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ABSTRACT 

 

This paper presents a fast and practical motion synthesis algorithm for massive number of quadruped animals. The algorithm 

constructs so called speed maps that contain a set of same style motions but different speed from a single cyclic motion by using 

IK(Inverse Kinematics) solver. Then, those speed maps are connected each other to form a motion graph. At run time, given a point 

trajectory that obtained from user specification or simulators, the algorithm retrieves proper speed motions from the graph, and 

modifies and stitches them together to create a long seamless motion in real time. Since our algorithm mainly targets on the massive 

quadruped animal motions, the motion graph create wide variety of different size of characters for each trajectory and automatically 

adjusted synthesized motions without causing artifact such as foot skating. The performance of algorithm is verified through several 

experiments 
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1. INTRODUCTION 

 
 A large number of motion synthesis methods have been 

proposed by the computer animation research community in 

recent years. The primal reason for the high popularity of 

motion synthesis techniques corresponds with the wide spread 

of 3D computer games and wide use of computer graphics-

based special effects in feature Þlms or movies. However, most 

of the researches have focused on synthesizing motions for 

only human-like characters. Although the motions of human 

characters are still an animator’s major concern most of the 

time, many non-human-like characters play important roles in 

current movies and animation Þlms. For example, in movies 

such as “The Chronicles of Narnia” or “The Golden Compass” 

lots of animals support the main characters or are sometimes 

themselves the main characters. In general, animal motions are 

usually made by the traditional key frame method. Even though 

this method has an advantage in Þne control over motion, it 

requires intensive labor, an artistic sense, and a signiÞcant 

amount of time for creating animation, which is a big hurdle for 

fast production. In particular, if we want to animate a massive 

number of animals, the problem gets even worse. Alternatively, 

for human motions, several data-driven methods are proposed 

to meet the realistic animation requirements as well as to 

satisfy user-speciÞed controls. For example, graph-based 

methods [1], [2], [3] and statistical model-based methods [4], 

[5] have their own advantages and disadvantages for practical  
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Fig. 1. 200 horses in movement : our algorithm can synthesize  

natural motions for a lot of quadruped animals. 

 

use. But essentially, those methods are tested only for human 

characters and are quite limited unless there is a large amount 

of motion data available. 

 

This paper proposes a fast locomotion synthesizing method, 

shown in Fig. 1, for a large number of quadruped animals. This 

method is basically data-driven that uses motion capture data. 

However, it focuses on developing techniques that exploit an 

existing small number of motions extensively. This is an 

inevitable choice because capturing animal motion is very hard 

and quite expensive. Our method, on the other hand, requires 

only a single cyclic motion of four different quadruped gait 

types (walking, trotting, cantering and galloping) and transition 

motions between them. Then, the algorithm artiÞcially creates a 

new set of the same type of motions with wide variation of 

different speeds, which we call a speed map. In order to obtain 

different motion speeds from the original input motion, the 

speed map motions analyze the gait pattern and apply the 

http://dx.doi.org/10.5392/IJoC.2011.7.3.019 



20 Mankyu Sung : Fast Motion Synthesis of Massive Number of Quadruped Animals 

International Journal of Contents, Vol.7, No.3, Sep 2011

specialized Inverse Kinematics(IK) algorithm to have different 

gait lengths and limb conÞgurations. In constructing a speed 

map, the original styles of motion, especially the order of foot 

planting on the ground, are maintained because it characterizes 

the speciÞc gait types of quadruped animals. 

 

The various speedy motions in the speed map allow 

characters to transit motions smoothly from normal moving to 

fast moving, and vice versa. This feature is very important in 

real applications because training animals to obtain very 

speciÞc speed motions is almost impossible, although most of 

the games and movies require very speciÞc speed motions. 

These maps, constructed through the procedure above, are then 

connected with each other to form a well-known motion graph 

structure where four hub nodes represent four different 

locomotion types and edges represent speed map motions [1], 

[2], [3]. The construction of a speed map and motion graph is 

done as preprocessing steps. At run time, the user inputs a 

guideline point trajectory for each character. This trajectory is 

created by a user control or by outside simulators. The 

trajectory represents the root joint positions of a character over 

time. Thus, the time duration between the points represents a 

frame time, which means the closer the distance between two 

adjacent points, the slower the character moves. Given the 

trajectories, the algorithm puts an arbitrary size of animal 

characters on a trajectory and then starts to traverse the motion 

graph to retrieve proper speed motions out of the graph. These 

motions are warped to make the character follow the curve of 

the trajectory exactly. Finally, the retrieved motions are then 

smoothly stitched together to make long motions. 

