incident 

to the vertices. The sharp vertices extracted using these 

curvatures are geometrically local, that is, there is a critical 

problem of local optima in mesh segmentation.

2.2 Global sharp vertices of approximate curvatures
The previous approaches [12], [14] for extracting sharp 

edges and vertices consider only the approximate curvatures. 

However, the curvature may reflect only the local geometry in a 

dense mesh, and the simplification of the dense mesh may lose 

the original shape. This paper extracts the sharp vertices using 

another geometric operation reflecting the global geometry.

Fig. 1. Pockets and lids of polyhedrons

The typical vertices of global sharp geometry are the 

extreme points that can be obtained by the geometric operation 

of convex hull. From the similar observation, we develop a 

method for extracting and categorizing more global sharp 

vertices by observing and analyzing geometric features. As 

illustrated in figure 1, the pockets and lids of polyhedrons can 

be computed by the geometric operations of convex hull and 

regularized difference. It is reasonable to regard the vertices on 

the boundaries of the pockets and lids as the most important 

vertices representing the features.

Since 3D models are not simple in general, we decompose a 

mesh surface into sub-meshes before computing pockets and 

lids with geometric operations. A convex part is usually 

contained in a geometric feature, and it can be the smallest unit 

to be considered as a meaningful sub-meshes. A set of faces in 

a mesh is called the convex patch if they are connected and all 

of them exit on their convex hull. It is an NP-complete problem 

[1] to compute the minimum number of disjoint convex patches 

for a given mesh.

In this paper, we define and use another set of faces for 

representing a convex part, called the approximate convex 

patch (ACP), in which faces are connected via convex edges. 

An ACP can include some concave edges because it is 

sufficient for a pair of adjacent face if there is at least a convex 

edge between them. ACPs are always determinant, and can be 

computed easily with a graph searching technique of breadth-

first-search or depth-first-search. A tolerance angle can be 

permitted in checking the convexity of an edge for allowing 

that a mesh is usually an approximation of a curved surface.

After decomposing a mesh into sub-meshes, we compute the 

pocket and lid of each sub-mesh. And then, all vertices are 

marked with global geometric properties as shown in Tab. 1, 

which are Boolean tags representing whether they are extreme 

points or they are contained in pockets, lids, hulls, and 

boundaries. The properties of Tab. 1 may be exclusive to each 

other or not, and a vertex can have multiple properties 

simultaneously. For example, if a vertex is EXTREME, it is 

also one of IN_HULL_FACE, IN_LID_FACE, and 

IN_BOUNDARY_EDGE. Reversely, if a vertex is 

IN_HULL_FACE or IN_LID_FACE, it is also EXTREME, but 

if the vertex is IN_BOUNDARY_EDGE, it is not necessarily 

EXTREME. It is possible that a vertex is IN_POCKET_FACE 

and also one of IN_HULL_FACE, IN_LID_FACE, and 

IN_BOUNDARY_ EDGE.

Table 1. Vertex marks

Marks for global properties Descriptions of the properties

EXTREME
An extreme point of the convex 

hulls of ACPs

IN_POCKET_FACE Contained in a pocket of ACPs.

IN_HULL_FACE
Contained in a hull of ACPs and 

also in an ACP

IN_LID_FACE
Contained in a lid of ACPs (in a 

hull but not in an ACP)

IN_BOUNDARY_EDGE Contained in a boundary of ACPs

Instead of a complicated algorithm for marking the 

properties of table 1, we briefly describe a conceptual 

algorithm as follows.

Algorithm VERTEX_MARKING

input: M

output: 'M with marked vertices

1. Partition M into approximate convex patches { i
ACP }.

2. for each i
ACP do

3.  Construct the convex hull i
CH of i

ACP .

4.  Mark the extreme vertices of i
CH with EXTREME.

5.  Construct the pocket i
P and the lid i

L with the 

deficiency of i
CH and i

ACP .

6.  Mark the vertices in the boundary of i
ACP with

IN_BOUNDARY_EDGE.

