
30 Sung-Hoon Park : On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed Systems

International Journal of Contents, Vol.7, No.4, Dec 2011

On Relationship between Safety and Liveness of Election Problem in
Asynchronous Distributed Systems

Sung-Hoon Park

Dept. of Computer Engineering
Chungbuk National University, Chung-Buk 330-800, Korea

ABSTRACT

A Leader is a Coordinator that supports a set of processes to cooperate a given task. This concept is used in several domains such as
distributed systems, parallelism and cooperative support for cooperative work. In completely asynchronous systems, there is no
solution for the election problem satisfying both of safety and liveness properties in asynchronous distributed systems. Therefore, to
solve the election problem in those systems, one property should be weaker than the other property. If an election algorithm
strengthens the safety property in sacrifice of liveness property, it would not nearly progress. But on the contrary, an election
algorithm strengthening the liveness property in sacrifice of the safety property would have the high probability of violating the safety
property. In this paper, we presents a safety strengthened Leader Election protocol with an unreliable failure detector and analyses it
in terms of safety and liveness properties in asynchronous distributed systems.

Keywords: Distributed Computing, Leader Election, Asynchronous Distributed Systems, Failure Detectors

1. INTRODUCTION

 Distributed systems consist of groups of processes that
cooperate in order to complete specific tasks. A Leader is a
Coordinator that supports a set of processes to cooperate a
given task. This concept is used in several domains such as
distributed systems, parallelism and cooperative support for
cooperative work.
To elect a Leader (or Coordinator) in a distributed system, an
agreement problem must be solved among a set of participating
processes. This problem, called the Election problem, requires
the participants to agree on only one leader in the system [1].
The problem has been widely studied in the research
community [2]-[6]. One reason for this wide interest is that
many distributed protocols need an election protocol.
The Election problem is described as follows. At any time,
there is at most one process that considers itself a leader and all
other processes consider it as to be their only leader. If there is
no leader, a leader is eventually elected.
The so-called FLP impossibility result proved by Peterson and
Lynch, which states that it is impossible to solve any non-trivial
agreement in an asynchronous system even with a single crash
failure, also applies to the election problem [7],[8]. That means
that there is no solution for the election problem satisfying both
of safety and liveness properties in completely asynchronous
distributed systems.
It must be pointed out, however, that the impossibility result

* Corresponding author. E-mail : spark@chungbuk.ac.kr
Manuscript received Sep 30, 2011 ; accepted Dce.13, 2011

really means “not always possible,” as opposed to “never
possible.” As a matter of fact, any algorithm that tries to solve
the Election Problem cannot always make progress without
violating safety; there exist cases in which the algorithm
violating safety, although it is very unlikely.
Therefore, to solve the election problem in those systems, one
property should be weaker than the other property. If an
election algorithm strengthens the safety property in sacrifice of
liveness property, it would be difficult to progress. But on the
contrary, an election algorithm strengthening the liveness
property in sacrifice of the safety property would have the high
probability of violating the safety property. There exists a trade-
off between safety property and liveness property.
 A stable election protocol, which implies the safety
strengthened election protocol, is needed in a practical
distributed computing environment. Consider a mission critical
distributed system such as an electronic commerce system that
runs multiple servers in which one of them roles a master
(leader) and others are slaves.
To have data consistency among the servers in the system, this
system should not violate safety property, which means that all
processes connected the system never disagree on a leader. In
those systems the safety property is more important property
than the liveness property.
As a classic paper, there is Garcia-Molina’s Invitation algorithm
to solve election problem in asynchronous distributed systems.
The algorithm strengthens the progress property rather than