 

Our method has the following contributions over previous 

methods. First, one of the major disadvantages of motion graph 

based motion synthesis is that it requires a big corpus of 

motions to be used in real applications. Our method, on the 

other hand, does not require many motion data because we 

artiÞcially synthesize many different motions and warp them to 

make them move on a randomly shaped curve. Second, we 

extend the existing foot skating clean-up algorithm for human 

characters [6] to four-legged animal motion data. In this 

process, all important characteristics of the original motion are 

maintained. Third, our algorithm is able to synthesize a large 

number of animal characters with a wide variety of different 

sizes at the same time. The input guide line trajectory is totally 

independent of speciÞc characters. Therefore, the proposed 

method allows adding any size of character. The motion 

synthesis takes the character size as a parameter and 

synthesizes scaled motions accordingly 

 

 

2. RELATED WORK 

 

Traditionally, animal motions for feature Þlms have been 

created through elaborate a key-frame animation technique [7]. 

Fine control over movement is the major reason for this 

dominant use of this method, although animators require so 

many reference videos and creativity to Þgure out their 

movement [7]. A lot of robotics researchers have been studying 

quadruped robots for several decades [8], [9]. However, these 

researches do not directly reßect the high realistic animal 

motions because their focus is on creating stable robots that can 

move on wide a range of different situations. 

 

For realistic animation of animals, several researches have 

studied on how to capture real motions. Because of a high 

difÞculty in capturing wild animals or dynamic human motions, 

they use live video sequences such as documentary Þlm to 

reconstruct the 3D model of animals, or incorporate on existing 

motion capture database [10], [11] or copying and modifying 

motion from human motion capture data [22]. However, their 

methods do not create totally new motions unless there are live 

videos of the new motions. Also, only relatively simple 

motions are able to be captured. A physical-simulation method 

is another way to generate quadruped motions. Raivert et al 

designed a control system that activates or deactivates actuators 

to represent some particular behaviors for legged characters 

[12]. Torkos et al proposed a trajectory-based optimization 

technique for synthesizing motions for quadruped animals [13]. 

In their approach, users are required to input footprint locations, 

their timing, and stylistic hint for motions, the system then 

applies physics and optimization to estimate the body posture 

of the quadruped. Their approach is similar to our method in 

this paper in that both use footprint location to change the 

speed of motion, but we use motion capture data as the input 

data instead. Therefore, we do not need any physics or high 

computation load in the optimization process. Most recently, 

Coros et al proposes a physical model for quadruped animal 

that synthesize motions such as walk, trot, pace and canter [21]. 

Although their method can create a wide variety of motions 

automatically, the quality of motion does not meet the motion 

capture data.  

 

Wampler et al proposed an optimization-based animal 

locomotion algorithm [14]. In their method, they took the shape 

of an animal and its motions as a component of continuous 

optimization framework. In order to animate physically 

realistic motions, they parameterize the radius and length of 

limbs so that they are adjusted for the given gait. Although 

their synthesized motions are physically realistic, they ignore 

the complexity of the non-mechanical structure of real animal 

legs, which sometimes does not convey the details of real 

animals. 

 

For human motions, motion blending has been an efÞcient 

tool to create parameterized motions [15], [16]. However, one 

of the signiÞcant artifacts of motion blending is that it does not 

guarantee to satisfy the important kinematic constraint, a so-

called foot plant, which requires some part of a foot to remain 

stationary on the ground. An explicit solver for the foot skating 

problem has been introduced in [6] by Lucas et al. We extend 

their bipedal IK solver to quadruped animals to Þnd the limb 

conÞguration of animals when constructing the speed map. In 

this process, the beat pattern, which means the order of four 

feet contacting with the ground, is maintained. This pattern is 

important to characterize a different locomotion style. The 

motion graph technology has been drawing a lot of attention in 

the computer graphics community because of its simplicity and 

implementation ease [3], [1], [2]. However, one of the main 
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drawbacks is that it needs a big corpus of motion data for good 

connectivity in real applications. Zhao et al proposed a simple 

method that uses motion blending to create a new set of 

motions with similar poses as the original motion set for 

constructing the motion graph [17]. Our method is similar to  

 

WALK TROT

CANTER GALLOP    
Fig. 2. Left: Four typical gait types of a quadruped animal (horse). Right: Beat patterns of four gait types (equusite.com). 

