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ABSTRACT

Task scheduling is an integrated component of cdimpwvith the emergence of grid computing. In théper, we address two
different task scheduling models, which are statariRl-Robin (RR) and dynamic Fastest Site First &8k scheduling method,
using extended timed marked graphich is a special case of Stochastic Petri Neta\N(SBtochastic reward nets (SRN) is an
extension of SPN and provides compact modelingtfasifor system analysis. We build hierarchicaNSiRodels to compare two
task scheduling methods. The upper level modelaiesutask scheduling and the lower level modelémgints task serving process
for different sites with multiple servers. We congptirese two models and analyze their performancesving reward measures in

SRN.
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1. INTRODUCTION

Task scheduling is an integral part of parallel distributed
computing. With the emergence of grid and ubiqustou
computing, new challenges appear in task schedblasgd on
properties such as security, quality of serviced dack of
central control within distributed administrativerdains [1].
Task scheduling is the key technology in grid reseu
allocation. How to effectively match grid tasks hwiavailable
grid resources is a challenge for a grid computaygtem
because of the dynamic, heterogeneous and autorsonadure
of the grid [2]. The design of a scheduling mechanthat can
adaptive to different types of tasks and adjustitbieavior and
response of a system to meet certain performanpgereznents
is a tedious and challenging problem.

Marked graphs are special cases of Petri nets @mfeling
asynchronous concurrent systems [3]. The model timad
marked graph (TMG) is obtained from a marked grégh
adding durations to the events in the system [d]cdmplex
man-made environments discrete event dynamic sgstae
frequently encountered, and a timed marked graphidely
accepted as a convenient tool to describe systértigsokind
[5].

In this paper, we consider two task scheduling risodsing
static Round-Robin (RR) and dynamic Fastest Site HHSF)
scheduling method respectively. And we use exteidé¢@ to
simulate task serving processes. TMG can be aapmase of
SRN [6]. We study the performance of task schedulisigg a
formalism called SRN to model its behavior. To digsgask
scheduling and task serving process, the hieraacts®RN
modeling techniques are adopted. The upper levetlemo
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simulates task scheduling and the lower level model
implements task serving process. And we analyzeetheo
models by giving reward measures.

2. TMG AND HIERARCHICAL SPN

2.1 Timed Petri Nets

A Petri net (PN) is a bipartite directed graph witho
disjoint sets called places and transitions [3]e T$tate or
condition of the system is associated with the gmes or
absence of tokens in various places in the net.condition of
the net may enable some transitions to fire. Thiagf of a
transition is the removal of tokens from one or enplaces in
the net and/or the arrival of tokens in one or nmleees in the
net. The tokens are removed from places connedtethe
transition by an input arc; the tokens arrive iagals connected
to the transition by an output arc [3]. A placetsition netN is
atripleN = (P, T, A) where [7]:

22TMG

The timed marked graphs are special cases of SRN. T
definition is given byTMG=(P,T,F,W,M,z,7) whereP is a set
of places,T is a set of transitions; < (Px T) U (Tx P)is a
flow relation, W:F— { 1, 2, ... }is a weight functionM, isan
initial marking, andx is the place delay functioP—~R" (the
set of non-negative real numbers)s the transition firing time
functionz: T—R"[8]. The dynamic operation of the TMG is as
follows. When a transition receives a token fromiit-arcs, it
performs some internal computation and then sendstaken
along each of its out-arc. It takes time that atolravel along
a link.

Normally, the TMG have all arc weights equal to arel
each place has one token. In this paper, we usextamded
TMG that some special places can have multiplertske
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2.3 Hierarchical SPN

In the use of SPN to solve real world problems, often
generate a system model that is too big to be ddlyeSPN. A
solution is dividing the model into several SPNs aplving it
by iteratively execution of these SPNs.