 *This work was supported by the research grant of the
Chungbuk National University in 2010

http://dx.doi.org/10.5392/IJoC.2011.7.4.030

Sung-Hoon Park : On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed

Systems
31

International Journal of Contents, Vol.7, No.4, Dec 2011

safety and it allows more than two leaders in the systems.
Our idea is based upon the Garcia-Molina’s Invitation
algorithm for solving the election problem in asynchronous
distributed systems [2]. He redesigns the Bully algorithm for
synchronous distributed systems into the Invitation algorithm
for asynchronous distributed systems by using a specification
that is weak enough to be solvable, allowing the algorithm to
progress even in completely asynchronous distributed systems.
His specification uses a strong progress requirement, allowing
executions in which even a single process suspicion of the
current leader’s crash and its attempted leader election from the
members may lead a progress to elect a new leader from all
processes.
We propose an election algorithm that requires processes to
elect a new leader only when they agree with the current
leader’s crash. This requirement is strong because, if no set of
processes agrees on the current leader’s crash, no progress is
made. The requirement is, however, much more stronger than
the one proposed by Garcia-Molina’s Invitation algorithm in
that it implicitly states that the leader election of any process be
allowed only on the basis of only it’s own knowledge.
In this paper, we presents a safety strengthened Leader Election
protocol with an unreliable failure detector and analyses it in
terms of safety and liveness properties in asynchronous
distributed systems.
Our algorithm, based on a standard three phases commit
protocol, is fully distributed. It does not extend the
asynchronous model of concurrent computation to include
global failure detectors. Progress of the algorithm can be
guaranteed only in case of minimal violating a safety property.
The rest of the paper is organized as follows. In Section 2, we
describe our system model and definitions. In Section 3, this
paper relates the election specification to other ways to solve
the election problem. In Section 4, this paper provides a stable
algorithm that solves the Leader Election problem. In Section 5,
we ensure the correctness of the algorithm by proving that it
satisfies the two properties of the specification given in Section
4. Finally, Section 6 summarizes the main contributions of this
paper and discusses related and future works.

2. MODEL AND DEFINITIONS

 Our model of asynchronous computation with failure
detection is the one described in [9,10]. In the following, we
only recall some informal definitions and results that are
needed in this paper.

2.1 Processes

We consider a distributed system composed of a finite set of
processes Ω={p1,p2,..,pn} where processes are identified by
unique id's. Communication is by message passing,
asynchronous and reliable. Processes fail by crashing;
Byzantine failures are not considered.
Every pair of processes is connected by a communication
channel. That is, every process can send messages to and can
receive messages from any other. We assume processes are able

to probe a communication channel for incoming messages.
Communication channels are considered to be reliable, FIFO,
and to have an infinite buffer capacity. A reliable channel
ensures that a message, sent by a process pi to a process pj, is
eventually received by pj if pi and pj are correct (i.e. do not
crash).
Asynchrony means that there is no bound on communication
delays or process relative speeds. A process that has been
infinitely slow for some time and has been unresponsive to
other processes may become responsive again at any time.
Therefore, processes can only suspect other processes to have
crashed, using local failure detectors.
A failure detector is a distributed oracle which gives hints on
failed processes. We consider algorithms that use failure
detectors. Local failure detectors are assumed to be inaccurate
and incomplete. That is, local failure detectors may erroneously
suspect that other, operational processes have crashed or that
crashed processes are operational. Since local failure detectors
run independently at each process, one local failure detector
may perceive a failure, but other detectors may perceive it at a
different time or not at all.
The failure model allows processes to crash, silently halting
their execution. Because of the unpredictable delays
experienced by the system, it is impossible to use time-outs to
accurately detect a process crash.
We assume that a process communicates with its local failure
detector through a special receive-only channel on which the
local failure detector may place a new list of id's of processes
not suspected to have crashed. We call this list the local
connectivity view of the process. Each process considers the
last local connectivity view received from its local failure
detector as the current one.

2.2 Election Specifications

The Election problem is described as follows: At any time, as
most one process considers itself the leader, and at any time, if
there is no leader, a leader is eventually elected. More formally,
the Election Problem is specified by the following two
properties:

- Safety: All processes in the local connectivity view of the
process never disagree on a leader.

- Liveness: All processes should eventually progress to be in
a state in which all processes connected to the system agree
to the only one leader.

3. CIRCUMVENTING THE IMPOSSIBILITY RESULT

In this section, we relate the election specification to other
ways to solve the election problem.
- In an asynchronous model augmented by global failure

detectors, processes have access to modules that (by
definition) eventually reflect the state of the system.
Therefore, progress and safety can be guaranteed
unconditionally.

- In a timed asynchronous model, processes must react to an
input, producing the corresponding output or changing state,

32 Sung-Hoon Park : On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed Systems

International Journal of Contents, Vol.7, No.4, Dec 2011

within a known time bound. Under this model, progress and
safety can be guaranteed if no failures and recoveries occur
for a known time needed to communicate in a timely manner.