7.  for each face ij
PF Î do

8.    if ( ij
CHF Î ) tag ← IN_HULL_FACE

9.    else tag ← IN_POCKET_FACE



Jong-Sung Ha: Hierarchical Mesh Segmentation Based on Global Sharp Vertices 57

International Journal of Contents, Vol.5, No.4, Dec 2009

10.   for each vertex jk
FV Î do

11.      if ( k
V is not marked with 

IN_BOUNDARY_EDGE)

12.        Mark k
V with tag .

13.   end for each

14.  end for each

15.  for each face i
L do

16.    if ( ij
CHF Î ) tag ← IN_HULL_FACE

17.   else tag ← IN_LID_FACE

18.   for each vertex jk
FV Î do

19.     if ( k
V is not marked with IN_BOUNDARY_EDGE)

20.       Mark k
V with tag .

21.   end for each

22.  end for each

23. end for each

end algorithm

3. MESH SEGMENTATION WITH HIERARCHICAL 

CLUSTERING

3.1 Brief of hierarchical clustering

In our mesh segmentation method, we apply the hierarchical 

clustering technique of Johnson [22] into the extracted sharp 

vertices of the mesh, and then the other vertices are processed 

for being classified into clusters. This separated process of the 

two groups of vertices can obtain the effectiveness and 

efficiency since only a small set of vertices reflecting geometric 

characteristics is considered in complicated computations such 

as geodesic distance and clustering. The hierarchical clustering 

is processed as follows.

Step 1: Allocate a cluster to each sharp vertex, and compute 

the distance for each pair of clusters.

Step 2: Merge the two clusters between which the distance 

is the minimum among the computed distances.

Step 3: Update the distance for each pair of clusters.

Step 4: Repeat Step 2 to 3 until the distances are less than a 

reasonably determined threshold.

There are two major issues in the above: a definition of the 

distance metric between a pair of clusters, and a method for the 

hierarchical clustering of sharp vertices and the processing of 

other vertices, which will be described in Section 3.2, 3.3, and 

4 respectively.

3.2 Geodesic distance between a pair of clusters

First, we define the geodesic distance between a pair of 

points before defining it between a pair of clusters. In general, 

the Euclidian distance is used as the distance metric between a 

pair of points in 3D space. However, in this paper, we use 

another metric composed of the geodesic distance on the 

surface and the angle between the normal vectors of vertices, 

since the mesh segmentation takes places on the surface of the 

mesh.

If we assign the Euclidian distance ),(
ji

vved between a 

pair of adjacent vertices 
i

v and j
v to the edge incident to 

the two vertices in a mesh, the mesh is equivalent to a weighted 

graph. Then, the geodesic distance ),(
qp

vvgd between a pair 

of vertices p
v and q

v is the one with the shortest length 

among the paths

nkvvvvvpath qkmkpkk ,,1),,,,( )21 LL ====

between the two vertices as follows.
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Since the geodesic distance ),(
qp

vvgd is greater than zero, 

we can get the shortest path by applying the Dijkstra algorithm 

[23] after transforming the mesh into a weighted graph.

A distance metric between a pair of clusters 
i

c and j
c

can be defined with the terms of ()gd . We can consider two 

kinds of distance metric between the pair of clusters 
i

c and 

j
c : the shortest or the longest one among the geodesic 

distances between all pair of sharp vertices that are included 

respectively in a pair of clusters, or the average of the geodesic 

distances, which are respectively formulated as follows.

=),( ji CCgd Minimum/Maximum/Average of

        ),( qp vvgd for all 
jqip CvCv ÎÎ , (2)

In the implementation and experiments of this paper, the 

average metric is used for the mesh segmentation using the 

hierarchical clustering.

3.3 Hierarchical clustering of sharp vertices

Fig. 2. Classification of Sharp Vertices

As explained in Section 2, sharp vertices for each sub-mesh 

ACP are computed independently. We explain the priorities of 

the sharp vertices with a sub-polygon in 2D that are similar to 

the cross-section of a sub-mesh ACP in 3D as illustrated on Fig. 

