
22 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

Memory Compaction Scheme with Block-Level Buffer

for Large Flash Memory

Weonil Chung

Dept. of Information Security Engineering

Hoseo University, Asan, Chungcheongnam-Do, Korea

Liangbo Li

Dept. of Computer and Information Engineering

Inha University, Inchoen, Korea

ABSTRACT

In flash memory, many previous garbage collection methods only merge blocks statically and do not consider the contents of buffer.

These schemes may cause more unnecessary block erase operations and page copy operations. However, since flash memory has the

limitation of maximum rate and life cycle to delete each block, an efficient garbage collection method to evenly wear out the flash

memory region is needed. This paper proposes a memory compaction scheme based on block-level buffer for flash memory. The

proposed scheme not only merges the data blocks and the corresponding log block, but also searches for the block-level buffer to find

the corresponding buffer blocks. Consequently, unnecessary potential page copying operations and block erasure operations could

be reduced, thereby improving the performance of flash memory and prolonging the lifetime of flash memory.

Keywords: Flash Memory, Memory Compaction, Garbage Collection, Block-level buffer, FTL.

1. INTRODUCTION
∗

As the usage of mobile devices and mobile phones has

rapidly increased, flash memory has been considered as the

next-generation storage systems to replace the hard-disk

because it has some advantages such as faster access speed,

lightweight, low power consumption, small size and shock

resistance. However, since flash memory is characterized by its

erase-before-write operation, it must be erased before new data

is written to a given physical location. Unfortunately, write

operations are performed in unit of sector, while erase

operations are executed in unit of block, usually, a block

consists of many sectors. Besides, flash memory will

accumulate obsolete sectors after lots of updates due to the

erase-before-write characteristic. To make space for new

blocks, obsolete sectors must be reclaimed. The only way to

reclaim a sector is to erase an entire unit, in which this process

is called garbage collection. Moreover, flash memory can be

erased in limited times. Therefore, flash memory requires a

well-designed garbage collection scheme to evenly wear out

the flash memory region [1]-[5].

Some previous work focus on how to design a well FTL

(Flash Translation Layer) and how to reduce write operations

using buffer mechanism [6]-[10]. FTL is the driver that works

∗ Corresponding author, E-mail: wnchung@hoseo.edu
Manuscript received Sep. 17, 2010 ; accepted Dec. 20, 2010

in conjunction with an existing operating system to make linear

flash memory appear to the system like a disk drive. The key

role of FTL is to redirect each write request from the host file

system to an empty area that has been already erased in

advance. The buffer mechanism is also been used in flash

memory to reduce the write requests. Since the erase-before-

write characteristic of flash memory, frequent updates will

make the performance of flash memory decrease. Write buffer

cache could gather these frequent updates and make them to

one write request. Therefore, buffer mechanism reduces the

write operations to flash memory.

Among the previous works [11]-[14], the garbage collection

is done only considered the contents of flash memory. Merging

the data block and log block is to copy valid pages in them to a

new block. However, when the contents in buffer are flushed to

flash memory, the pages in new block produced by garbage

collection are possible to become invalid. Under this situation,

flash memory needs more pages copy operations and block

erase operations in next garbage collection process. Actually, it

can be avoided by making a well garbage collection scheme.

In this paper, we propose a novel garbage collection method

called block-level buffer garbage collection. When FTL needs

to merge blocks during the garbage collection process, it will

refer to the contents of buffer. By examining the contents of

buffer, FTL copies the best corresponding buffer blocks to

flash memory or selects another appropriate block as victim

block to improve the performance of flash-based storage

DOI:10.5392/IJoC.2010.6.4.022

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 23

International Journal of Contents, Vol.6, No.4, Dec 2010

system. In shortly, the proposed method is divided into two

parts: how to merge blocks based on block-level buffer and

how to select a log block as victim block. We focus on these

two issues in this paper. First, our novel garbage collection

method merges block with three kinds of blocks: log blocks,

data blocks and buffer blocks. Second, our victim block

selection method selects a log block as victim block through

searching the contents of buffer. The proposed method can

reduce unnecessary potential page copying numbers and

unnecessary potential block erasure numbers.

2. RELATED WORKS

2.1 Flash Memory

Flash memory is a type of nonvolatile, electrically erasable

programmable read-only memory. In this paper, our proposed

method mainly focuses on NAND flash memory.

