
YunHee Kang: Performance Evaluation of a RAM based Storage System NGS 75

International Journal of Contents, Vol.5, No.4, Dec 2009

Performance Evaluation of a RAM based Storage System NGS

YunHee Kang

BaekSeok University, 115 AnSeo-dong, Cheonan 330-704 Korea

JaeHa Kung

Korea University, 5-1 Anam-dong, Seongbuk-ku, Seoul, 136-701 Korea

SeungKook Cheong

ETRI, 161 Gajeong-dong, Yusung-gu, Daejon 305-350, Korea

ABSTRACT

Recently high-speed memory array based on RAM, which is a type of solid-state drive (SSD), has been introduced to handle the

input/output (I/O) bottleneck. But there are only a few performance studies on RAM based SSD storage with regard to diverse

workloads. In this paper, we focus on the file system for RAM based memory array based NGS (Next Generation Storage) system

which is running on Linux operating system. Then we perform benchmark tests on practical file systems including Ext3, ReiserFS,

XFS. The result shows XFS significantly outperforms other file systems in tests that represent the storage and data requests typically

made by enterprise applications in many aspects. The experiment is used to design the dedicated file system for NGS system. The

results presented here can help enterprises improve their performance significantly.

Keywords: Benchmark, RAM based SSD storage, File system, Performance Evaluation

1. INTRODUCTION

 There are some application areas like multimedia, data

warehouse, and real-time data capturing, which are to

guarantee I/O performance to ensure desired throughput

including Input Output Per Second (IOPS) and data transfer

rate. But the I/O performance of storages like disk is

relatively lower than the processing speed of CPU[1].

On-chip shared L2 cache architectures are common in

today’s multi-core processors. Shared caches have important

advantages such as increased cache space utilization, fast

inter-core communication via the high-speed shared L2 cache,

and reduced aggregate cache footprint through the

elimination of undesired replication of cache lines.

The effective average rotational delay may be lower on

some disks when most of blocks are being read on one track.

The time to perform these seeks is included in the overhead

utilization so that the I/O performance can be achieved from

the reserved disk. Especially the increasing prevalence of

I/O-intensive applications mentioned above has placed

growing pressure on computer storage systems.

A solid-state drive (SSD) is a kind of data storage

devices that use solid-state memory to store persistent data. A

SSD emulates a hard disk drive interface, thus easily

* Corresponding author. E-mail : yhkang@bu.ac.kr

Manuscript received Oct.08, 2009 ; accepted Nov. 19, 2009

replacing it in most applications. With no moving parts,

SSDs are less fragile than hard disks and are also silent

(unless a cooling fan is used). However, most of the

performance analysis that has driven processor and system

design has been directed towards application-level

performance as quantified by the SPEC benchmarks.

Relatively little research has been conducted successfully on

guaranteeing storage performance for mixed workloads on

RAM based storage device, a kind of SSD. By using RAM

based SSD, volatile memory can be used to improve file

system performance in many ways. For one, it can help to

store all of the file system metadata, which is used for book-

keeping information about data. This is an attractive feature,

but it is a new approach in file system design. Also, it has not

been known yet just how much can be gained from it[2], [3].

The goal of this paper is to provide a partial answer to the

question of how to exploit main features and guidelines for

designing a file system for NGS(Next Generation Storage)

system which has a storage as RAM based memory array by

comparing the performance of three of the more popular file

systems with journaling available under Linux: Ext3,

ReiserFS, XFS and SpadFS. To consider two requirements

of a file system, performance and reliability, we try to

evaluate the I/O performance with recovery mechanism and

analyze the effects of I/O performance parameters at the file

system level. In this experiment, we also introduce a file

system SpadFS which has new recovery mechanism, crash

76 YunHee Kang: Performance Evaluation of a RAM based Storage System NGS

International Journal of Contents, Vol.5, No.4, Dec 2009

count to maintain consistency across crashes.

For this work, we apply a macro-benchmark tool,

PostMark, to measure transaction processing time and data

transfer rate with regard to workloads. We discover that

benchmarks need to consider L2 caching effects to provide

proper understanding into file system performance. This

paper also gives a number of recommendations on how to

design file system in the memory array storage.

In the remainder of this paper, we first provide a brief

overview of the file systems we are testing. We then describe

the benchmarks we will use in this study. Next, we describe

the machines we used to run the benchmarks and the rules

that define how the benchmarks are run. Finally, we present

the results of our experiments.