2. As summarized in table 2, there are three kinds of faces: the 

hull face that is a part of convex hull and also an original face 

of the sub-polygon, the pocket face that is an original face of 

the sub-polygon but not in convex hull, and the lid face that is a 

new face created for constructing the convex hull. We assign 

the highest priority 1 to sharp vertices that are extreme and not 
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in hull faces as like the vertex ‘b’, since they looks very sharp 

and plays an important role for features. The next priority 2 is 

assigned to the vertex ‘d’ that is extreme and not in lid faces. 

The priority 2 is used for sharp vertices that are extreme and in 

both of a hull face and a lid face as like the vertex ‘c’. The 

vertices ‘a’ and ‘e’ are the boundary of the sub-polygon. Table 

2 shows our categorizing the global sharp vertices from 

observing such marks of vertices.

Table 2. Priorities of sharp vertices

Priorities of sharp 

vertices
The marks of a vertex

1 EXTREME and not IN_HULL_FACE

2 EXTREME and not IN_LID_FACE

3
EXTREME and IN_HULL_FACE and

IN_LID_FACE

Since its possibility is very high that sharp vertices with the 

priority 1 and 2 may be near the centroids of segmented mesh 

features, such sharp vertices are hierarchically clustered by 

being regarded as the centroids. Sharp vertices with the priority 

3 are used for the detailed segmentation as the secondary 

vertices of the segmented mesh features.

4. TERMINATING CONDITION AND PROCESSING OF 

NON-SHARP VERTICES

It is very important to determine the terminating condition of 

iterative hierarchical clustering. The clustering is repeated until 

the geodesic distances for all pair of clusters are less than a 

threshold that is determined by automatically computing a 

reasonable number of final clusters. In order to determine the 

number of final clusters, we import the similar method to Katz 

and Tal [6]. The main idea is to investigate the variation of a 

certain measure presenting the geometric features of clusters by 

decreasing the number of clusters. Let )(hG be the minimum 

geodesic distances among the centroids of sharp vertices of 

clusters, where h is the number of clusters that is initially the 

number of sharp vertices with the priority 1 and 2.

=)(hG Minimum of hjivvgd kikj ,,1,),,( L= ( 3)

where ki
v is the centroid of the sharp vertices of a cluster. 

By repeating the clustering, we compute the variation of   

by decreasing   one by one, and find the place when the 

measure is increased the most rapidly. 

(a) a tiger model

(b) a fish model

Fig. 2 Variations of )(hG for mesh models

Figure 2 illustrates examples for investigating the measures 

()G for two models of animals, which are composed of faces 

with the number 956 and 1604 respectively. The horizontal and 

vertical axes represent the number of clusters represents   

respectively. In figure 2(a), the number of sharp vertices with 

the priority 1 or 2 is 49, and the ()G rapidly increased when   

is 13 that is just the reasonable number of clusters. Similarly in 

figure 2(b), the initial number of clusters is 52 and the chosen 

number of clusters is 15.

After clustering the sharp vertices, the mesh segmentation 

can be completed by processing other vertices except the sharp 

vertices. The boundary of each segmented sub-mesh, which is 

composed of the non-sharp vertices, is dependent on the 

surface curvature as well as the geodesic distance between the 

non-sharp vertices and the centroids of clusters of sharp 

vertices. The non-sharp vertices are classified and merged into 

the nearest cluster by the following distance metric.

qp vvqpqp CCwvvgdwvvd -×+×= 21 ),(),(   (4)

where i
w is the weight, and 

pvC is the vertex curvature. 

As mentioned in Section 2.1, the curvatures of mesh vertices 

are approximately computed by the two methods of continuous 

approaches [18], [19] and discrete approaches [20], [21]. The 

continuous approaches are accurate in dense meshes, but 

unstable in sparse meshes. Many discrete approaches are stable 

in both of dense and sparse meshes. In order to compute the 

vertex curvatures approximately, we uses the method of Cohen-

Steiner et al. [24], which employs the theory of normal cycle to 

compute curvature tensors in a uniform method for the both of 

curved and planar surfaces. The normal cycle is a theory that 

generalizes the technique of differential geometry for 

computing curvatures by considering the offsets of objects, 

since the technique has been applicable only to the convex 

objects but inapplicable to the objects with any dimension and 

condition. This method is able to take both of continuous and 

discrete approaches for the 3D meshes, efficient and reliable in 

the computation, and converged by restricting the error bound 

of approximate curvatures in the case of Delaunay triangulation 

of surfaces.

