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ABSTRACT 
 

In this paper, we show how such enhancement of Farwell-Donchin BCI enables a fresh, inexperienced user to achieve quickly an 
accurate BCI control with a high information transfer rate. This paper presents the results of a BCI experiment where the participant, 
who had no previous BCI experience, obtained, in about 20 min, a highly reliable and fast control over the BCI spelling device based 
on the Farwell-Donchin paradigm. Offline analysis showed that the high performance of the BCI was, to a high extent, due to the use 
of the ERP component N1, in addition to component P300, which has been considered the only ERP component important for the 
prediction of user's choice in the Farwell-Donchin paradigm in many publications. 
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1. INTRODUCTION 
 

 

EEG recording does not require any procedures which may 
damage the brain or other human tissues in any way. Modern 
EEG recording devices are portable and relatively inexpensive. 
However, all the components of the EEG signal vary 
considerably amongst subjects, and therefore accurate 
adjustment of the parameters of signal processing and 
classification procedures is necessary for stable BCI control. 
Moreover, since BCI is based not on the usual brain "output" 
through muscles, which is the only executive brain output in 
humans and animals, but instead involves more direct type of 
output never practiced before within the whole era of biological 

Brain-Computer Interface (BCI) is a novel technology 
enabling direct control of a computer or other external devices 
from the human brain. It was first invented and currently being 
developed further primarily in a hope to assist heavily 
paralyzed patients, especially those of them who are 'locked in' 
(completely paralyzed). Nowadays, it is also considered a 
highly prospective new element of computer games and other 
entertaining technologies. It is based on brain signal acquisition, 
extracting signal components carrying the user's commands, 
identifying the commands (in most modern BCIs, this is often 
done with some pattern recognition technique) and their 
execution, typically coupled with feedback to the user (Wolpaw 
et al., 2002)[1]. The brain signal best fitting the practical needs 
of BCI technology is the electroencephalogram (EEG), i.e. 
voltage fluctuations recorded from the head skin surface over 
the brain, originating from the summation of synchronously 
varying electrical potentials at many neural cells.  
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evolution, special training of the BCI users is also needed 
before the control over the computer is achieved.  

Unlike most of the BCI technologies, the one introduced by 
Farwell and Donchin as early as twenty years ago (Farwell and 
Donchin, 1988) requires only little training for achieving a 
reliable control[2]. After being merely neglected for many 
years, this variant of BCI has become flourish in late 2000th, 
especially when reinforced by generalizing to multichannel 
EEG using the electrical signals from many brain areas.  

Farwell-Donchin BCI paradigm was originally designed as 
based on the detection of the positive wave elicited about 300 
ms after a rare task-relevant stimulus noted by a subjected. This 
wave, observed in a wide area of human scalp with maximum 
at central and parietal areas, is one of the components of the so-
called event-related potentials (ERP), stereotyped electrical 
correlates of the brain reactions which can be extracted from 
the EEG by averaging signal epochs time locked to a 
repeatedly presented stimulus.  

In Farwell-Donchin paradigm, the user watch a matrix 
(often of size 6x6) containing cells with letters, numbers, any 
other symbols or pictures. The rows and columns of the matrix 
are highlighted (intensified, flashed) for a short time in a 
random order. The user attends to a given cell and keeps a 
running mental count of the number of times it flashed. Farwell 
and Donchin suggested that a P300 wave will be elicited each 
time a column or row including the attended cell is flashing. 
Therefore, the averaged EEG epochs related to flashing of 
these relevant rows and columns will be characterized by more 
positive amplitude in the typical P300 time latency range and 
spatial locations (electrode positions) comparing to the 
observed for non-relevant rows and columns. The attended cell 
could be identified as the cell at the intersection of the row and 
column that demonstrate the most positive amplitude in these 
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latency interval. In fact, the P300 was successfully recognized 
by the computer and the subjects using it communicated up to 
2.3 characters per minute [2]. 