- In a completely asynchronous model, progress cannot
always be guaranteed without violating safety and failure
detectors in practice eventually reflect the system state, but
they must be considered arbitrary. Correct processes react in
practice within finite time, but this time cannot be quantified.
Therefore, in order to guarantee a solution, we need a weaker
specification of the problem.

Our approach falls into the last category that originated with
Garcia-Molina's work [2]. Our election algorithm, however,
differs from Garcia-Molina's in several ways.

- Processes in Garcia-Molina's model do not need to wait to

get consensus about the current leader’s crash. If one process
suspects that the leader failed, it may attempt to elect the new
leader. Garcia-Molina's specification says that, if one process
attempts to be a new leader, it eventually should be elected as
a leader. Our specification requires all processes in a set to
agree on the current leader crash before changing their new
leader.

- Garcia-Molina's specification allows a solution in which the
attempted change of a leader divides all processes into
several sub-groups. Our specification does not allow such a
sub-group because it states that if all processes in a system
agree on a new leader, they must eventually accept such a
leader.

In our model stability is also required for progress, but, at
variance of the above case, it is not necessarily related to the
state of the system. In other words, eventual progress is
required when there is agreement among a set of the local
failure detectors, even if failures and recoveries continue to
occur in the system.

4. ELECTION ALGORITHM

We provide a stable algorithm that solves the Leader Election
problem given in Section 2. The algorithm is based on the three
asynchronous phases.
- A prepare phase, in which a process propose a new leader

that the other processes agree with.
- A ready phase, in which all process that agree on the new

leader acknowledge the reservation of the potential leader.
- A commit phase, in which the new leader is finally elected,

and all process accept it their only leader.

4.1 Solution Sketch

The main idea for the algorithm is as follows. A process p
that is informed by its local failure detector of a leader’s crash
and that has the smallest id among processes in its new local
connectivity view sends a message to all processes in its view
proposing to change the current leader with the new leader.
Each process received the message records this proposal until
the potential leader in its local view is the same as the proposed
new leader in its local view. At which point, it responds by

sending back an Accept or Retry message to the process that
proposed the leader update. The Accept message is sent if the
process agrees on the proposed leader in its local current view.
Upon sending the Accept message, the process reserves the
prospective leader, so that no other proposal is accepted for that
system. Upon receiving a Retry message, the proposing process
returns the normal state of the algorithm, sending a new Abort
message to all processes in its view.
When the proposing process has collected Accept messages
from all processes in its view, it starts the commit phase by
sending commit messages, ordering other processes in its view
to commit the leader update. Upon receiving a commit message,
the processes accept the reserved prospective leader as a their
new leader.

4.2 Code Description

The code is shown in Fig. 1. The first received command in
Fig. 1 shows how a process p, when informed of a change in its
local connectivity view, set its view to be current and checks if
the current leader has crashed. If the leader has crashed, it set
the variable LeaderStatus to be false. When LeaderStatus is
false, the StartElection procedure in Fig.1 is called and the
process p checks that it is the minimum id among the processes
in vp. If p is the minimum id, it increases the round and
proposes itself as a new prospective leader and initializes its
ack array to zero.
The next received commands in Fig. 1 check for incoming
messages from other processes. These may be proposals for a
new leader (Propose), rejections to propose a new leader
(Rejection), acceptances of a proposed new leader (Accept),
orders to commit a new leader (Commit) or orders to abort a
proposed new leader (Abort).

Upon received vp from FD:

CurView := true;
If CurLeader ∉ vp then LeaderStatus := 0;
end-if

If p = min(vp) then Round := Round +1;
 Call start_election();

end-if

Upon received (Propose,PropLeader, k) from q:

 Prop:= true; CurView := false;
NewLeader:= PropLeader ; RoundIn := k;

 Call reply_election();

Upon received (Reject, k) from q:
 If Round = k then

Send (Abort, Round) to ∀ j ∈ vp;
 For ∀j ∈ vp, ack[j] :=0;
end-if

Upon received (Accept, k) from j:
 If Round = k then ack[j] := 1;
 If for ∀q∈ vp, ack[q] = 1 then