 

their method in that it also creates many motions out of a small 

set of input motions. However, we use a speed-parameterized 

IK technique instead of motion blending, which is required for 

synthesizing massive animal locomotion. 

 

 

3. SPEED MAP CONSTUCTION 

 

Because our goal is to synthesize motions for a large number 

of quadruped animals, we need a wide range of different speed 

motions beforehand. These motions, called a speed map, 

become input data in synthesizing motions at run time when a 

dynamic change of speed motions is required. In general, 

quadruped animals have only a few gait patterns that they use 

frequently, although there are many possible foot fall patterns 

[18]. Four typical gait patterns are shown in Fig. 2. Depending 

on the gait-patterns, the orders of footing on the ground are 

different, as shown in Fig. 2, and their speed is also changed. 

For example, the walk motion has a four-beat pattern with the 

slowest speed where the left hind leg is put on the ground Þrst, 

and then the right fore leg is placed next, with the left hind leg 

and the left fore-leg placed later. On the other hand, the trot 

motion has a two beat gait with a faster speed than walking in 

which diagonal foot plants are always the same time stamps. 

The speed of motions, s, is deÞned as follows throughout this 

paper. 

      

where l is the length of the root joint trajectory and n is the 

number of frames. 

 

Our basic strategy is to input a single cyclic motion for each 

gait type and automatically enrich it through parameterizing its 

speed as shown in Fig. 3. Under the definition of motion speed, 

to obtain a different speed of the original motion, we have two 

choices: adjusting the number of frames (n) or adjusting the 

length of the root joint trajectory (l). Since adjusting the 

number of frames is not what we want, we fix the number of 

frames and adjust the length of root joint trajectory. 

Specifically, let’s say that the original input motion has speed, s, 

then we increment or decrement this speed by a predefined . 

Then, the new length becomes l´= (s )l and s = s  

 

In this process, we have to make sure that two important 

features of the original motion are kept. First, all foot skating 

artifacts should be removed. Foot skating happens when the 

root joint position, which is responsible for the global position 

of the character, is not properly coordinated with the limb 

conÞguration. Therefore, simply forcing a change in the length 

of root trajectory causes a signiÞcant foot skating of the 

character. To remove the foot skating, we need to Þgure out the 

global position of end-effector joint at the contact frame and its 

time duration. Then, the IK solver Þnds proper limb 

conÞgurations for that. Second, the gait beat pattern of the 

original motion as shown in Fig. 2, should be maintained. Even 

after we relocate the foot position for changing the speed, the 

order of foot plants should be preserved. In order to do that, we 

manually annotate the foot plant frames (fc) that have a time 

interval, and the associated joint (jc) of the input motions by the 

order of time, and then feed them into the construction step as a 

constraint. This constraint should be satisÞed in creating the 

speed map. 

 

The speed maps are constructed through the following order. 

 

1. Relocation of root joint position: Let us say that di,j  

denotes the 2D projected distance between root joints at frames 

i and j. We compute the df,f 1 for all adjacent frames. Then, 

given the new length of the motion trajectory, l´, the amount of 

adjustment for df,f 1is l´/ f .This value is multiplied on df,f 1 to 

compute a new distance d´f,f 1. Suppose that the global position 

of j joint at frame f is Pj(f ) where root joint has 0 in j. Then, 

the new root position, P´0(f ), can be simply calculated as 

P´0(f ) =P´0(f   1) + ´df,f 1, f 1. Note that if s is bigger than1, it 

creates a faster motion, whereas if s is smaller than 1, it 

generates a slower motion. Also, for the very Þrst frame, P´0(0) 

equals P0(0). 