In the recent years, some of the researchers using Farwell-
Donchin paradigm observed an earlier negative ERP 
component, which was more prominent after attended 
flashes[3-6]. This component seems to represent the spatial 
attention or spatial discrimination processes possibly involved 
in this task; therefore, it may be equivalent to the component 
N1 (i.e., the one responsible for the first large negative peak in 
ERP) in the tasks specially designed to activate such processes. 
We recently demonstrated that more explicit including its 
amplitude into the set of features for pattern recognition 
algorithms makes possible recognizing of the relevant rows and 
columns even given a small number of the averaged EEG 
epochs. We hypothesized that this opens a way for a dramatic 
improvement of the overall effectiveness of the BCI procedure, 
because the time needed for the recognizing each character 
shortens already at the very early stage of BCI practice, 
providing the user with the opportunity to highly concentrate 
his/her attention on the task, to get the feedback from the 
computer early and to become involved into the interaction 
with the computer deeper and, therefore, learn most quickly.  

In the current paper, we show how such enhancement of 
Farwell-Donchin BCI enables a fresh, inexperienced user to 
achieve quickly an accurate BCI control with a high 
information transfer rate. Alexander Lenhardt present a P300-
based online BCI which reaches very competitive performance 
in terms of information transfer rates[7].  

 
 

2. THE PROPOSED METHODS 
 

2.1 Data acquisition and experiment design 
A female volunteer with normal vision and no previous BCI 

user experience participated in the experiment. Before 
attaching the electrodes, she was shown the matrix display and 
was given preliminary instructions about the use of BCI (see 
the description of the subject's task below). Additional short 
instructions were also given at different stages of the 
experiment. 

Seven standard EEG electrodes with Ag/AgCl surface were 
located at positions C3, C4, P8, PO7, PO8, O1, O2 according to 
the international 10-10 system[8], referenced to connected 
electrodes at mastoids, and grounded to P7. The EEG was 
filtered 1-30 Hz, amplified (30,000x), digitized at 128 Hz and 
stored. All data collection and processing, stimuli presentation 
and other operations needed by experimental design were 
controlled by BCI2000 system[9].  

The subject sat in a comfortable armchair in 90 cm from a 
computer monitor and viewed a matrix display. The 6x6 matrix, 
typical for Farwell-Donchin task, consisted of 36 alphanumeric 
characters (Figure 1). During the recording, the matrix rows 
and columns flashed (i.e., their characters intensified), and the 
subject's task was to mentally count the number of times the 
target character intensified, no matter it was part of a row or 
column intensification. The duration of intensification was 125 
ms, and the duration of the interval between intensifications 
was 62.5 ms. Flashing was organized as a certain number of 

flashing cycles (this number is denoted below as nfcyc), within 
each of them each row and column flashed once. The order of 
flashing rows and columns within each cycle was random and 
did not depended on the order of flashing in the previous cycles. 

In the first and second stages, the target word (here, 
"BRAIN") is displayed in the first line above the matrix. The 
current target letter (one of the letters of the target word) is 
displayed in the parenthesis. At the moment of taking the 
screenshot, the 3rd (from the top) row is highlighted; at other 
moments (except pauses), any of the rows or columns could be 
highlighted. The subject's task is to count silently highlighting 
("flashing") of the row and the column which includes the 
target letter (here, the 1st row and 2nd (from the left) column. 
In the second and third stages, after flashing each row and 
column N times, the second line displays the predicted symbol 
or (if some symbol(s) where already predicted before) sequence 
of symbols. 

 

 
Fig. 1. Screenshot of the standard BCI display viewed by the 

subject. 
 

The first stage of the experiment was "copy-spelling" 
without feedback. Its aim was collecting the data which were 
used to train the classifier. At this stage, an English word was 
shown above the matrix. The target letter was one of its letters. 
To indicate which particular letter is target for the moment, it 
was displayed after the word in the parentheses (see example in 
Figure 1). The switch to the next target letter occurred after 
nfcyc=10 flashes of each of the 6 rows and 6 columns. Thus, 
flashes highlighting each target letter had to be counted 20 
times, while the other 100 non-target flashes appearing within 
the same period of time should be not attended. Each time the 
new target letter appeared in the parentheses, there were no 
flashes for 5 seconds; a 2.5 second pause (no flashes) appeared 
also after the set of flashes, i.e. just before switching to another 
letter or before the end of work with the current word.  

