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ABSTRACT 
 
A Leader is a Coordinator that supports a set of processes to cooperate a given task. This concept is used in several domains such as 
distributed systems, parallelism and cooperative support for cooperative work. In completely asynchronous systems, there is no 
solution for the election problem satisfying both of safety and liveness properties in asynchronous distributed systems. Therefore, to 
solve the election problem in those systems, one property should be weaker than the other property. If an election algorithm 
strengthens the safety property in sacrifice of liveness property, it would not nearly progress. But on the contrary, an election 
algorithm strengthening the liveness property in sacrifice of the safety property would have the high probability of violating the safety 
property. In this paper, we presents a safety strengthened Leader Election protocol with an unreliable failure detector and analyses it 
in terms of safety and liveness properties in asynchronous distributed systems. 
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1. INTRODUCTION 
 

 Distributed systems consist of groups of processes that 
cooperate in order to complete specific tasks.  A Leader is a 
Coordinator that supports a set of processes to cooperate a 
given task. This concept is used in several domains such as 
distributed systems, parallelism and cooperative support for 
cooperative work. 
To elect a Leader (or Coordinator) in a distributed system, an 
agreement problem must be solved among a set of participating 
processes. This problem, called the Election problem, requires 
the participants to agree on only one leader in the system [1]. 
The problem has been widely studied in the research 
community [2]-[6]. One reason for this wide interest is that 
many distributed protocols need an election protocol.  
The Election problem is described as follows. At any time, 
there is at most one process that considers itself a leader and all 
other processes consider it as to be their only leader. If there is 
no leader, a leader is eventually elected.  
The so-called FLP impossibility result proved by Peterson and 
Lynch, which states that it is impossible to solve any non-trivial 
agreement in an asynchronous system even with a single crash 
failure, also applies to the election problem [7],[8]. That means 
that there is no solution for the election problem satisfying both 
of safety and liveness properties in completely asynchronous 
distributed systems. 
It must be pointed out, however, that the impossibility result 
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really means “not always possible,” as opposed to “never 
possible.” As a matter of fact, any algorithm that tries to solve 
the Election Problem cannot always make progress without 
violating safety; there exist cases in which the algorithm 
violating safety, although it is very unlikely. 
Therefore, to solve the election problem in those systems, one 
property should be weaker than the other property. If an 
election algorithm strengthens the safety property in sacrifice of 
liveness property, it would be difficult to progress. But on the 
contrary, an election algorithm strengthening the liveness 
property in sacrifice of the safety property would have the high 
probability of violating the safety property. There exists a trade-
off between safety property and liveness property.  
 A stable election protocol, which implies the safety 
strengthened election protocol, is needed in a practical 
distributed computing environment. Consider a mission critical 
distributed system such as an electronic commerce system that 
runs multiple servers in which one of them roles a master 
(leader) and others are slaves.  
To have data consistency among the servers in the system, this 
system should not violate safety property, which means that all 
processes connected the system never disagree on a leader. In 
those systems the safety property is more important property 
than the liveness property. 
As a classic paper, there is Garcia-Molina’s Invitation algorithm 
to solve election problem in asynchronous distributed systems. 
The algorithm strengthens the progress property rather than 
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safety and it allows more than two leaders in the systems.  
Our idea is based upon the Garcia-Molina’s Invitation 
algorithm for solving the election problem in asynchronous 
distributed systems [2]. He redesigns the Bully algorithm for 
synchronous distributed systems into the Invitation algorithm 
for asynchronous distributed systems by using a specification 
that is weak enough to be solvable, allowing the algorithm to 
progress even in completely asynchronous distributed systems.  
His specification uses a strong progress requirement, allowing 
executions in which even a single process suspicion of the 
current leader’s crash and its attempted leader election from the 
members may lead a progress to elect a new leader from all 
processes. 
We propose an election algorithm that requires processes to 
elect a new leader only when they agree with the current 
leader’s crash. This requirement is strong because, if no set of 
processes agrees on the current leader’s crash, no progress is 
made. The requirement is, however, much more stronger than 
the one proposed by Garcia-Molina’s Invitation algorithm in 
that it implicitly states that the leader election of any process be 
allowed only on the basis of only it’s own knowledge. 
In this paper, we presents a safety strengthened Leader Election 
protocol with an unreliable failure detector and analyses it in 
terms of safety and liveness properties in asynchronous 
distributed systems. 
Our algorithm, based on a standard three phases commit 
protocol, is fully distributed. It does not extend the 
asynchronous model of concurrent computation to include 
global failure detectors. Progress of the algorithm can be 
guaranteed only in case of minimal violating a safety property. 
The rest of the paper is organized as follows. In Section 2, we 
describe our system model and definitions. In Section 3, this 
paper relates the election specification to other ways to solve 
the election problem. In Section 4, this paper provides a stable 
algorithm that solves the Leader Election problem. In Section 5, 
we ensure the correctness of the algorithm by proving that it 
satisfies the two properties of the specification given in Section 
4. Finally, Section 6 summarizes the main contributions of this 
paper and discusses related and future works. 
 