The formulism of Hierarchical SPN is given by a laup
H_SPN:(P,T,D,D%g,m">,d,w) where

— P is the set of places. Each place may contain ®KEne
marking of the SPN is then defined by the numbeokéns in
each place. La¥l be the set of markings.

— T is the set of transitions.

— D: ((PxT)U(TxP))xM) —IN is the set of input arcs and
output arcs. Each arc is given by its (marking-deeat)
multiplicity.

— D% (PxTxM) —IN is the set of inhibitor arcs, from a place
to a transition, with its associate multiplicity.

— P € INpis the initial marking.

— >: T —INis the explicit priority to transitions.

— d: T —{distributions} defines the ring time distributiasf
each transition (note that it includes immediaamsitions).

— w: (TxM) —IR" is a weight function used to choose the
one which will fire if several have the same riimge.

— g (TxM) —{0,1} is the guard function for each transition.
It is a generalization of inhibitor arcs.

Marking-dependent enabling function (also calledjuard)
with each transition can be used to specify thadirate of a
timed transition or the firing probability of an imediate
transition. The rates of transition are computedbaer level
model and fed into the system level model.

Compared to the brutal force approach, this hiereath
approach largely reduces the number of stateseasystem
level. This approach is an exact technique (not
approximation) for steady state measurement.

2.4 SRN

SRN is an extension of stochastic Petri nets (SRM) ia
SPN augmented with the ability to specify outpuamees as
reward-based functions, for complex systems peidoa
evaluation. SRN has the ability to allow extensivarking
dependency. It also has one important feature pfessing
complex enabling/disabling conditions through gufarmttions.
This can greatly simplify the graphical represeotat of
complex systems. For an SRN, all the output measares
expressed in terms of the expected values of tharcterate
functions. To get the performance and reliabiligiability
measures of a system, appropriate reward ratesiasesb with
the markings are assigned to its SRN. As SRN is aatioatly
transformed into a Markov Reward Model (MRM) [6]eatly
state and/or transient analysis of the MRM produttes
required measures of the original SRN [6,9,10].

3. HIERARCHICAL SYSTEM MODELING

Integrating system availability and performanceairsingle
model often causes the largeness and stiffnessepndil,12].
We built hierarchical model for system modelingeTihigher-

an
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level represents the task scheduling process, haedower-
level simulate the actual task serving process.ratthical
SRN model is the Markov reward model where the rdwar
rates come from a sub-model [10].

3.1 Higher-level M odeling

For the higher-level, we built two kinds of tasksduling
models. One uses static Round Robin (RR) task schedulin
method and the other adopts dynamic Fastest Sis¢ (HSF)
task scheduling method. Figure 1(a) and 1(b) sh@RR and
dynamic task scheduler, respectively.

FSF

tlam1 E t2
My D

o——= .

h1 :
E t|c3 ,D§ i 3
volo—~—=—Y :/D

(b). Fastest Site First task scheduler.
Fig. 1. Higher-level Tas kScheduling Models.

The firing of transitiorttam1 means tasks arriving with rate
then tasks goes to plapgwaiting for scheduling. For the static
RR scheduling method, tasks are scheduled accorditaad
balancing and assigned in circular order. To enshi® we
define three places, ¢,, andcs. With initial tokens given ta;,
transitiont, first get fired which move one token to placg
then transitiont, get fired which move one token to place
then transitiont; get fired. So the scheduler assigns tasks to
three sites with the cyclic sequengest,—t;—t;.

For the dynamic task scheduling method, tasksareduled
according to the processing ability of these thsdes, i.e.
depending on the sub-models return value of praugsisne of
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these sites, the scheduler dynamically assignss téskthe
fastest site. We usguardfun() [6] to represent the enable
condition of transitionscy, tc,, andtcs, so when task arrives at
placepg , it will compare and find which one has the sestll
cycle time, then assign task to the correspondilagepp;,
i=1,2,3.