After training the classifier (see below), the second stage 
started, which was also "copy-spelling", but with feedback. A 
word and one of its letters (the target letter) in the parentheses 
were displayed in the same way as in the first stage. The 
subject's task was the same as at the first stage. However, in a 
line below it the subject now could see the result of 
classification of his brain signals, i.e. letters "guessed" as the 
target letters by the computer program on the basis of online 
EEG analysis. The number of flashing cycles nfcyc was set to 
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either 10 or 5. 
Finally, the subject and one of the experimenters decided, 

secretly from the experimenter operating the BCI system, 
which word should be spelled at the third stage. At this third 
stage, the subject "entered" this word, again letter by letter, into 
the computer, by counting mentally how many times the letter 
flashed. The number of flashing cycles nfcyc was 5. The result 
was displayed to the subject, as in the previous stage.  

At all the stages of the experiment, the subject was 
encouraged to maintain physically relaxed but attentive state, to 
refrain from blinking or producing movement-related artifacts 
during flashing, and feel free to blink or make small 
movements in the pauses between the periods of repetitive 
flashing. 

 
2.2 Feature extraction and machine learning 
Data from the first stage of the experiment contained 

markers for target rows and columns (i.e., those which included 
the character which should be attended by the subject) and 
nontarget rows and columns (those which contained only the 
characters which should not be attended). As shown by Farwell 
and Donchin (1988) and many their followers, the task 
conditions are beneficial for eliciting a relatively large positive 
wave (with the amplitude of several microvolts) with a 
maximum approximately at 350-450 ms after the onset of the 
target stimulus, i.e. P300. From the research made within 
several recent years (Sellers et al., 2006, 2007; Krusienski et al., 
2008; Hoffmann et al., 2008; Shishkin et al., submitted) one 
may also expect to observe an earlier negative wave N1 with a 
peak approximately at 200-250 ms. The feature vector for the 
classifier, therefore, may consist of the amplitude estimates in 
spatial and temporal areas where these two components are 
expected to be most pronounced.  

Due to high intersubject variability and the low signal-to-
noise ratio (considering the strong non-time-locked 
components of the EEG, produced by various brain processes, 
as the "noise"), the a priori knowledge about the one it is 
necessary to tune the classifier to the difference between the 
individual shape of the target and non-target potentials as 
precisely as possible. On the other hand, the subject should not 
be required to perform a long execution of the task without any 
feedback (which could cause fatigue and the decrease of the 
level of attention), solely for supplying the classifier with 
sufficient data; the training sample size, therefore, should be 
strongly limited, and the due measures should be undertaken to 
avoid overfitting a classifier. Thus, feature set should not be 
large, feature selection should be based on the existing 
knowledge obtained in previous studies as much as possible, 
and the classifier should be able to select the relevant features, 
but in a non-exhaustive manner.  

Stepwise Linear Discriminant Analysis (SWLDA), a well-
known discriminant analysis algorithm, meets these criteria 
(Sellers et al., 2006; Krusienski et al., 2008). It was applied to a 
limited feature set designed based on our and other groups' 
research (e.g., Sellers et al., 2006; Krusienski et al., 2008; 
Shishkin et al., submitted). Epochs starting at 100 ms and 
finishing at 600 ms after the onset of each intensification 
(flashing) were extracted from the raw EEG signals in each of 7 
channels. Each epoch was further divided into small 

consecutive windows whose length corresponded to 50 ms, and 
amplitudes were averaged separately within each of them; thus, 
10 features were obtained for each of the channels. The 
maximum number of features to be kept in the SWLDA model 
was set to 20. The classifier was trained on the EEG recorded 
during mental counting of flashing of each letter of four 6-letter 
words, i.e., on 6x4=24 pairs of target and non-target averaged 
epochs.  