 

2. MODEL AND DEFINITIONS 
 
 Our model of asynchronous computation with failure 
detection is the one described in [9,10]. In the following, we 
only recall some informal definitions and results that are 
needed in this paper. 
 
2.1 Processes 
 
We consider a distributed system composed of a finite set of 
processes Ω={p1,p2,..,pn} where processes are identified by 
unique id's. Communication is by message passing, 
asynchronous and reliable. Processes fail by crashing; 
Byzantine failures are not considered.  
Every pair of processes is connected by a communication 
channel. That is, every process can send messages to and can 
receive messages from any other. We assume processes are able 

to probe a communication channel for incoming messages. 
Communication channels are considered to be reliable, FIFO, 
and to have an infinite buffer capacity. A reliable channel 
ensures that a message, sent by a process pi to a process pj, is 
eventually received by pj if pi and pj are correct (i.e. do not 
crash). 
Asynchrony means that there is no bound on communication 
delays or process relative speeds. A process that has been 
infinitely slow for some time and has been unresponsive to 
other processes may become responsive again at any time. 
Therefore, processes can only suspect other processes to have 
crashed, using local failure detectors.  
A failure detector is a distributed oracle which gives hints on 
failed processes. We consider algorithms that use failure 
detectors. Local failure detectors are assumed to be inaccurate 
and incomplete. That is, local failure detectors may erroneously 
suspect that other, operational processes have crashed or that 
crashed processes are operational. Since local failure detectors 
run independently at each process, one local failure detector 
may perceive a failure, but other detectors may perceive it at a 
different time or not at all. 
The failure model allows processes to crash, silently halting 
their execution. Because of the unpredictable delays 
experienced by the system, it is impossible to use time-outs to 
accurately detect a process crash.  
We assume that a process communicates with its local failure 
detector through a special receive-only channel on which the 
local failure detector may place a new list of id's of processes 
not suspected to have crashed. We call this list the local 
connectivity view of the process. Each process considers the 
last local connectivity view received from its local failure 
detector as the current one.  
 
2.2 Election Specifications 
 
The Election problem is described as follows: At any time, as 
most one process considers itself the leader, and at any time, if 
there is no leader, a leader is eventually elected. More formally, 
the Election Problem is specified by the following two 
properties: 
 

- Safety: All processes in the local connectivity view of the 
process never disagree on a leader. 

- Liveness: All processes should eventually progress to be in 
a state in which all processes connected to the system agree 
to the only one leader. 

 
 

3. CIRCUMVENTING THE IMPOSSIBILITY RESULT 
 

In this section, we relate the election specification to other 
ways to solve the election problem.  
- In an asynchronous model augmented by global failure 

detectors, processes have access to modules that (by 
definition) eventually reflect the state of the system. 
Therefore, progress and safety can be guaranteed 
unconditionally. 

- In a timed asynchronous model, processes must react to an 
input, producing the corresponding output or changing state, 



32 Sung-Hoon Park : On Relationship between Safety and Liveness of Election Problem in Asynchronous Distributed Systems
 

International Journal of Contents, Vol.7, No.4, Dec 2011 

within a known time bound. Under this model, progress and 
safety can be guaranteed if no failures and recoveries occur 
for a known time needed to communicate in a timely manner. 

- In a completely asynchronous model, progress cannot 
always be guaranteed without violating safety and failure 
detectors in practice eventually reflect the system state, but 
they must be considered arbitrary. Correct processes react in 
practice within finite time, but this time cannot be quantified. 
Therefore, in order to guarantee a solution, we need a weaker 
specification of the problem. 

 
Our approach falls into the last category that originated with 
Garcia-Molina's work [2]. Our election algorithm, however, 
differs from Garcia-Molina's in several ways. 
 
- Processes in Garcia-Molina's model do not need to wait to 

get consensus about the current leader’s crash. If one process 
suspects that the leader failed, it may attempt to elect the new 
leader. Garcia-Molina's specification says that, if one process 
attempts to be a new leader, it eventually should be elected as 
a leader. Our specification requires all processes in a set to 
agree on the current leader crash before changing their new 
leader. 

- Garcia-Molina's specification allows a solution in which the 
attempted change of a leader divides all processes into 
several sub-groups. Our specification does not allow such a 
sub-group because it states that if all processes in a system 
agree on a new leader, they must eventually accept such a 
leader.  