Transitionty, t,, andt; stand for three sites which are actually
executed in the lower-level model. We ussefun() [6] to
represent that the firing rate of transitiont,, andt; are the
return value from the lower-level model which i® thmallest
cycle time of lower-level model. For RR schedulingthod,
this return value is only used as the initial fiyimate of
transitiont,, t,, andts. But for dynamic scheduling method, we
also compare these three return values and takiaghest one
to assign task to it. Plagm, p,, andpsz represent number of
tasks assigned to these three sites respectivhly. different
ratefun() we set for transitiong are as follows:.

ratefun() t; { if t; = min(SCT1, SCT2, SCT3) return (1)
elsereturn(0); },i=1,2,3

An inhibitor arc drawn from a place to a transitioreans
that the transition cannot fire if the place comsaat least as
many tokens as the cardinality of the inhibitor #¢ The
inhibitor arc fromp, to tlam1 and three from, p,, ps to tcy, tc,,
tcz are used to put constraints with their limited wpisize.

3.2 Lower-level M oddling

For the lower-level, we model three different sit@&h
multiple servers. Figure 2 shows three extendeddimarked
graph represent three sites that consist of seseraérs. When
a task is assigned to a site, it is divided inteesal subtasks
according to the model of the site, and each skibtastains
several operations. Then different severs in theehexecute
some operations of subtasks. The initial value lafcep,
means number of tasks which one site can execute.

SubT1

SubT

?pzo

SubT3

SubT

p20

SubT3

(b). Site2

21
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. p12
L
seerul 13
(c).Site3

Fig. 2. Lower-l evel TMG wi th multi pl eservers of three websites.

Figure 2(c) shows one site with three serv&s$,, S;) and
can process four subtasi&ipT,, SubT,, SubT;, SubTy).

SubTask has number of operationis{~4): SubT, has three
operations which are executed through transitiort; andt,
with serverS,, S, andS;. For Subtask 2-3, the interpretations
are the same. Servérincludes several subtask operations
(j=1~3): S, has process parts operation of SubTaSkibTask
and SubTaskwhich are executed through transitignts and
ty. For server 2-3, the interpretations are the same.can
depict the activities of Subtasks and servers asyhles:

SubTy: Ps—P2—Ps—Pas

SubTy: pr—ps—pr

SubTs: P1o—Pe—P1o

SubTy: P13—P12—P13

Sit Pris—Pro—P0—Pis

S2t P2s—P2s—P2s

Sst P2r—P22—Poz—P2s— P21

We extended the TMG by putting multiple tokens df, 2,
and m3 inpog, Pos, andpas respectively, which means that each
server has the capability to handle multiple taglerations
simultaneously.

The main parts of Figure 2(a) and (b) are samepixbat
task processing sequences are different with somieat [13].

The subtasks executing sequence in Figure 2(a) is
SubT;—SubT,—SubT;—SubT,.

The subtasks executing sequence
SubT,—SubT;—SubT;—SubT,.

in Figure 2(b) is

3.3 Hierarchical Models Executing Process

Hierarchical SRN models can be executed using a UNIX
shell file and submodels can communicate infornmatia files
that can be declared and opened inside individuaN S
submodel input files.

The interaction of higher level model and lowerelemnodel
is done by system calls, which is executed in gfiandtion of
system level transition, and passing the outpat &f lower
level model.

To build the hierarchical model we make two semarat
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models written in C-like programming language, whis used
to describe SRN models. The one file representsehitgvel

and others are low level models. The higher leleldontains
the code which calls low level models with someapzeters at
some step of execution.