 
2.3 Online signal processing and classification 
SWLDA coefficients (weights) obtained offline were entered 

to BCI2000 online system to be used at the 2nd and 3rd stages 
of the experiment. Now, the online processing included: (1) 
averaging signal amplitudes separately in epochs time-locked 
to each column and row flashing, over all of their flashing 
during "entering" one character; (2) multiplying them by 
corresponding weights of the classifier; (3) summation of this 
product over all time points and EEG channels; (4) defining the 
predicted column as the one with the highest result of 
summation among columns, and the predicted row as the one 
with the highest result of summation among rows; (5) 
identifying the predicted cell (character) as the intersection of 
the predicted column and row. 
 
 

3. THE SIMULATION RESULTS 
 

At the first stage of the experiment four recordings of 2.5 
min length each were made, with short (0.5-1.5 min) breaks 
between them. The first one of them was considered as a 
practice, the other three were used for training the classifier. 
During computing the classifier, additional recording in the 
same mode was made, but it was used only for offline testing 
(see below). The total time of the subject's practice and 
obtaining the data for training the classifier was about 16 min, 
including the pauses between recordings; together with the time 
for giving the instructions to the subject, it was about 20 min.  

To illustrate the difference between the brain responses to 
target and non-target stimuli, Figure 2 presents averages of the 
same data epochs which were used to make the classifier. For 
simplicity, only two channels are shown: the first one was 
selected due to the highest difference of the positive peak and 
the second one due to the highest difference at the negative 
peak. To provide a measure of statistical difference between the 
target and non-target responses, r2 values are also shown. The 
non-targets were associated with a periodical activity, typical 
for such stimulation conditions and possibly resulted from the 
overlapped responses to consecutive non-target stimuli. In both 
plotted channels (similarly to what was observed in the rest of 
the EEG channels), a clear difference between targets and non-
targets is found in the approximately 350-550 ms range, i.e., in 
the typical range of P300 ERP component. The average 
response to targets was more positive than the average response 
to non-targets in the same range. In the interval of 
approximately 150-350 ms, i.e. the range where N1 component 
can be found, the average response to targets was more 
negative than the response to non-targets. 
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Fig. 2 Averaged amplitude and r2 values for two channels of 
the data used to make the classifier. 

 
Channel 5 had the highest difference of the positive peak, 

channel 6 had the highest difference at the negative peak. Mean 
amplitudes in epochs related to non-target flashes are shown in 
green, and those related to target epochs are shown in red. Zero 
time corresponds to the beginning of a flash (intensification). 

The classifier weights were first applied to the same data on 
which it was computed (three recordings), but for different 
number of flashing cycles. These results are shown in Table 1, 
cell 1A. High correspondence between the target and predicted 
symbols was evident, thus this classifier was considered ready 
for the use in the feedback mode (second stage of the 
experiment).  

Interestingly, applying the classifier in the offline mode to 
the recording made during the time when it was computed 
yielded results which were even better than those obtained by 
applying the classifier to the data on which it was constructed 
(Table 1, cell 2A): the first 2 flashing cycles were enough to 
obtain the 100% accuracy.  

Table 1, cells 3A and 4A shows the symbols predicted offline 
using the same classifier as in the online mode, but, again, for 
different number of flashing cycles (in the online mode only 
one number of flashing cycles can be used). The highest 
number of flashing cycles was the same as the number used for 
feedback in the experiment. 

The first 5-letter word was spelled without any mistake. Due 
to this, we set the number of flashing cycles for the second 6-
letter word two times lower (i.e., 5), to reduce the time spent 
for “entering” each letter. The last letter in this second word 
was incorrectly spelled as a letter neighboring to the target one 
(same for different number of flashing cycles), though the first 
5 letters were spelled correctly starting already from 1 flashing 
cycle. 

At the final stage of the experiment we again used 5 flashing 
cycles per letter. All letters of the “secret” 3-letter word (FLY) 
were correctly recognized. 