NAND flash memory consists of blocks, each of which

consists of pages [7]. There are three basic operations for a

NAND flash memory: read, write and erase. Read and write

operations are performed on a page basis, while an erase

operation is executed on a block basis. There are a few

drawbacks as follows: 1) No in-place-update: The memory

must be erased before new data can be written. The worse

problem is that the erase operation is performed block by block,

while the write operation is performed page by page. 2)

Asymmetric operation costs: For flash memory, read operations

are faster than write operations. In addition, as a write

operation may accompany an erase operation, the write

operational latency becomes even longer. 3) Uneven wear-out:

The number of erasures on each block is limited, to 100,000 or

1,000,000 times. Once the number is reached, the block cannot

be used any more.

Therefore, the number of write and erase operations should

be minimized not only to improve the overall performance but

also to maximize the lifetime of NAND flash memory.

2.2 Flash Translation Layer (FTL)

FTL is a translation layer between the native file system and

flash memory [10]. The main role of FTL is to emulate the

functionality of block device with flash memory. It emulates a

hard disk, and provides logical sector updates. FTL achieves

this by redirecting each write request form file system to an

empty location in flash memory that has been erased in

advance, and by maintaining an internal mapping table to

record the mapping information from logical sector number to

physical location. Besides the address translation from logical

sectors to physical sectors, FTL carries out several other

important functionalities, such as guaranteeing data consistency

and reclaiming the discarded data blocks for reuse.

The mapping between the logical address and the physical

address can be managed at sector, block, or hybrid level.

Therefore, the mapping scheme is categorized with sector-level

mapping, block-level mapping, and hybrid mapping [6],[8],[9].

When free log blocks are not sufficient, the merge operation

called garbage collection will happen. Since any log block is

associated with data blocks, merge operation is to copy valid

data from log block and data blocks to new free block. While

executing the merge operation, multiple page copy operations

and erase operations are invoked. Therefore, merge operations

seriously degrade the performance of flash memory because of

extra operations.

Generally, large sequential write operations can induce

switch merge operations, while random write operations induce

full merge operations. Therefore, if random write operations

occur frequently, the performance of the flash memory system

decreases.

2.3 Flash Buffer Cache

To decrease the number of extra operations, the write buffer

management scheme is required to 1) decrease the number of

merge operations by clustering pages in the same block and

evicting them at the same time, 2) evict pages such that the

FTL may invoke switch merge or partial merge operations

which show relatively low cost rather than the full merge

operation, which is expensive, and 3) detect sequential page

writes and evict those sequential pages preferentially and

simultaneously [2], [3], [15].

The buffer can manage data in page-level management

buffer and block-level management buffer. In page-level

scheme, pages are evicted to flash memory page by page.

When buffer pages are managed in a block-level scheme, pages

are clustered by corresponding block number in the flash

memory. Block-level buffer management policy not only

invokes relatively fewer merge operations than page-level

buffer management policy but also invokes switch merge or

partial merge rather than full merge for merge operation.

Block-level buffer management policy shows better overall

performance than the page-level buffer management policy

[12], [16]-[18].

2.4 Cleaning Policies

Cleaning policies determine when to clean, which blocks to

clean, and where to write data in order to minimize cleaning

cost. The cleaning cost includes erasure cost and the migration

cost for copying valid data into other blocks. In this paper, we

measure the quality of cleaning policy by block erasure

numbers and page copying numbers with previous works such

as greedy policy, cost-benefit policy [11], and cost age times

policy [13]. Greedy policy considers only cleaning cost.

Greedy policy always selects blocks with the largest amount

of garbage for cleaning, hoping to reclaim as much space as

possible with the least cleaning work. Cost-benefit policy [14]

chooses to clean blocks that maximize the formula:

(benefit/cost) = (age*(1-u))/2u, where u is the block utilization

and (1-u) is the amount of free space reclaimed. The age is the

time since the most recent modification (i.e., the last block

invalidation) and is used as an estimate of how long the space

is likely to stay free. The cost of cleaning a block is 2u that one

u is to read valid pages and the other u is to write them back.