 

2. Finding the joint position of end effectors: The next step is 
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to find the proper position of end effector joints, which is the 

joint contacting with the ground, that minimizes the foot 

skating. For this, from the constraint of the input motion 

indicating foot plant frames, fc, and end effector joint, Jc, we 

first compute the average position Pjc(fc) of Jc during the fc of 

the original input motion. This is the original foot plant 

positions before relocating the root joint, so, we need to 

relocate the foot plant position as well. For this, we compute  

 

Original  

 Motion 

smin Speed Motion 

Speed Motion 

Speed Motion 

Speed Motion 

s2

s3

smax

..... 

Foot Plant 

Adjustment 

   IK  

Solver 

 
Fig. 3. Speed map construction process 

 

the scalar value distance, dc, which is the difference between 

P´0(fc ) and P0(fc ). This is the magnitude of direction vector, V, 

that needs to be added to the original Pjc(fc). The only 

remaining problem is to find V. In our approach, we set the V  

by computing a vector between two adjacent foot prints of the 

same foot. Figure4 illustrates this process. The new foot plant 

position P´jc(fc)is computed by P´jc(fc)= V+ Pjc(fc). 

 

3. IK solving: Given P´jc(fc), we apply the IK solver to Þnd a 

limb conÞguration. To maintain the order of beat pattern of the 

original motion, we apply the IK by the order of fc. The IK 

solver we use is similar to the one that Lucas et al proposed in 

[6] with some extension for meeting the constraints above. We 

brießy overview our IK solver here with emphasis on the 

extensions that we made in this section. More detailed 

information can be found in [6]. 

 

Figure 5 shows four steps for IK processing. At the Þrst step, 

the algorithm computes the hinge angle analytically. Concise 

derivation of the equation for computing this angle can be 

found [19]. One drawback of the original algorithm for 

computing the hinge angle is that it assumes that the plane of 

rotation of the hinge is deÞned by the thigh and shin. Most of 

the time, this hinge axis does not cause any problems, but when 

the original limb is almost fully stretched, which is the case for 

fast motions, slight changes of thigh and shin cause an 

inconsistent change of sign of hinge axis over the frames, 

which produces visually unpleasant hinge angle popping. This 

is because the hinge axis is computed by the cross product of 

two vectors,  and  where Pr, Ph, and Pjc represent 

the global position of a limb root, hinge, and end effector, 

respectively. The cross product generates a near to zero 

magnitude vector when three positions are almost on a straight 

line, which is not a desirable axis. To solve this problem, our 

hinge axis is defined by two vectors,  and  instead 

where Pt is a position of the toe whenever the original 

definition of the hinge axis has a smaller magnitude than the 

predefined threshold.  At the second step, transform the limb 

toward the target by finding the smallest amount of rotation 

that makes the vectors  and faces the same direction 

with . At the third step, properly rotate the end effector 

orientation so that it does not penetrate the ground. At the final 

step, stretch the limb joint length unless it meets the target.  

 

In the construction of a speed map for each gait type, we 

decrease speed parameter s from maximum speed smax to smin by 

. As a result, we construct roughly around 60 speed maps for 

each gait type. In this process, we intentionally overlap the 

speed range of two different gait types so that two speed 

motions from different gait types can have the same speed as 

shown in Fig.6. For example, a fast walking motion might have 

the same speed as a slow trotting motion. This feature is a big 

advantage for massive character animation where variation on 

motions among a crowd is a critical issue. 

Original Trot 

 Foot Plants

Faster Trot 

 Foot Plants
Slower Trot 

 Foot Plants

Direction 

  vector 

original

slower

faster

FootPlant

 
Fig. 4. Foot plant adjustment for changing the speed of trot motions. 