We hypothesized that the high accuracy obtained after very 
short time spent for both human subject and machine training 
was due to the intended use of the N1 component in addition to 
P300. According to our previous study, combining features 
from both P300 and N1 can highly improve the efficiency of 
the “P300” BCI in the most of the subjects, comparing to the 
use of P300 alone. 

In the current study, we applied SLWDA separately to (1) 
interval 100..300 ms after stimulus onset, containing N1 but not 
P300, (2) interval 350..550 ms after stimulus onset, containing 

P300 but not N1. Interval (1) was slightly shifted back to 
earlier time to avoid intersection with the P300 range; it 
included most of the range of N1 and no P300. Interval (2) 
included the whole P300 range of the given subject and no N1. 

The results shown in the Table 1 demonstrate that when only 
P300 features were used for constructing the classifier (cells 
1C-4C in Table 1), the performance was much lower comparing 
not only the combined use of N1 and P300 features (cells 1A-
4A in Table 1), but also N1 features alone (cells 1B-4B in Table 
1). Moreover, adding P300 features to the N1 features have not 
substantially increased the performance. 

These data were computed offline using the same classifier 
which was used online (A), the classifiers computed in the 
same way on the reduced time intervals to test the effectiveness 
of using alone the traditionally used component P300, related 
to stimulus relevance and probability (B), and the component 
N1, related to spatial attention (C).  

 
nfcyc 

% Correct, the percentage of symbols predicted (recognized) 
correctly (the classification accuracy rate, here expressed in % 
for better readability). 

, the number of flashing cycles (from the beginning of 
flashing) whose data epochs were used to predict the symbol. 
Each flashing cycle consisted of flashing once each of all 6 
rows and 6 columns. 

Predicted symbols, the symbols which were predicted 
(recognized) offline applying the same classifier as in the 
experiment to the averages of first nfcyc

 

 flashing cycles for each 
symbol. The predicted symbol was the symbol on the crossing 
of the column and row which had the highest classifier's output 
among all columns and rows, respectively. 

The time ts

 

 (in seconds) spent for entering one symbol can 
be computed as  

ts = nfcyc · nflash · tSOA

 
 , 

where nfcyc is the number of flashing cycles, nflash is the number 
of flashes in one cycle (which was always equal to 12 in this 
experiment), and tSOA

According to [1] the information transferred while entering 
one symbol can be calculates as 

 is the stimulus Onset Asynchrony, i.e. the 
time between the onsets of the two consecutive flashes (equal 
to 187.5 ms). 

 
Bs = log2ns + Plog2P + (1 - P)log2((1 - P)/(ns

 
 - 1)), 

where Bs is the amount of information per symbol in 
bits/symbol, ns

 

 is the number of symbols (the total number of 
possible predictions, equal to 36 in our experiment) and P is the 
classification accuracy rate. 

The “theoretical” information transfer rate Btheor

 

, in bits per 
minute (bits/min), can be calculated as 

Btheor = Bs · ( 60 / ts

 
 ) 
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Table 1. Classification results 

 
 
This index (often used in the BCI literature) shows how 

much information could be transferred in the case that there 
where no pauses between entering each symbol. The pauses are 
of especial importance when the user (operator) has not enough 
experience of work with BCI yet, and they can be substantially 
reduced, especially in the free spelling mode, as he/she gains 
experience. 

 
In the experiment described in the paper, the operator never 

had any BCI experience, thus we used long pauses. 
“Experimental” information transfer rate Bexp (i.e., information 
transfer rate observed or could be observed taking into account 
the pauses) can be obtained with a small modification of the 
formula given above, i.e., as: 
 

Bexp = Bs · [ 60 / (ts + tpause

 

 ) ] , 
 

where tpause is the sum of length of the pre-trial and post-
trial time intervals (in our experiment, 5+2.5 = 7.5 s). 
 