2. RELATED WORKS

2.1 RAM based memory array

There are two types of SSD which are Flash memory based

SSD and RAM based SSD. Flash memory based SSDs have

some characteristics like non-volatile and low power

consumption. These flash memory-based SSDs do not

require batteries. These are slower than but may perform

better than hard drives with regard to reads because of

negligible seek time.

SSD based on RAM is characterized by fairly fast data

access, generally less than 0.01 milliseconds, and are used

primarily to accelerate applications that would otherwise be

held back by the latency of Flash SSDs or traditional HDDs

[1], [2]. RAM-based SSDs usually incorporate internal

battery and backup storage systems to ensure data persistence

while no power is being supplied to the drive from external

sources. If power is lost, the battery provides power while all

information is copied from RAM to back-up storage.

Figure 1 shows the performance result with regard to

sequential and random read between disk based storage and

NGS system on a SAN environment. Hereto we called NGS

as the RAM based storage. NGS system has a main

characteristic that sequential and random performance values

are almost identical. With respect to IOPS, disk read

performance only has 10 % of NGS system. Especially there

is no difference of performance between sequential read and

random read on NGS system.

(a) Sequential read on disk (b) Random read on disk

(c) Sequential read on NGS (d) Random read on NGS

Fig. 1. Performance comparison with disk and NGS

2.2 File system

A file system is an organization of data and metadata on a

storage device. A file system is a method for storing and

organizing computer files and the data they contain to make it

easy to find and access them. The file system implements

the storage abstraction on top of the storage peripherals

attached to the host computer-typically one or more hard

disks [7]. It also exports an interface, allowing clients to read,

write, and manipulate files [3], [4].

File system operations can broadly be divided into two

categories, data operations and meta-data operations. Data

operations act upon actual user data, reading or writing data

from/to files. A metadata represents internal structure of file

system. It characterizes the feature of the file systems and

affects the I/O performance. Meta-data operations modify the

structure of the file system, creating, deleting, or renaming

files, directories, or special files [5].

Virtual File system (VFS) provides a uniform interface to

all specific file systems supported by the UNIX kernel [3].

The kernel dispatches file system operations to the

appropriate file system implementation based on pointers

stored in its data structures. Linux manages to support

multiple disk types in the same way as other UNIX variants.

The idea of the VFS is to put a wide range of information in

the kernel to represent many different types of file systems;

there is a field or function to support each operation provided

by any real file system supported by Linux. Figure 2 shows

the architecture of file system on Linux.

Fig. 2. File system architecture

A file system for high IOPS needs extremely fast

throughput in many areas. Likewise, reliability of a file

system is critical, and so a file system that supports

journaling may be a requirement.

A journaling file system uses a separate area called a log or

journal. Before metadata changes are actually performed,

they are logged to this separate area. The operation is then

performed. If the system crashes during the operation, there

is enough information in the log to "replay" the log record

and complete the operation [6].

YunHee Kang: Performance Evaluation of a RAM based Storage System NGS 77

International Journal of Contents, Vol.5, No.4, Dec 2009

File systems update their metadata by synchronous writes.

Each metadata update may require many separate writes, and

if the system crashes during the write sequence, metadata

may be in inconsistent state. As shown in Figure 3,

journaling file systems are fault-resilient file systems that use

a journal to log changes before they're committed to the file

system to avoid metadata corruption.

Fig. 3. Journaling file system

2.3 Specific file systems

In Linux operating system, file systems can be plugged

into the kernel through a well-defined interface that is

currently added to the kernel. As each file system is

initialized, it registers itself with the VFS. This happens as

the operating system initializes itself at system boot time.

The real file systems are either built into the kernel itself or

are built as loadable modules.

Ext3 is an enhancement of Ext2 developed by Stephen

Tweedie, Ext3 uses the same disk format and data structures

as Ext2, but in addition supports journaling. The default

journaling mode, ordered, guarantees consistent writing of

the metadata, descriptor and header blocks. This makes

conversion from Ext2 to Ext3 extremely easy. It is block

based, with sequential filename directory search [8].

ReiserFS is developed by Hans Reiser. It supports

metadata journaling, and is especially noted for its excellent

small-file performance. ReiserFS uses B* balanced trees to

organize directories, files and data. This provides fast

directory lookups and fast deletes operations. ReiserFS

supports a space-saving option called tail-packing that packs

small files into the leaves of the B* tree [11].