Cost Age Times (CAT) policy [16] chooses to clean blocks that

minimize the formula: (CleaingCost)*Age-1*(number of

Cleaning). The Cleaning Cost is defined as the cleaning cost of

every useful write to flash memory as u/(1-u), where u is the

percentage of valid data in a block. Every (1-u) write incurs the

cleaning cost of writing out u valid data. The Age is defined as

the elapsed time since the block was created. The Number of

24 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

Cleaning is defined as the number of times a block has been

erased.

 In comparison, Cost-benefit policy considers cleaning cost

and age of data. And cost age times policy considers cleaning

cost, age of the data, and number of cleaning. But all the above

cleaning policies focus on selecting a victim block statically in

flash memory. The proposed method is different from them,

since we not only consider the static state of flash memory, but

also consider the dynamic state of buffer cache.

3. BLOCK-LEVEL BUFFER AWARE MERGE

3.1 Buffer-aware Block Merge

In order to prevent potential unnecessary page migrations,

the proposed method refers to the contents of buffer during the

block merging process. There is trade-off between merge

performance and the buffer hit ratio. First, move up-to-date

blocks in the buffer into new allocated data blocks can improve

the merge performance. Second, if the corresponding blocks

will not be evicted to flash memory in the near future, they will

be updated frequently. It causes that moving these blocks into

flash memory will make the buffer hit ratio decreased. In this

case, it is beneficial to choose another log block as victim log

block. Therefore, the issue can be viewed as how to merge

blocks and how to select victim log block.

As mentioned before, the cleaning policy determined when

to clean, which blocks to clean and where data to write. In this

paper, we do not discuss the issue of when to clean, since the

cleaning can start when the number of free blocks becomes

lower than a threshold. However, we will set a threshold to test

the proposed method in our experiments. If no more empty

sectors exist in the log blocks, the proposed garbage collection

approach chooses one of the log blocks as victim and merges

the victim block with its corresponding data blocks and its

corresponding buffer blocks.

The merge operation proceeds as follows: First, given a log

block as victim block, find the corresponding data blocks and

allocate the same amount of free blocks. Before processing the

merge operation, it is necessary to determine the log block that

will serve as the merge target. Three existing cleaning policies

which selected a victim log block according to different

features are described. In this paper, we will present a new log

block selection method which is distinct from the existing

cleaning policies. In hybrid mapping scheme of FTL, there is a

block-level mapping table addition to a page-level mapping

table, in which the page-level mapping table contains the

separate page mapping information between log blocks and the

corresponding data blocks. Therefore, we can obtain the

corresponding data blocks when given a log block through

searching the page-level mapping table. Second, search the

buffer to find whether the blocks which have the same number

to the corresponding data blocks exist or not. In block-level

buffer, data are organized in unit of block. Each block has a

unique number called logical address which is identical to the

logical number of data blocks in flash memory. Therefore, it is

easy to find the corresponding buffer blocks when we obtained

the corresponding data blocks. Third, flush the sectors in buffer

blocks to free blocks, and copy the most up-to-data version

from the log blocks to free blocks, then fills each empty sector

in the free block with its corresponding sector in the data

blocks. Fourth, erase the log block and corresponding data

blocks.

Fig. 1. Merge blocks refer to contents of buffer

Fig. 1 is the typical process of our proposed block-level

buffer aware merge method. In this fig., B0 and B1 are data

blocks, L0 and L1 are log blocks. To log block L0, data blocks

B0 and B1 are its corresponding data blocks, block 1 in the

buffer is its corresponding buffer block.

When log block L0 is selected as victim block, we find that

B0 and B1 are its corresponding data blocks and there also

exists corresponding buffer block 1 in the buffer, and then we

allocate two new blocks N0 and N1 from free blocks. Next,

sector 5 and 6 in buffer are first flushed into new blocks, then

copy sector 0, 1 and 7 in log block to new blocks, finally fill

the empty sectors using sector 2, 3 and 4 in data blocks. After

merge all the blocks, erase log block L0 and data blocks B0 and

B1.

3.2 Victim Block Selection

In step two of searching the buffer in the proposed approach,

there may cause three situations according whether the blocks

which have the same number to corresponding data blocks in

buffer is found or not.

In case of not found, the garbage collection only needs to

merge the log block and its corresponding data blocks. This

process is done like the buffer-unaware merge operation. Fig. 2

shows the relationship between buffer and the flash memory.