Blue circles represent the foot plants 

 

 

4. BUILDING MOTION GRAPH 

 

Constructed speed maps are connected with each other 

through a motion graph [3], [1], [2]. Fig. 7 shows a motion 

graph for quadruped animals (we only show a couple of edges 

per speed map for simplicity). In building the motion graph, 

transition motions between speed maps are also required for 

smooth motion change between different gait types. Like an 

original motion graph, an edge of the motion graph represents a 

typical motion and nodes represent common poses. The 

difference is that all edges in each walk, trot, canter and gallop 

node come from the speed map rather than the original input 

motions. When traversing the graph, we assume that all of the 

characters are starting at the standing node. As they speed up, 

they move up to the walk node, and then move to the trot node, 

canter node, and gallop node, sequentially. When they need to 

slow down, they follow the reverse order. 
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Fig. 5: IK process for finding limb configuration 

 

 

5. GUIDELINE TRAJECTORY 

 

Our approach requires the user to input a trajectory per 

character. This trajectory, Ti(f), is a list of 3D points 

representing a guideline for root joint position of the ith 

character over time. The reason that we separate the simulation 

of movement of characters that would be stored as a trajectory 

from detailed motion synthesis of individual characters is that 

aggregate behaviors of herds or crowds are very important in 

massive character animations. An overall formation change of 

crowds over time needs to be simulated and edited frequently 

until the best scene comes up. Therefore, it is not desirable to 

synthesize detailed motions for every character whenever  

walk

trot

canter

gallop

Overlap

Slow

Fast

 
Fig. 6. The ranges of speed in speed map for four gait types 

 

simulating the movement of herds or crowds. Our approach is 

to simulate the collision-free movement of the overall 

characters first, and then wear the detailed motions on them 

next. 

 

If the number of characters is not so large, then we can 

create the trajectories in a manual manner, using a mouse drag 

to capture the trajectory of characters on a virtual 3D 

environment. However, if the number of characters is too big, 

then manual capturing is impossible. In this case, we can use 

other crowd or flocking simulation software such as Massive 

software or Boids model. In the case of using commercial 

software, we can make a simple script utility that stores the 

positions of characters over time as a text file. 

 

1. Smoothing: One assumption that we make over the 

trajectories is that they should have smooth curvatures and not 

contain any sharp turns. The point in a trajectory represents a 

rough position of a character in the environment. Thus, even in 

our smoothness assumption, if there is a discontinuity or noise 

in the trajectory, synthesized motion does have quite noticeable 

popping either. To remove this, we filtered Ti(f) with a low-

pass filter. The low-pass filter can be a general Gaussian filter, 

which is widely used in image processing. 

 

2. Re-sampling: We have to make sure that the speed of a 

trajectory is within the speed range of the speed map. 

Otherwise, we adjust the trajectory by the re-sampling process. 

The speed range of the speed map can be easily found simply 

by checking the fastest speed motion of the gallop speed map, 

s´max, provided that the speed maps are constructed in such a 

way that their speed ranges are overlapped. Note that the 

slowest speed map is always zero because we assume that 

characters always start from a standing pose. As a result, the 

speed range of the speed map becomes 0   s   s´max. Given this 

speed range of the speed map, we need to check the speed 

range of the trajectory for comparison. To check the speed 

range of the trajectory, we first segment the entire trajectory 

Ti(f) by m points, which is the average number of frames of 

input walk, trot, canter, and gallop motion. As a result, we get n 

segments Si. 

 

  

  

where Pi  and  

 

For each segment Si, we compute the speed s(Si). After 

computing the speed over all segments and sorting them, we 

obtain the speed range  for the 

trajectory. By checking the speed ranges of all trajectories in 

this way, we can get the speed range, , 

for all trajectories. Then, the two speed ranges, (smin, smax),  

 

 

 
Fig. 7: A motion graph : four speed maps for quadruped animals are 

connected with each other with transition motion 
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which is the speed range of the trajectory, and , 

which is the range of the speed map, are checked to see  

Figure 8: Speed range adjustment of a trajectory for a given speed map 

 

whether the speed range of a trajectory is within the range of 

the speed map. If the speed of the trajectory is out of the range 
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of the speed map, then our  

 

algorithm is not able to synthesize motions for the speed. To 

solve this problem, we re-sample the trajectory to change its 

speed. Unlike the case of speed map, where we change the 

length of the trajectory to adjust the speed, we change the 

number of points of the trajectory by fixing the length of the 

trajectory. The reason for this is that the geometrical 

characteristics of the trajectories such as length are a product of 

a crowd simulator's high level path planning and interaction 

among characters. Thus, it should be preserved. 

 

The sampling rate r is calculated as follows: 

 

         

 

Because of re-sampling, the range of trajectory turns to 

 as shown in Fig.8. For example,  

if r is 0.5, then we make all characters move at twice slower 

speed. 