Released in May 2001, XFS is a journaling file system that

supports metadata journaling. The high level structure of

XFS is similar to a conventional file system with the addition

of a transaction manager and a volume manager. XFS uses

allocation groups and extent-based allocations to improve

locality of data on disk. It contains a feature allocation group

to support for parallel I/O. Each allocation group has its own

partition and maintains files and directories. This results in

improved performance, particularly for large sequential

transfers [10]. XFS meets the requirements for large files

systems, files, and directories through the following

mechanisms:

· B+ tree indices on all file system data structures

· tight integration with the kernel, including use of

advanced page/buffer cache features, the

directory name lookup cache, and the dynamic

vnode cache

· sophisticated space management techniques which

exploit contiguity, parallelism, and fast logging

SpadFS [12] is a new file system, designed by Mikulas

Patočka, which brings features like crash recovery for fast

recovery, indexed directories with Fagin’s extendible hashing,

etc.

3. EVALUATION TOOL AND WORKLOAD

PARAMETERS

Benchmarking is the process of running a specific program

or workload on a specific machine or system and measuring

the resulting performance[14], [15]. This technique clearly

provides an accurate evaluation of the performance of that

machine for that workload.

Postmark is a macro-benchmark designed to use the file

system as an e-mail server does, generating many metadata

operations on small files. The benchmark we have chosen for

this paper is postmark that was designed by Jeffrey Katcher

to model the workload seen by Internet Service Provider

under heavy load[14]. Specifically, the workload is meant to

model a combination of electronic mail, net-news, and web-

based commerce transactions [9].

The goal of macro-benchmarking is to demonstrate the

impact of meta-data operations for several common

workloads. Since there are an infinite number of workloads,

it is not possible to characterize exactly how these systems

will benefit all workloads[15]. The main function of macro-

benchmark programs is to measure how real workloads

perform on a file system. Thus many macro-benchmarks

consist of executing some application with carefully specified

parameters.

The advantage of the benchmark is as follows:

· supports a wide variety of workloads instead of

the specific workload implemented by Bonnie

· is not trace driven so that they are readily scalable

from small to large systems

· produces significant load on underlying file

systems

To accomplish this, PostMark creates a large set of files

with random sizes within a set of range. The files are then

subjected to a number of transactions. These transactions

consist of a pairings of file creation or deletion with file read

or append.

We initially ran our experiments using the pre-defined

configuration with regard to level of workload as shown in

Table 1. In our experiments we set the size of file generated

randomly in which range is from 512 byte to 32768 byte, and

set the number of subdirectories to 10. The size of read and

78 YunHee Kang: Performance Evaluation of a RAM based Storage System NGS

International Journal of Contents, Vol.5, No.4, Dec 2009

write is varied from 512 byte to 8192 byte.

Table 1. Workload parameter

Workload types The number of files
The number of

transaction

Low 1000 50,000

Medium 20,000 50,000

Large 20,000 100,000

4. EVALUATION

This section describes the hardware platforms, operating

system and software versions, and benchmarks used for

testing efforts, as well as the results observed.

4.1 Experimental Platform

We perform benchmark tests on practical file systems,

Ext3, XFS, ReiserFS, SpadFS, which are built by kernel

module. For evaluating I/O performance, we get the result of

I/O performance that each of three kinds of partitions set and

conduct experiments of them. The memory array is emulated

as logically SCSI type disk. Target file system is created and

built as a single partition.

Table 2. Experimental platform

Component Specification

CPU

Intel(R) Xeon(R) CPUE5472@ 3.00GHz

64 bit Xeon QuadCore ´ 2

L1 I cache: 32Kbyte

L1 D cache: 32Kbyte

L2 cache: 6144Kbyte ´ 2

Main memory FBDIMM DDR2 1GB(PC2-6400) ´ 8

Process Bus FSB 1600MHz

OS Disk
Seagate S-ATA2 500GB, 7200 RPM

16 MB disk buffer

SSD Device Jetspeed 256G

External Data

Bus

PCI Express

2.5Gb/s:Width ´ 4

On the NGS, file systems we built on partitions of the

disks are mounted, and then we begin experiments. The disk

of NGS named Jetspeed is used to support I/O operations

SCSI emulator by dedicated device driver. Table 2 describes

the platforms on which the testing was conducted. Postmark

version 1.5 is used on the platform. First, there is no such

thing as a standard configuration. In addition, different

workloads exercise the system differently and results across

research papers are not comparable.