Send (Commit, PropLeader, Round) to
∀q∈ vp;

Sung-Hoon Park : On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed

Systems
33

International Journal of Contents, Vol.7, No.4, Dec 2011

For ∀q ∈ vp, ack[q] :=0;
end-if end-if

Upon received (Commit, PropLeader, k) from j:

If RoundIn = k then
CurLeader := PropLeader;

 LeaderStatus := 1;
end-if

Procedure Start_election():
 PropLeader := p;

Send (Propose, PropLeader, Round) to
∀q∈ vp;

For ∀q∈ vp, ack[q] :=0;

Procedure Reply_election();

If (CurView ∧ Prop) then Prop:= false;
If (Newleader≤min(vp)∧RoundIn>Round)

then Send (Accept, PropIn) to q;
Next = RoundIn + 1;

end-if
else Send (Reject, PropIn) to q;

end-if
Fig. 1. The Algorithm.

Upon receiving a proposal message from process q, process p
stores the new leader’s id proposed by q at position q of the
array NewLeader and stores the proposed round at position q of
the array RoundIn, then sets position q of the array Prop to true
to record the receipt of the proposal from q and sets the
CurView to false to refresh the current view of the system
If process p later agrees on the proposed new leader, it sends a
response to process q (see last guarded command in Fig. 1).
The response is either an acceptance of the new leader at
position NewLeader[q] if the minimum id among the process in
vp is greater or equal than the id of proposed NewLeader[q] and
the proposed round greater than the current round; or it is an
rejection to the proposed new leader if the minimum id among
the process in vp is less than the id of proposed NewLeader[q]
or the proposed round less or equal than the current round.
A rejection to the proposed new leader consists of sending back
to q the proposed round. An acceptance consists of
acknowledging the proposed new leader at position
NewLeader[q].
We now examine the guarded commands of the remaining
message types. A process p that receives a rejection to the its
proposal sends all processes in vp a message to abort the
proposed round and reinitializes the ack array to zero.
A process p that receives an acceptance regarding its proposed
new leader receives the proposed round. If the received round is
equal to the round of the most recent proposal sent, process p
sets the element at position q in the array ack to 1 to record the
acceptance.
Then, it inspects the ack array to check if all entries are 1. If so,
p starts the commit phase by broadcasting its previously
proposed new leader and the corresponding proposed round
PropRound to all processes in vp and reinitializes the ack array
to zero.

A process p that receives an order to commit a new leader at
position q from process q, simply sets the current leader to the
proposed new leader and sets the current round to the proposed
round.

5. CORRECTNESS

We can ensure the correctness of the algorithm by proving
that it satisfies the two properties of the specification given in
Section 4.

5.1 Safety

Theorem 1. The algorithm described in Section 4 satisfies the
safety condition of the specification (Property 1, Section 2): At
any point in time, all processes connected the system never
disagree on a leader.

Proof. Either all processes remain in the start state or some
process p receives the proposed leader as its leader. In the start
state, the safety property holds since all processes are in the
state in which a leader has not been elected. If some process p
receives its leader by committing a proposed leader at a given
position q, it must have received a Commit message from some
process q; therefore, q must have received Accept messages
regarding its proposal of a new leader from all processes in vp
including p. It follows from the last guarded command in Fig. 1
that, if process p has accepted the proposal of process q, it will
not accept any other proposal for new leader, making it possible
to commit at most single proposed leader. Therefore, process p
either commits the process at position q as a new leader or ends
up with position q by aborting the proposed new leader.
Therefore safety property holds.

5.2 Liveness

Theorem 2. The algorithm described in Section 4 satisfies the
liveness condition of the specification (Property 2, Section 4):
All processes should eventually progress to be in a state in
which all processes connected to the system agree to the only
one leader.