5. IMPLEMENTATIONS AND EXPERIMENTS

Our hierarchical clustering method for mesh segmentation 

has been implemented by using CGAL (computational 

geometry algorithm library) [25] in which the 3D models are 

represented half-edge data structures. Computer environments 

are Microsoft Windows and Visual Studio .NET 2003. Mesh 

data for testing our implementation were obtained almost from 

the Princeton shape benchmark [26]. The segmented meshes 

are visualized by programming with the libraries of OpenGL 

and GLUT.

Table 3 illustrates the original meshes of four animal models, 

the sharp vertices are extracted by the method of Section 2.2, 

and the number of clusters is computed by the method of 

Section 3. The numbers of clusters are from 11 to 18, and the 
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sharp vertices are in the range of about 10~20% rate of all 

vertices.

Table 3. Sharp vertices and cluster numbers in our experiments

models # of vertices
# of sharp vertices

# of clusters
priority 1 priority 2 priority 3 total

fish 1604 51 1 55 107 15

bird 567 49 0 10 59 18

tiger 956 49 0 66 115 13

human head 428 19 12 64 95 11

(a) Our method       (b) [2]

(c) [6]    (d) [13]

(e) [14]

Fig. 3. Mesh segmentation results for a bird model

(a) Our method              (b) [2]

(c) [6] (d) [13]

(e) [14]

Fig. 4. Mesh segmentation results for a tiger model

Figure 3~4 compare the segmentation results of our method, 

Attene et al. [2], Katz and Tal [6], Mortara et al. [13], and Katz 

et al. [14], where the segmented sub-meshes are colored 

differently. In our method, the weight values 
1

w and 
2

w of 

Eqn. 4 are set to 0.4 and 0.6 respectively.

6. CONCLUDING REMARKS

We presented a hierarchical clustering method for 3D mesh 

segmentation. In order to resolve the sensitivity to the initial 

centroids of clusters and avoid falling into the local optima, 

first we extract the sharp vertices with priority numbers from 

the mesh by analyzing the global geometry such as convexity 

such as curvatures from the viewpoint of cognitive science. 

Next the hierarchical clustering method is applied to the sharp 

vertices, based on a metric including the geodesic distance 

between each pair of clusters. Since it is crucial to determine 

the segmentation resolution, we also presented a method to 

choose a reasonable number of clusters automatically. Finally 

the mesh segmentation is completed by merging other vertices 

except the sharp vertices into the nearest cluster by the distance 

metric composed of geodesic distances and curvatures.

The procedure of this paper is quite different to the one of 

another our approach [27] which use also extract global sharp 

vertices and automatically determine a reasonable number of 

clusters. In the k -means clustering [27], before iteration, the 

cluster number k is initially determined and k sharp 

vertices are arbitrarily selected for the centroids of clusters. On 

the while, in the hierarchical clustering of this paper, the 

number of clusters is not determined before iteration. The 

reasonable number k can be used only as one terminating 

condition, but not necessarily. At beginning, the sharp vertices 

are just the initial clusters, and the number of clusters is 

iteratively reduced by merging a selected pair of clusters.

Our method was experimented for four mesh models and 

compared with the previous methods. With current results, it is 

difficult to assert that the efficiency and the quality of our 

method is better than the previous methods, but only a new 

approach based on global geometry is proposed and put to the 

test. Since the mesh segmentation is input-sensitive as well as 

analyzing formally and quantitatively is a common concern in 

this research area, it is needed to develop a better method for 

analyzing the statistics of geometric properties and 

automatically determine the weight values.
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