4.2 Experimental Results

We conduct the experiment to measure the performance of

different levels of journaling on the ext3 file system which

can be specified as mount options. In this experiment, we

examine a trade-off between data integrity and performance.

The problem appears if there is a system crash of electric

outage before the modified data in the cache have been

written to disk. In the design of NGS file system, journaling

is considered an essential part to recover the system crash.

In this experiment, according to journaling types, we do

I/O performance tests on Ext3 file system. In writeback mode,

only the metadata is written to the journal, and the data

blocks are written directly to their location on the disk. This

preserves the file system structure and avoids corruption, but

data corruption can occur.

To solve this problem, you can use ordered mode. Ordered

mode is metadata journaling only but writes the data before

journaling the metadata. In this mode, data and file system

are guaranteed consistent after a recovery. Finally, journal

data can also be supported. In journal data mode, both

metadata and data are written to the journal. This mode offers

the greatest protection against file system corruption and data

loss but can suffer from performance degradation. We focus

on journaling time and do not consider partial failure due to

kernel failure and rollback overhead.

With regard to journal types, transaction processing time is

shown in Figure 4. In low workload, the higher the number of

transaction, the more the I/O performance we get compared

to the number of file. The delayed write is 4.5 times faster

than journal data.

It is considered that a sequential write somehow warms up

the L2 cache locality for all file systems we tested. L2

caching tries to handle busty allocations in a different manner.

The effects of memory and L2 caching are easily visible at

the application level, beyond file system micro-benchmarks.

Fig. 4. Elapse time of transaction processing

Figure 5 shows data bandwidth which is the data transfer

rate, when write operation is run. As is indicated in this

figure, delayed write outperforms other methods in the

overall workload. We may consider the effects of memory,

and L2 caching is also viable at this experiment.

YunHee Kang: Performance Evaluation of a RAM based Storage System NGS 79

International Journal of Contents, Vol.5, No.4, Dec 2009

Fig. 5. Data bandwidth of write operation

4.3 Comparison to file systems
Figure 6 through Figure 8 show the result of the I/O

performance of the specific file systems which is measured in

terms of the number of transactions per second, data

bandwidth of read and write operations.

Figure 6 shows that spadfs file system outperforms other

file systems. It is considered that spadfs adopts crash count

for failure recovery, which helps to reduce overhead of

journaling. ReiserFs has better performance than Ext3. XFS

and ReiserFS outperform other file systems in all kinds of

workload.

Fig. 6. The number of transaction per second

As shown in Figure 7, XFS has 1.1 times more data

bandwidth than Ext3 and 7.7 times more data bandwidth than

ReiserFS.

Fig. 7. Read data bandwidth

As shown in Figure 8, the I/O performance when writing

data gives the pattern which is close to that of read operation.

In our tests, we observed XFS to be generally quite speedy.

XFS tries to cache as much data in memory as possible, and

only writes things out to disk when memory pressure dictates

that it do so. In contrast, when ext3 (in "data=ordered" mode,

the default) flushes data to the drive, depending on the I/O

load, it can result in a lot of additional I/O access. The results

show that XFS is the best file system to use for manipulating

large files.

Fig. 8. Write data bandwidth

5. DESIGN CONSIDERATIONS OF DEDICATED FILE

SYSTEMS FOR NGS

NGS system is designed for stand-alone storage system as

well as storage pool based system. In the storage pool,

network-attached storage devices provide ways to build large

scalable file systems that distribute data and load across

multiple network nodes. It further simplifies storage

management and lets users take full advantage of the

partitioning and heterogeneous storage virtualization

capabilities of the integrated storage platform.

A file system for NGS is responsible for the structure and

control of file storage. It is in fact an important component of

any operating system. It is necessary for all the data to be

stored in a persistent manner and, therefore, the most reliable

medium for persistent storage has been the disk. In addition

to being inexpensive, it has a large storage space and it can

retain stored data even when the power is shut off.

Because of the increasing gap between processor speed

and disk latency, file system performance is largely

determined by its disk behavior. To design NGS in the

perspective of I/O performance, we consider how to

minimize the number of file operations performed by I/O

benchmark tests. It is important to defer any I/O operations

until the point that the application actually needs the data.

The primary cache of file data, called the buffer cache,

contains copies of recently accessed data blocks. To optimize

performance, a file system attempts to overlap I/O requests

with application computation.