Proof. By contradiction, a non-progress means that the new
leader is not elected forever even though there is no leader;
therefore, no Commit messages must be sent. Since the number
of processes is finite, there must be at least one process whose
id is the minimum value in vp and that process eventually sends
a Propose message. Call this process p. By the code in Fig. 1,
we see that, to have no Commit message, each time p sends a
Propose message, it should be rejected by other process. It
follows that, in order to abort infinitely many Propose messages,
other process q must reject the proposed messages infinitely
often.
Propose messages are rejected either when the minimum id of
vp is greater than the id of the proposed leader or because of a
Propose message already has been received (see Fig. 1).
The first case is ruled out because it implies that some process
always considers that there is a process that is alive and whose

34 Sung-Hoon Park : On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed Systems

International Journal of Contents, Vol.7, No.4, Dec 2011

id is less that the id of proposed new leader. But by strong
completeness of a failure detector it is contradiction.
The second case is also ruled out, because it implies that other
process q sends infinitely many proposals of the other leader.
But by eventual strong accuracy of a failure detector, the
process q knows that there is a process whose id is less that its
id. Therefore it is contradiction.

6. CONCLUDING REMARKS

 We have presented a stable election protocol with a reliable
failure detector in completely asynchronous systems. We have
assumed our local failure detectors to be inaccurate and
incomplete. With this approach, the leader election
specification states explicitly that progress without violation of
safety cannot always be guaranteed. In practice, our
requirement for progress is weaker than that stated in the
original specification of having a set of processes sharing the
same leader.
In fact, if the rate of perceived a leader failures in the system is
lower than the time it takes the protocol to make progress and
accept a new leader, then it is possible for the algorithm to
make progress every time there is a leader failure in the system.
This depends on the actual rate of a leader failures and on the
capacity of the failure detectors to track such failures.
In [10], Chandra and Toueg note that failure detectors defined
in terms of global system properties cannot be implemented.
This result gives strength to the approach of relaxing the
specification and of having a stable election protocol. In real
world systems, where process crashes actually lead a connected
cluster of processes to share the same connectivity view of the
network, convergence on a new leader can be easily reached in
practice.

REFERENCES

[1] G. LeLann, “Distributed Systems–towards a Formal

Approach,” in Information Processing 77, B. Gilchrist,
Ed. North–Holland, 1977.

[2] H.Garcia-Molian, “Elections in a Distributed Computing
System,” IEEE Transactions on Computers, vol. C-31, no.
1, Jan. 1982, pp. 49-59.

[3] H. Abu-Amara and J. Lokre, “Election in Asynchronous
Complete Networks with Intermittent Link Failures.”
IEEE Transactions on Computers, vol. 43, no. 7, 1994,
pp.778-788.

[4] H.M. Sayeed, M. Abu-Amara, and H. Abu-Avara,
“Optimal Asynchronous Agreement and Leader Election
Algorithm for Complete Networks with Byzantine Faulty
Links.,” Distributed Computing, vol. 9, no. 3, 1995,
pp.147-156.

[5] J. Brunekreef, J.-P. Katoen, R. Koymans, and S. Mauw,
“Design and Analysis of Dynamic Leader Election
Protocols in Broadcast Networks,” Distributed
Computing, vol. 9, no. 4, 1996, pp.157-171.

[6] G. Singh, “Leader Election in the Presence of Link
Failures,” IEEE Transactions on Parallel and Distributed

Systems, vol. 7, no. 3, March 1996, pp.231-236.
[7] M. Fischer, N. Lynch, and M. Paterson, “Impossibility of

Distributed Consensus with One Faulty Process,” Journal
of the ACM,(32) 1985, pp. 374-382

[8] T. Chandra and S.Toueg, “Unreliable Failure Detectors
for Reliable Distributed Systems,” Journal of ACM,
vol.43 no.2, 1996, pp. 225-267.

[9] D. Dolev and R Strong, “A Simple Model For Agreement
in Distributed Systems,” In Fault-Tolerant Distributed
Computing, pp. 42-50. B. Simons and A. Spector ed,
Springer Verlag (LNCS 448), 1987.

[10] T. Chandra, V. Hadzilacos and S. Toueg, “The Weakest
Failure Detector for Solving Consensus,” Journal of ACM,
vol.43 no.4, 1996, pp. 685-722.

Sung-Hoon Park
He received the B.S. in statistics and
economics from Korea University, Korea
in 1982 and also received M.S., Ph.D. in
computer engineering & science from
Indiana University, Bloomington, USA in
1993 and 2000. Since then, he has been a
professor in the Dept. of Computer

Engineering, ChungBuk National Univ. His main research
interests include distributed system and algorithm.