In our model stability is also required for progress, but, at 
variance of the above case, it is not necessarily related to the 
state of the system. In other words, eventual progress is 
required when there is agreement among a set of the local 
failure detectors, even if failures and recoveries continue to 
occur in the system. 
 
 

4. ELECTION ALGORITHM 
 

We provide a stable algorithm that solves the Leader Election 
problem given in Section 2. The algorithm is based on the three 
asynchronous phases.  
- A prepare phase, in which a process propose a new leader 

that the other processes agree with.  
- A ready phase, in which all process that agree on the new 

leader acknowledge the reservation of the potential leader.  
- A commit phase, in which the new leader is finally elected, 

and all process accept it their only leader. 
 
4.1 Solution Sketch 
 

The main idea for the algorithm is as follows. A process p 
that is informed by its local failure detector of a leader’s crash 
and that has the smallest id among processes in its new local 
connectivity view sends a message to all processes in its view 
proposing to change the current leader with the new leader.  
Each process received the message records this proposal until 
the potential leader in its local view is the same as the proposed 
new leader in its local view. At which point, it responds by 

sending back an Accept or Retry message to the process that 
proposed the leader update. The Accept message is sent if the 
process agrees on the proposed leader in its local current view.  
Upon sending the Accept message, the process reserves the 
prospective leader, so that no other proposal is accepted for that 
system. Upon receiving a Retry message, the proposing process 
returns the normal state of the algorithm, sending a new Abort 
message to all processes in its view.  
When the proposing process has collected Accept messages 
from all processes in its view, it starts the commit phase by 
sending commit messages, ordering other processes in its view 
to commit the leader update. Upon receiving a commit message, 
the processes accept the reserved prospective leader as a their 
new leader. 
 
4.2 Code Description 
 

The code is shown in Fig. 1. The first received command in 
Fig. 1 shows how a process p, when informed of a change in its 
local connectivity view, set its view to be current and checks if 
the current leader has crashed. If the leader has crashed, it set 
the variable LeaderStatus to be false. When LeaderStatus is 
false, the StartElection procedure in Fig.1 is called and the 
process p checks that it is the minimum id among the processes 
in vp. If p is the minimum id, it increases the round and 
proposes itself as a new prospective leader and initializes its 
ack array to zero. 
The next received commands in Fig. 1 check for incoming 
messages from other processes. These may be proposals for a 
new leader (Propose), rejections to propose a new leader 
(Rejection), acceptances of a proposed new leader (Accept), 
orders to commit a new leader (Commit) or orders to abort a 
proposed new leader (Abort).  
 
Upon received vp from FD: 

CurView := true; 
If CurLeader ∉ vp then LeaderStatus := 0;  
end-if 

If p = min(vp) then Round := Round +1;  
  Call start_election();  

end-if 
 
Upon received (Propose,PropLeader, k) from q: 

 Prop:= true; CurView := false; 
NewLeader:= PropLeader ; RoundIn := k; 

 Call reply_election(); 
 

Upon received (Reject, k) from q: 
 If Round = k then  

Send (Abort, Round) to ∀ j ∈ vp; 
   For ∀j ∈ vp, ack[j] :=0;  
end-if 

 
Upon received (Accept, k) from j: 
  If Round = k then ack[j] := 1; 
   If for ∀q∈ vp, ack[q] = 1 then   

Send (Commit, PropLeader, Round) to 
∀q∈ vp; 
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For ∀q ∈ vp, ack[q] :=0;  
end-if end-if 

 
Upon received (Commit, PropLeader, k) from j: 

If RoundIn = k then  
CurLeader := PropLeader; 

 LeaderStatus := 1;  
end-if 

 
Procedure Start_election(): 
  PropLeader := p; 

Send (Propose, PropLeader, Round) to  
∀q∈ vp; 

For ∀q∈ vp, ack[q] :=0;  
 
Procedure Reply_election(); 

If ( CurView ∧ Prop ) then Prop:= false;  
If (Newleader≤min(vp)∧RoundIn>Round)  

then Send ( Accept, PropIn) to q; 
Next = RoundIn + 1;  

end-if  
else Send (Reject, PropIn) to q;  

end-if 
Fig. 1. The Algorithm. 