In case of found and the found blocks belong to the least

recently used blocks, if the blocks locate at the near end of the

buffer list, this means these blocks will be flushed to flash

memory in the shortly future. It is appropriate to move these

sectors in the buffer into the new free blocks. Our proposed

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 25

International Journal of Contents, Vol.6, No.4, Dec 2010

method is suitable for this situation. Fig. 3 shows the

relationship between buffer and the flash memory.

Fig. 2. No corresponding blocks in buffer

Fig. 3. Corresponding blocks locate at the near end of the

buffer

In case of found but the found blocks are hot blocks, the

blocks locate at the near start of the buffer list, which means

these sectors in the found blocks will be updated frequently. If

we choose these blocks to flush to flash memory, the buffer hit

ratio will decrease. Therefore, it is beneficial to find another

log block as victim log block. Fig. 4 shows the relationship

between buffer and the flash memory.

Fig. 4. Corresponding blocks locate at the near start of the

buffer

Through our analysis, whether or not evicting a

corresponding buffer block to flash memory depends on the

block position where blocks reside in the buffer. Hot blocks are

these which locate at the near start of the buffer, while clod

blocks are those which locate at the near end of the buffer.

Since hot blocks are accessed frequently, we should avoid evict

hot blocks in advance. Otherwise, the buffer hit ratio will

decrease. To address this issue, the buffer needs a threshold

line to divide which to hot block area and cold block area. Only

blocks which reside in clod block area could be flushed to flash

memory. Fig. 5 shows the position of hot blocks and cold

blocks in buffer cache.

Fig. 5. The position of hot blocks and cold blocks

Here we use a novel concept named locality probability to

judge the importance of the blocks in the buffer. The idea of

locality probability is described as follows:

We assume the current number of blocks in buffer is n, the

basic locality probability of the block which reside in the end of

the buffer list is p, which is the lowest value, the difference

value between two blocks is x, this means the locality

probability of the front block is larger than its back block, and

their difference value is x, the total sum of all block locality

probability is 1. So we get:

If we set the difference value x a specific value, according to

26 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

the number n, we can calculate the basic locality probability p

and the locality probability of every block. In the real world, set

a threshold of the locality probability depending on specific

devices. The blocks whose locality probability larger than the

threshold considered as hot blocks, and less than the threshold

considered as least recently used blocks.

The buffer space is partitioned into two areas by the

threshold line. Usually, the hot block area holds a small part of

the buffer, while the cold block area holds most of the buffer.

We use a partition parameter α (0 1α≤ ≤) to divide the buffer.

The partition parameter is defined as the ratio of hot blocks to

total buffer blocks. If α = 0.1, then 10 percent of the total

number of blocks in the buffer are hot blocks and the remaining

90 percent of the blocks are cold blocks. This measure is a

variant of locality probability. According to the definition of

locality probability, we could calculate the locality probability

of every block. For example, n = 10, set x = 0.01, we get the

basic locality probability p = 0.055 according to Eq. 1. In turn,

we could calculate every block’s locality probability, from the

top of buffer to the end, 0.145, 0.135, 0.125, 0.115, 0.105,

0.095, 0.085, 0.075, 0.065 and 0.055. If the threshold value is

0.130, 20 percent of the total number of blocks art hot blocks

and 80 percent of the blocks are cold blocks. For the buffer

management policies which manage blocks with hot and cold

blocks, we need not divide the buffer to two partitions. For

example, using Cold and CLC(Largest Cluster Policy) [15] to

manage buffer, our proposed method only need to treat the

size-independent LRU cluster list as hot block area and size-

dependent LRU cluster list as cold block area. In this paper, we

use the parameter α to describe the hot block area and cold

block area since it is convenient to implement. Our experiments

treat the buffer for the general purpose and use LRU policy to

manage the buffer.

 In the section of existing cleaning policies, we listed several

cleaning policies: greedy policy, cost-benefit policy and Cost

Age Times (CAT) policy. In garbage collection process, a main

task is to choose a block as victim block among lots of used

blocks. Through calculating under different cleaning policies,

used blocks are listed in a queue. The block with the highest

satisfied condition will be selected as victim block. Used

blocks are selected one by one in the queue.

In our proposed method, based on the used block queue, we

will check whether or not a used block can be selected as

victim block in Fig. 6.