4. MODEL ANALYSIS

4.1 Measures of Interest
In order to obtain the interested measures nuniritam
the SRN model, underlying Continuous-Time Markov Chain
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1*W
SR1

GoS =ST+

4.2 Numerical Results
We get the numerical results by giving some diffieri@put

parameters f(4, ql1, h) to the higher-level model,
1€{0.1,0.2...,1.4}; gq1=2; h1=6. We give input parameters
f(njob, m1, m2, m3to the lower-level model, where the value
of njob is gotten from the higher-level model agapaeter
transferred which means the scheduler assigns nuofibasks
to the site. We givem1=5; m2=7; m3=2; which means the

(CTMC) is generated and solved through the use of theability of each server to handle multiple task apiens

software package SPNP [13]. We assume that alkitran
firing rates in our SRN models are exponentiallyribisited, so
we perform the steady-state analysis of the modelhave
constructed [10].

For the lower-level model, we calculate the cydfaet of
each subtask, choose the smallest one and calcitkte
processing rate, then return these value as ting fiate ofty, t,,
andts in the higher-level model.

° Smallest Cycle Time (SCT)

According to Little's Resultt N =A T , We can

calculate the average time spent in the sysfEme )\ﬁ .In

SRN, we extend it to calculate the cycle time ofilatask. The

formula is as following: Wheri mark(P) represents the

average queue length of subtasiand rate("t,") is theith

subtask arriving rate. We then compare these tyokeand get
the smallest one.

> mark(R)
— i

rate("t,")

For the higher-level model, we calculate systenoubhput
and system response time of these two differenediding
models.

o System Throughput (ST)

To calculate the total system throughput, we use th
following formula:

ST = 2 rate(t,)

CT SCT =min(CT)

° System Response Time (SRT)
To calculate the total system response time, we thee
following formula:

Z mark(P)

- rate("tlantl")

o Grade of Service (GoS)

We then define a formula to represent grade ofieerwV is
the weight to take use of SRT. Here we just let W¥tie
formula is as the following:

simultaneously. Table 1 shows the processing tifrmubtasks
on each server as input data [5].

Table 1. Subtask processing time

SubTask| S S S
SubT 5.82 4.36 3.93
Sub® - 2.93 7.56
Sub® 3.76 - 9.61
SubT, 1.53 - 4.38

Table 2 shows ST, SRT and GoS of two models wiffergint
tasks arriving rate

Table 2. ST and SRT

RR Scheduling
lambda ST SRT GoS
0.1 0.100 10.580 0.195
0.2 0.186 22.720 0.230
0.4 0.182 44.130 0.204
0.6 0.178 46.427 0.200
0.8 0.177 47.035 0.198
1.0 0.177 47.293 0.198
1.2 0.177 47.430 0.198
1.4 0.176 47.511 0.197
Dynamic Scheduling
lambda ST SRT GoS
0.1 0.100 15.391 0.165
0.2 0.197 29.046 0.231
0.4 0.265 39.329 0.291
0.6 0.263 39.609 0.288
0.8 0.254 39.567 0.279
1.0 0.244 39.643 0.269
1.2 0.234 39.816 0.260
1.4 0.226 40.049 0.251

Figure 3 shows the GoS comparison of these two teode
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Grade of Service
GoS
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Fig. 3. GoS comparison.

We also compare the smallest cycle time in the tdexel
models. Table 3 shows different SCT of each siteratng to
number of tasks from higher level model.

Table 3. Lower-level SCT

Site No. tasks SCT
2 5.909
4 5.865
1 6 9.381
8 8.814
10 11.778
10.087
4 10.087
11.664
2
8 11.664
10 14.127
12 16.468
2 10.672
4 10.672
10.672
3
8 12.695
10 12.695
12 16.718

5. CONCLUSION

In this paper, two task scheduling models with eddht
scheduling methods have been constructed to giirpemce
analysis using extended timed marked graphs. Hieical

models are built for system modeling to resolvéeskargeness
problem. We compare these two models and analyeg th
performances such as system throughput and systsponse

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

time by giving reward measures in SRN. We then ereat [13]

another measure , grade of service which take 8dtand SRT
into account. According to the final results we catlare that

system using dynamic scheduling method is moreiefft than
that using Round Robin scheduling method.
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