 
 

 

The values in the parentheses in the two formula are, in fact, 
another useful indexes, the number of symbols transferred per 
minute, the highest one possible theoretically and the one 
observed (or could be observed) in the real experimental 
conditions: 

 
Stheor = 60 / ts , 

Sexp = 60 / (ts + tpause

Predicted symbols, the symbols which were predicted 
(recognized) offline applying the same classifier as in the 
experiment to the averages of first n

 ) 
 

The number of symbols per minute and information transfer 
rate, both in the theoretical and experimental forms, for the 
actually observed data and for the best offline results are shown 
in the Table 2.  

 

fcyc flashing cycles for each 
symbol. The predicted symbol was the symbol on the crossing 
of the column and row which had the highest classifier's output 
among all columns and rows, respectively. 100% accuracies are 
printed in bold for better readability. 
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Table 2. Performance indexes for the actually observed data and for the best offline results, using the same classifier as in the 
experiment 

 
 

4. CONCLUSION AND DISCUSSION 
 
This paper presents the results of a BCI experiment where 

the participant, who had no previous BCI experience, obtained, 
in about 20 min, a highly reliable and fast control over the BCI 
spelling device based on the Farwell-Donchin paradigm. 
Offline analysis showed that the high performance of the BCI 
was, to a high extent, due to the use of the ERP component N1, 
in addition to component P300, which has been considered the 
only ERP component important for the prediction of user's 
choice in the Farwell-Donchin paradigm in many publications.  

One should not overestimate the value of the experimental 
performance indexes obtained online in a relatively small 
number of trials, and especially of the offline values of 
“theoretical” indexes showing, only to some extent, a 
perspective for the improvement of the performance during 
further learning of the user. It also should be mentioned that, in 
our experience, not all fresh users demonstrate such high 
performance, possibly due to the variations in the degree of the 
concentration on the task. Nevertheless, the performance in 
general was quite competitive comparing to the top 
international level of BCI technology. 

The high efficiency of the BCI classifier using the features 
from both P300 and N1 provides the subject operating the 
device a feedback already on the early stages of the use of BCI. 
As we suggested in the previous paper (Shishkin et al., 
submitted), obtaining the control over BCI may provide the 
user with a feeling of obtaining not just a new skill in 
controlling a computer, but a completely new kind of ability; 
moreover, the user may, to some extent, anticipate, with high 
interest, obtaining such ability. If the training takes too much 
time, the interest may decrease or even disappear. 

Allocation of the attentional resources to the task is critical 
in BCI, and probably especially critical in Farwell-Donchin 
paradigm, where attention is, presumably, exactly that type of 
mental activity what modulates the brain activity “decoded” by 
the BCI. Therefore, it is important that the user obtains the 

signs of the control early, when his/her interest is still high, 
when he/she has not yet become tired or bored. On the other 
hand, it may be beneficial for maintaining the attention that the 
feedback is provided soon after starting an operation; and that 
the attention should be highly concentrated within relatively 
short time intervals. All this can be achieved if the brain 
responses can be discriminated after averaging only a small 
number of trials, so that little time is required to “enter” each 
symbol. Moreover, short time for “entering” a symbol is also 
important to give the user an opportunity to completely refrain 
from blinks and movements, which produce artifacts in the 
EEG recordings and strongly complicate the recognition of the 
response. From all the mentioned, it is evident how important 
could be the intentional use the features of the N1 component 
for brain response classification. 

There still exist a large variety of ways to improve the 
performance of the BCI system. For example, the spelling error 
in the word ONLINE was the replacement of the last letter in 
the word with the letter D, which was its neighbor in the row. 
Such errors are very common and natural for the Farwell-
Donchin matrix type BCI. An “intelligent” BCI system could, 
for example, easily correct such errors by taking into account 
both the spelling variants from a dictionary and the classifier 
values for symbols neighboring to one which is misspelling 
according to the dictionary. The extraction of features related to 
N1 and P300 components could be possibly improved, if the 
components where more carefully extracted, e.g., applying 
modern factorization algorithms (Independent Component 
Analysis, etc.), or matched filters in time domain, and so on. 
Application of more advanced classifiers possibly also may be 
beneficial. Such approaches can be explored in the future work. 
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