Fig. 6. The process of selecting victim log block

For simplicity, we use LRU policy to manage the log blocks

instead of the existing cleaning policies in this paper. That

means log blocks are managed in a queue under LRU policy,

the least recently used log block is first selected as a candidate

victim block. Then check the corresponding buffer blocks of

this log block, if the corresponding buffer blocks do not reside

in the hot block area, this log block is selected as victim block.

If the corresponding buffer blocks reside in the hot block, move

this log block to the MRU position of the queue and select next

log block as candidate victim block.

In the process of checking the corresponding buffer blocks,

we will check whether or not the corresponding buffer blocks

locate at the hot block area. If the corresponding buffer blocks

do not locate at the hot block area, it may locate at the cold

block area or it may do not appear at the buffer cache.

According to this, we will make the correct decision that

merging blocks with buffer blocks or not. Therefore, our

proposed method comes. Fig. 7 shows the details of the

processing.

Fig. 7. The whole process of the proposed method

Above all, our victim block selection depends on the current

contents in the buffer cache, which is dynamic and different

from the others cleaning policies.

4. PERFORMANCE EVALUATIONS

4.1 Experimental Environment

As analyzed before, the main advantage of proposed method

is to reduce the potential unnecessary page migration costs and

block erase costs. In other words, during the process of garbage

collection, our approach can improve flash wear-leveling

performance and prolong the lifetime of flash memory by

reducing unnecessary page copy costs and block erase costs.

The experiments of proposed method will generate the block

erasure numbers and page copying numbers, so we get this

information as the results to measure the experimental

performance. We assume that every block consists of 4 pages,

the flash memory has 100 blocks, and the log block group has

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 27

International Journal of Contents, Vol.6, No.4, Dec 2010

10 log blocks, the buffer can maintain 10 blocks when it is full.

The system considers the number of pages as input. With

different input page numbers, different garbage collection

scheme will produce different block erasure numbers and page

copying numbers. The fewer numbers produced, the better that

scheme is. The simulation environment is shown in Table 1.

Table 1. Experimental Environments

Item Configuration

Computer PC

CPU Intel Core2 Duo 2Ghz

Main Memory 2 GB

HDD 500GB

OS Microsoft Windows XP

Language MS Visual C++ 2005

4.2 Experimental Results

We divide the experimental results as two parts according to

the access mode of random access and high locality access.

High locality access means that accessing more frequently and

more intensively concentrate at a specific area of flash memory.

Because the cost-benefit cleaning policy and CAT cleaning

policy is similar besides the number of cleaning characteristic,

we only compare our proposed method with the greedy

cleaning policy and the cost-benefit cleaning policy.

4.2.1 Performance of random access

First we compare the performance of buffer-aware merge

and buffer-unaware merge. Buffer-aware merge is our

proposed scheme and buffer-unaware merge is the traditional

merge operation which does not refer to the contents of buffer.

0

500

1000

1500

2000

2500

3000

500 1000 1500 2000 2500 3000

The number of input pages

B
l
o
c
k

e
r
a
s
u
r
e

n
u
m
b
e
r
s Buffer-aware merge

Buffer-unaware merge

Fig. 8. Block erasure numbers

0

2000

4000

6000

8000

10000

12000

500 1000 1500 2000 2500 3000

The number of input pages

P
a
g
e

c
o
p
y
i
n
g

n
u
m
b
e
r
s

Buffer-aware merge

Buffer-unaware merge

Fig. 9. Page copying numbers

In Fig. 8, the x-axis denotes the random input page numbers

for write to flash memory and the y-axis represents the block

erasure numbers when collecting garbage. In Fig. 9, the x-axis

denotes the same meaning to Fig. 8 and the y-axis represents

the page copying numbers when collecting garbage.

From these two figures, we find that buffer-aware merge

scheme can save more block erasure numbers and page copying

numbers than buffer-unaware merge scheme.

0

500

1000

1500

2000

2500

3000

3500

500 1000 1500 2000 2500 3000

The number of input pages

B
lo

c
k

 e
ra

s
u

re
 n

u
m

b
e
rs

The proposed method
The cost-benefit policy
The greedy policy

Fig. 10. Erasure numbers of comparing with existing cleaning

policies

0

2000

4000

6000

8000

10000

12000

14000

500 1000 1500 2000 2500 3000

The number of input pages

P
ag

e
co

p
y
in

g
 n

u
m

b
er

s
The proposed method
The cost-benefit policy
The greedy policy

Fig. 11. Copying numbers of comparing with existing cleaning

policies

Next, we compare our proposed scheme with the existing

cleaning policies. Fig. 10 and 11 shows the results of block

erasure numbers and page copying numbers respectively. In Fig.