 

One important point is that we must apply the sampling rate 

r to the all trajectories. If we apply the new sampling only on a 

few characters, which would make them move faster or slower, 

the global formation of characters would be broken. 

 

 

6. MOTION SYNTHESIS 

 

Without loss of generality, we assume that animal characters 

are at the beginning of their trajectory. Under this condition, 

the motion synthesis step needs to create a long motion that 

makes the character move along the trajectory while satisfying 

the speed. Our basic strategy is to traverse the motion graph, 

shown in Fig.7, and find the proper edges. Those edges, which 

correspond to a piece of speed map motion, are then blended 

together to get an exact speed motion. The blended motions are 

then placed one after another along the trajectory. Motion 

warping is necessary to bend the original motion trajectory to 

match the trajectory. Transition motion is also placed when it 

needs to traverse across different gait types. We describe the 

details of each step in this section. 

 

Since our goal is to synthesize motions for a lot of quadruped 

animal characters, variation on the character size makes the 

scene more interesting. To achieve the randomness on the 

character size, we multiply the scale factor h, which is a real 

value that is always bigger than minimum hmin but smaller than 

a threshold maximum hmax, to all joint offset vectors to scale up 

or down the character size. We then randomly distribute a 

scale-adjusted character to all the trajectories. 

After deciding the character size for each trajectory, the 

algorithm starts to synthesize motions from the start of the 

trajectory to the end. Motion synthesizing steps are illustrated 

in Fig.9. 

 

The algorithm first computes the speed of trajectory, s, over 

m points of the trajectory. Then, using speed parameter s, it 

traverses the motion graph to find the two closest edges of the 

graph that have the speed s. One edge (M1) should be faster 

than s, and the other edge (M2) should be slower than s. Note 

that because we overlapped the speed ranges of speed map, 

there might be multiple styles of motion that contain the speed 

s. In this case, randomly select one style. The reason for 

selecting the two best matched edges is that the speed map is 

constructed in a discrete speed space. Thus, in most cases, there 

is no motion that perfectly matches speed parameter s. We 

resolve this through interpolation. Suppose that M1 has speed 

s(M1) and M2 has speed s(M2). Then, we can obtain the speed 

motion M with exact speed s by interpolating M1and M2 with 

weight value !. 

 

  

where  and h is the scale factor. 

 

The next step is to warp the motion M so that its motion 

trajectory has the same shape of the Ti(f) where . 

Figure 10 shows the warping process of two speed motions in a 

row. The warping process includes two specific jobs. First, 

based on the tangent of input trajectory, which is computed as 

, where  we rotate the 

orientation of the root joint by . The root position P0(f) is also 

repositioned using 2D transform matrix T, composed with 

rotation  and translation P0(f)-P0(f-1). 

This process is similar to the motion path planning algorithm 

[20]. Second, the warped motion  is exactly located on Ti 

using a 2D transform matrix that makes P0(f) into Pn, as can be 

seen in the top image of Fig.10. 

 

As a final step, newly warped motion ( ) is smoothly 

stitched with existing synthesized motions (T(M)) through 

motion blending. For this purpose, we need margin frames 

(around 10 frames) in the front and back of the input cycle 

motions, as can be seen in the bottom of Fig.10. 

The motion synthesis steps are iterated until it meets the end 

point of the trajectory. 
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Fig. 9. Motion Synthesis Flow Diagram 
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Fig. 10. Top: Motion Warping Bottom: Motion Blending 

 

 

7. EXPERIMENTS 

 

To validate our algorithm, we have performed experiments 

using animal motions. However, lack of available animal 

motion capture data allows us to apply our algorithm on quite a 

limited number of animal types. We bought commercially 

available animal motion capture data from a motion capture 

studio (The3DStudio.com). 

 

We use the animal motions of a horse and dog for our 

experiments. These motions are all sampled at 60Mhz. For the 

horse, only 12 motion clips are used; four of them are a single 

cycle of walk, trot, canter, and gallop motion for constructing 

the speed map, and the rest of them are transition motions such 

as static2walk, walk2static, walk2trot, trot2walk, trot2canter, 

canter2trot, canter2gallop and gallop2canter. For the dog, on 

the other hand, 9 motions are used because gallop motion is not 

available. 