By pre-fetching blocks from the disk before applications

request them, the system tries to avoid forcing applications to

stall while waiting for data from the storage. The caching

area is managed by the existing OS kernel polices, to which

we make little change for the sake of generality. By

performance parameter determined, several small I/O

80 YunHee Kang: Performance Evaluation of a RAM based Storage System NGS

International Journal of Contents, Vol.5, No.4, Dec 2009

transfers are grouped into one large transfer. Due to RAM

media characteristics there is basically no performance gap

between sequential I/O and random I/O in the NGS. It is best

to use the preferences system to capture only user preference

and not data that can be inexpensively recomputed.

6. CONCLUSION

Many applications strongly require I/O performance

guarantees. But relatively little successful research has been

conducted on guaranteeing storage performance for mixed

workloads. To design a file system for NGS system, we

consider a file system which is running on Linux. We

performed benchmark tests on practical file systems and then

got the result of I/O performance. It may be possible to

improve the NGS system in terms of file system, which

handles the burst of I/O requests. This paper sketched the

file system for NGS system that is composed of RAM based

disks. In this paper the design guideline is presented. Our

goal is to provide a shared storage system for virtualization

with loosely coupled NGS systems. To improve I/O

performance, it needs to apply the result of performance

evolution to extend device driver.

ACKNOLWLEGEMENT

This work was supported by the IT R&D Program of

MKE/KEIT [2008-S-037-02, NGS (Next Generation

Storage) System Research & Development]

REFERENCES

[1] Agrawal, N., W. J. Bolosky, et al. “A five-year study of

file-system metadata,” ACM Trans. on Storage, vol. 3,

no. 9, 2007.

[2] Solid Data Systems, "Impact of Solid-state disk on high-

transaction rate databases," Solid data systems, Inc.

White paper, 2005.

[3] TMS, "Increase Application Performance with Solid

State Disks", TMS white paper, 2008.

[4] Kleiman, Steven R. “Vnodes: Architecture for Multiple

File System Types in Sun UNIX,” Proc. the Summer

1986 USENIX Conference, Atlanta, 1986.

[5] http://tldp.org/LDP/tlk/fs/filesystem.html

[6] Dominic Giampaolo, Practical File System Design with

the Be File System, Morgan Kaufmann Publishers, 1999.

[7] Zhang Zhihui and Ghose Kanad, “yFS: A Journaling

File System Design for Handling Large Data Sets with

Reduced Seeking,” 2003, pp. 59-72.

[8] M. K. McKusick, W. N. Joy, S. J. Leffler, R. S. Fabry,

“A Fast File System for UNIX,” ACM Transactions on

Computer Systems , vol. 2, 1984, pp. 181-197.

[9] Ext3, http://en.wikipedia.org/wiki/Ext3

[10] Jeffrey Katcher, “PostMark: A New File System

Benchmark,” TR3022, Network Appliance Inc. Oct.,

1997.

[11] A. Sweeney , “Scalability in the XFS File System,”

Proc. the Usenix 1996 Technical Conference, 1996, pp.

1-14.

[12] Namesys, ReiserFS,

http://en.wikipedia.org/wiki/ReiserFS

[13] M. Patočka, Spadfs,

http://artax.karlin.mff.cuni.cz/~mikulas/spad

[14] J. Katcher, “PostMark: A New File System

Benchmark,” Technical Report 3022, Network

Appliance, 1997.

[15] A. Brown and M. Seltzer, “Operating System

Benchmarking in the Wake of Lmbench: A Case Study

of the Performance of Netbsd on the Intel X86

Architecture,” Proc. 1997 ACM SIGMETRICS Conf.

Measurement and Modeling of Computer Systems, June

1997, pp. 214-224.

YunHee Kang
He received the B.S., M.S in computer

engineering from Dongguk university,

Korea in 1989, 1991 respectively and

also received Ph.D. in computer

science from Korea university, Korea

in 2002. Since 2000, he has been an

assistant professor at the division of

information and communication, Baekseok University, Korea.

His research interests include performance evaluation in

storage systems, grid computing, SOA and fault-tolerance in

distributed systems.

JaeHa Kung
He is in the learning of Electrical

Engineering at Korea University,

Korea. His research interests are low-

power and low-leakage circuits and

their high performance design.

SeungKook Cheong

He received Ph.D. in electronics and

information communication

engineering from Hannam University,

Daejon in 2004. Since 1985, he has

been a principal researcher at

Broadband Convergence Network

Research Division, ETRI, Korea. His

research interests include grid computing, utility computing

and solid-state disk.