10 and 11, the line marked star denotes the greedy policy, the

line marked triangle denotes the cost-benefit policy and the line

marked rectangle represents our proposed method.

In random access mode, the cost-benefit cleaning policy is

better than the greedy cleaning policy, because the cost-benefit

policy not only considers the block utilization but also

considers the age of blocks. Our proposed method outperforms

the two policies, since we consider the dynamic contents of

buffer.

4.2.2 Performance of high locality access

The case of high locality access is different from random

access. Fig. 12 and 13 show the compared results of buffer-

aware merge scheme and buffer-unaware merge scheme.

Compared to random access, buffer-aware merge scheme

can reduce more block erasure numbers and page copying

numbers than buffer-unaware merge scheme in high locality

access mode. This is because in high locality access mode, data

are concentrated and buffered in buffer cache. Through

checking the contents of buffer cache in advance, many

unnecessary block erase operations and page copy operations

28 Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory

International Journal of Contents, Vol.6, No.4, Dec 2010

can be avoided. Therefore, the performance can be improved

more than in random access.

In Fig. 13, the page-copying numbers is reduced much more

than block-erasure numbers in Fig. 12. The reason is that high

locality access causes blocks with full obsolete pages much

more than partial obsolete pages. Therefore, switch merge

operations is performed much more than partial merge

operations and full merge operations. In switch merge, only

block erase operations are necessary.

0

100

200

300

400

500

600

1500 2000 2500 3000 3500

The number of input pages

B
l
o
c
k

e
r
a
s
u
r
e

n
u
m
b
e
r
s

Buffer-aware merge

Buffer-unaware merge

Fig. 12. Erasure numbers of high locality

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1500 2000 2500 3000 3500

The number of input pages

P
a
g
e

c
o
p
y
i
n
g

n
u
m
b
e
r
s

Buffer-aware merge

Buffer-unaware merge

Fig. 13. Copying numbers of high locality

Finally, we compared the performance of high locality

access with the existing cleaning policies.

0

200

400

600

800

1500 2000 2500 3000 3500

The number of input pages

B
lo

c
k
 e

ra
s
u
re

n
u
m

b
e
rs

The proposed method

The cost-benefit policy

The greedy policy

Fig. 14. Erasure numbers compared with existing cleaning

policies

0

1000

2000

3000

1500 2000 2500 3000 3500

The number of input pages

P
ag

e
co

p
y
in

g
 n

u
m

b
er

s

The proposed method

The cost-benefit policy

The greedy policy

Fig. 15. Copying numbers compared with existing cleaning

policies

Both in random access and high locality access, our

proposed method outperforms the greedy policy and the cost-

benefit policy.

5．CONCLUSIONS

In this paper, a block-level buffer aware garbage collection

technique which searches the contents of buffer cache during

the process of merging blocks is presented. The approach is

divided into two parts: buffer-aware block merge and victim

block selection. The former focuses on how to merge buffer

blocks with data blocks and log blocks, while the latter focuses

on how to select victim blocks so as to ensure the buffer hit

ratio not decreased. Our victim block selection approach is

dynamic, which selects blocks depending on the contents of

buffer cache and is different from the existing cleaning policies.

Compared with the existing garbage collection methods, the

proposed method reduces the block erase operations and page

migration operations when collecting the same amount of

garbage.

In the future works, we will make the explicit analysis about

locality probability to make the best performance between the

buffers hit ratio and the flash block merges cost.

REFERENCES

[1] E. Gal and S. Toledo, "Algorithms and Data Structures

for Flash Memories," ACM Computing Surveys, 2005.

[2] S.W. Lee, D.J. Park, T.S. Chung, D.H. Lee, S.W. Park,

and H.J. Song, "A Log Buffer-based Flash Translation

Layer using Fully-Associative Sector Translation," ACM

Transactions on Embedded Computing Systems, vol. 6,

no.3, 2007.