 

All experiments were tested on an Intel Xeon 3.20GHz 

processor PC with a graphics acceleration card. 

 

Table1 shows detailed information about the speed maps. 

Note that the speed range of each gait type is overlapped and 

all speed map motions have the same number of frames of 

input motion. 

 

The first experiment is for testing whether our algorithm can 

synthesize motions for any arbitrary curved path with various 

speed changes. For this, we ask users to drag a mouse on the 

3D virtual floor to represent the movement of a character, and 

use it as a input trajectory. As a result, our experiment verified 

that our algorithm makes the character follow the path exactly 

and synthesize various styles of motion depending on the speed 

change of the trajectory, as shown in Fig.11 

 

The second experiment is for testing the performance of our 

algorithm.  We use OpenSteer library to simulate a maximum 

of 500 characters (http://opensteer.sourceforge.net/).  

Specifically, we use the Pedestrian plug-in that makes agents 

follow a predefined control path. We put a small code in the 

simulation loop to capture around 500 frames of 3D position of 

characters over time and write out into a file. Figure 12 shows 

snapshots of the simulation rendered with Maya. 

 

Two specific tests are performed based on these trajectories. 

First, as we increase the length of the trajectories from the 

starting point to the end, we compute the total synthesizing 

time of 500 characters. For comparison, we also test when we 

synthesize all motions on the fly without using speed map. In 

this case, to get the exact speed motion, we have to process all 

root trajectory adjustment and limb configuration changes at 

run time. 

 

The result shows that the time cost increases almost linearly 

as a function of trajectory length. And, on-the-fly synthesis is 

almost twice slower than our speed map construction synthesis. 

Second, we calculate the average time for synthesizing a single 

frame as we increase the number of characters. Our result 

shows that it takes only an average of 0.008 seconds for 

synthesizing 480 frames for a character, which means that our 

algorithm can synthesize motions at realtime speed, as shown 

in Fig.13. 
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CanterCanter2Trot

Trot2Canter
Canter

 
Fig.11. Motion synthesis result for a single character with various speed changes 

 
Fig.12. 300 dinosaurs running in herd (including biped dinosaurs) 

 

  
Fig.13. Left: The total processing time with increasing the length of the trajectory.(Dashed line is the synthesis speed using speed map, and solid line 

is the on-the-fly synthesis speed) Right: The average synthesizing time per frame, as a function of the number of characters 
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Table1. Information regarding speed map of four gait types of 

horse motion 

Gait 

type 

Time 

(sec) 

#of  

motions 

Speed range #of  

frames

Walk 3.34 55 (0.08, 0.21) 82 

Trot 2.86 55 (0.19, 0.39) 56 

Canter 2.69 55 (0.36, 0.45) 51 

gallop 2.45 55 (0.41, 0.49) 51 

 

 

8. DISCUSSION AND CONCLUSION 

 

In this paper, we introduce a fast and practical motion 

synthesis algorithm for large number quadruped animals. The 

core of this algorithm is to construct the speed map, which is a 

set of speed-adjusted motions made from a single cyclic input 

motion using a specialized IK solver. For quadruped animals, 

four speed maps (walk, trot, canter, and gallop) are constructed 

by the order of speed. Speed ranges of four speed maps are 

overlapped to present various styles of motions for a same 

speed parameter. Four speed maps are then connected as a 

motion graph along with transition motions. Given the 

trajectories representing the movement of characters, which are 

obtained from external software or a manual process, the 

algorithm synthesizes a long motion that makes the characters 

move along a curve exactly while satisfying speed constraints. 

 

Although our experiments prove that this algorithm can 

synthesize a large number of characters in real time without 

causing significant artifacts, there are a couple of limitations. 

First, we assume that input trajectories always have a smooth 

curve and no sharp turns. This is not a serious limitation, we 

believe, because quadruped animals show smooth turns most of 

the time except at special urgent events or after instructions 

from a trainer. Second, our motion synthesis algorithm is a 

purely kinematic method that does not consider the biophysical 

and ethological information of animals. In order to improve the 

motion quality, we need to employ useful information on 

animal behaviors and the physical characteristics of various 

animals that many veterinary and ethology scientists have 

researched. 
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