 
Upon receiving a proposal message from process q, process p 
stores the new leader’s id proposed by q at position q of the 
array NewLeader and stores the proposed round at position q of 
the array RoundIn, then sets position q of the array Prop to true 
to record the receipt of the proposal from q and sets the 
CurView to false to refresh the current view of the system 
If process p later agrees on the proposed new leader, it sends a 
response to process q (see last guarded command in Fig. 1). 
The response is either an acceptance of the new leader at 
position NewLeader[q] if the minimum id among the process in 
vp is greater or equal than the id of proposed NewLeader[q] and 
the proposed round greater than the current round; or it is an 
rejection to the proposed new leader if the minimum id among 
the process in vp is less than the id of proposed NewLeader[q] 
or the proposed round less or equal than the current round.  
A rejection to the proposed new leader consists of sending back 
to q the proposed round. An acceptance consists of 
acknowledging the proposed new leader at position 
NewLeader[q].  
We now examine the guarded commands of the remaining 
message types. A process p that receives a rejection to the its 
proposal sends all processes in vp a message to abort the 
proposed round and reinitializes the ack array to zero.  
A process p that receives an acceptance regarding its proposed 
new leader receives the proposed round. If the received round is 
equal to the round of the most recent proposal sent, process p 
sets the element at position q in the array ack to 1 to record the 
acceptance.  
Then, it inspects the ack array to check if all entries are 1. If so, 
p starts the commit phase by broadcasting its previously 
proposed new leader and the corresponding proposed round 
PropRound to all processes in vp and reinitializes the ack array 
to zero.  

A process p that receives an order to commit a new leader at 
position q from process q, simply sets the current leader to the 
proposed new leader and sets the current round to the proposed 
round. 
 
 

5. CORRECTNESS 
 

We can ensure the correctness of the algorithm by proving 
that it satisfies the two properties of the specification given in 
Section 4. 
 
5.1 Safety 
 
Theorem 1. The algorithm described in Section 4 satisfies the 
safety condition of the specification (Property 1, Section 2): At 
any point in time, all processes connected the system never 
disagree on a leader.  
 
Proof. Either all processes remain in the start state or some 
process p receives the proposed leader as its leader. In the start 
state, the safety property holds since all processes are in the 
state in which a leader has not been elected. If some process p 
receives its leader by committing a proposed leader at a given 
position q, it must have received a Commit message from some 
process q; therefore, q must have received Accept messages 
regarding its proposal of a new leader from all processes in vp 
including p. It follows from the last guarded command in Fig. 1 
that, if process p has accepted the proposal of process q, it will 
not accept any other proposal for new leader, making it possible 
to commit at most single proposed leader. Therefore, process p 
either commits the process at position q as a new leader or ends 
up with position q by aborting the proposed new leader. 
Therefore safety property holds. 
 
5.2 Liveness 
 
Theorem 2. The algorithm described in Section 4 satisfies the 
liveness condition of the specification (Property 2, Section 4): 
All processes should eventually progress to be in a state in 
which all processes connected to the system agree to the only 
one leader. 
 
Proof. By contradiction, a non-progress means that the new 
leader is not elected forever even though there is no leader; 
therefore, no Commit messages must be sent. Since the number 
of processes is finite, there must be at least one process whose 
id is the minimum value in vp and that process eventually sends 
a Propose message. Call this process p. By the code in Fig. 1, 
we see that, to have no Commit message, each time p sends a 
Propose message, it should be rejected by other process. It 
follows that, in order to abort infinitely many Propose messages, 
other process q must reject the proposed messages infinitely 
often.  
Propose messages are rejected either when the minimum id of 
vp is greater than the id of the proposed leader or because of a 
Propose message already has been received (see Fig. 1).  
The first case is ruled out because it implies that some process 
always considers that there is a process that is alive and whose 
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id is less that the id of proposed new leader. But by strong 
completeness of a failure detector it is contradiction.  
The second case is also ruled out, because it implies that other 
process q sends infinitely many proposals of the other leader. 
But by eventual strong accuracy of a failure detector, the 
process q knows that there is a process whose id is less that its 
id. Therefore it is contradiction.  
 
 

6. CONCLUDING REMARKS 
 
  We have presented a stable election protocol with a reliable 
failure detector in completely asynchronous systems. We have 
assumed our local failure detectors to be inaccurate and 
incomplete. With this approach, the leader election 
specification states explicitly that progress without violation of 
safety cannot always be guaranteed. In practice, our 
requirement for progress is weaker than that stated in the 
original specification of having a set of processes sharing the 
same leader.  
In fact, if the rate of perceived a leader failures in the system is 
lower than the time it takes the protocol to make progress and 
accept a new leader, then it is possible for the algorithm to 
make progress every time there is a leader failure in the system. 
This depends on the actual rate of a leader failures and on the 
capacity of the failure detectors to track such failures.  
In [10], Chandra and Toueg note that failure detectors defined 
in terms of global system properties cannot be implemented. 
This result gives strength to the approach of relaxing the 
specification and of having a stable election protocol. In real 
world systems, where process crashes actually lead a connected 
cluster of processes to share the same connectivity view of the 
network, convergence on a new leader can be easily reached in 
practice.  
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