[3] C. Park, W.M. Cheon, J.G. Kang, K.G. Roh, W.H. Cho,

and J.S. Kim, "A Reconfigurable FTL Architecture for

NAND Flash-based Applications," ACM Transactions on

Embedded Computing Systems, vol. 7, no. 4, 2008.

[4] J.U. Kang, H.S. Jo, J.S. Kim, and J.W. Lee, "A Super

Block-based Flash Translation Layer for NAND Flash

Memory," Proc. International Conference on Embedded

Software, 2006, pp. 161-170.

[5] J. Kang, J.M. Kim, S.H. Noh, S.L. Min and Y. Cho, "A

Space-efficient Flash Translation Layer for Compact

Flash Systems," IEEE Transactions on Consumer

Electronics, vol. 48, no.2, 2006, pp. 366-375.

[6] S.Y. Park, D.W. Jung, J.U. Kang, J.S. Kim and J.W. Lee,

"CFLRU: A Replacement Algorithm for Flash Memory,"

International Conference on Compilers, Architecture and

Synthesis for Embedded Systems, 2006, pp. 234-241.

[7] H. Kim and S.J. Ahn, "BPLRU: A Buffer Management

Scheme for Improving Random Writes in Flash Storage,"

Proceedings of the 6th USENIX Conference on File and

Storage Technologies, 2008.

[8] H. Jo, J.U. Kang, J.S. Kim, and J. Lee, "FAB: Flash-

aware Buffer Management Policy for Portable Media

Weonil Chung: Memory Compaction Scheme with Block-Level Buffer for Large Flash Memory 29

International Journal of Contents, Vol.6, No.4, Dec 2010

Players," IEEE Transactions on Consumer Electronics,

vol. 52, no.2, 2006, pp. 485-493.

[9] S.W. Lee and B.K. Moon, "Design of Flash-based

DBMS: An In-page Logging Approach," International

conference on Management of Data, Beijing, China, 2007,

pp. 55-66.

[10] L.P. Chang and T.W. Kuo, "An Efficient Management

Scheme for Large-scale Flash-memory Storage Systems,"

Symposium on Applied Computing, 2004, pp. 862-868.

[11] K.H. Park and S.H. Lim, "An Efficient NAND Flash File

System for Flash Memory Storage," IEEE Transactions

on Computers, vol. 55, 2006, pp. 906-912.

[12] Intel Corporation, "Understanding the Flash Translation

Layer (FTL) Specification," White Paper,

http://www.embeddedfreebsd.org/Documents/Intel-

FTL.pdf, 1998.

[13] A. Kawaguchi, S. Nishioka, and H. S. Motoda, ”A Flash-

memory based File System,” USENIX Association, 1995,

pp. 13-23.

[14] S. Y. Kang, S. M. Park, H. Y. Jung, H. K. Shim, and J. Y.

Cha, ”Performance Trade-Offs in Using NVRAM Write

Buffer for Flash Memory-Based Storage Devices,” IEEE

Computer Society, vol. 58, no. 6, 2009, pp. 744-758.

[15] M. L. Chiang and R. C. Chang, “Cleaning Policies in

Mobile Computers using Flash Memory,” Elsevier

Science Inc, vol. 48, no. 3, 1999, pp. 213-231.

[16] I. Koltsidas and S. D. Viglas, “Flashing up the Storage

Layer,” VLDB Endowment, vol. 1, no. 1, 2008, pp. 514-

525.

[17] A. Birrell, M. Isard, C. Thacker, and T. Wobber, “A

Design for High-performance Flash Disks,” ACM

SIGOPS Operating Systems Review, vol. 41, no. 2, 2007,

pp. 88-93.

[18] S. W. Lee, B. K. Moon, C. N. Park, J. M. Kim and S. W.

Kim, “A Case for Flash Memory SSD in Enterprise

Database Applications”, International Conference on

Management of Data, 2008, pp. 1075-1086.

Weonil Chung

He received the B.S., Ph.D. in computer

science and Information Engineering

from Inha University, Korea in 1998,

2004 respectively. Since 2007, he has

been with Hoseo University. His main

research interests include spatial data

stream, and database security.

Liangbo Li

He received a B.S. degree in computer

engineering from Chongqing University,

China in 2009. Currently he is taking up

M.S. course in Computer and

Information Engineering at Inha

University. He research interests include

spatial database, POI, and data stream.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

