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ABSTRACT

Multiple expression levels of genes obtained using time series microarray experiments have been exploited effectively to enhance 
understanding of a wide range of biological phenomena. However, the unique nature of microarray data is usually in the form of 
large matrices of expression genes with high dimensions. Among the huge number of genes presented in microarrays, only a small 
number of genes are expected to be effective for performing a certain task. Hence, discounting the majority of unaffected genes is the 
crucial goal of gene selection to improve accuracy for disease diagnosis. In this paper, a non-Gaussian weight matrix obtained from
an incremental model is proposed to extract useful features of multivariate time series microarrays. The proposed method can 
automatically identify a small number of significant features via discovering hidden variables from a huge number of features. An 
unsupervised hierarchical clustering representative is then taken to evaluate the effectiveness of the proposed methodology. The 
proposed method achieves promising results based on predictive accuracy of clustering compared to existing methods of analysis. 
Furthermore, the proposed method offers a robust approach with low memory and computation costs.    

Keywords: Multivariate Time Series, Principle Component Analysis, Independent Component Analysis Article, Microarray Analysis, 

Feature Selection, Incremental Model, Clustering.

 1. INTRODUCTION

Time series microarray experiments have become an
indispensable technology, which allows for the monitoring of 
expression levels of thousands genes under a variety of 
conditions.                                 

A microarray is typically a glass slide on to which DNA 
molecules are fixed in an orderly manner at specific locations
called features. A microarray may contain thousands of features 
and each feature may contain a few million copies of identical 
DNA molecules that uniquely correspond to a gene. Therefore, 
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the high dimensionality of microarray gene expression is 
 always a challenge for biologists to obtain comprehensive 
insights on microarray data [1]. The unique nature of 
microarray data, which contains a high number of features but a 
relatively small number of observations, is in contrast to the 
normal behavior of most real world data. Furthermore, the gene 
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expressions of two individuals are rarely the same. Genetic 
variation poses more challenges to analysis of microarray data. 
In addition, while the microarray experiment is carried out, the 
data tends to be noisy as a result of tissue collection and 
amplification of messenger RNA (mRNA) to hybridization 
onto the chip [2]. Time series microarray experiments are being 
popularly used to characterize the dynamic biological processes 
of genes across time. Its ability to analyze a huge number of 
genes in one experiment has encouraged biologists to collect 
more samples in microarray data [3]. Therefore, it is expected 
that more patients’ data may become available in the future. 
With advances in modern technology, more genes may also be 
discovered by biologists. Hence, both the number of samples 
and genes are expected to grow and thus, the size of microarray 
data will increase. In this case, an appropriate method should 
be proposed to handle the problem of huge data dimensions by 
retaining the important information and eliminating noise. 

Since, among the huge number of genes presented in a 
microarray, only a small number of genes are expected to be 
effective for performing a certain task. For delivering precise, 
reliable and interpretable results, it is desirable to identify a 
small subset of genes in developing gene expressions.
Therefore, gene selection is the main goal to discover a reduced 
set of the most relevant genes. For multivariate microarray 
analysis, several techniques have been developed, because it is 
important to seek results that take into account the relationships 
between multiple variables, as well as within the variables [5]. 
Multivariate analysis is widely used to extract features and 
reduce the dimension of microarray datasets. 

The most common multivariate analyses in dimensionality 
reduction are known as Principal Component Analysis (PCA)
and Independent Component Analysis (ICA). These are used to 
summarize the time series microarray data. ICA is a method in 
multivariate statistical analysis used to separate data into 
underlying informational components [3], [6]. ICA is 
essentially a useful method to reveal the driving forces that 
underlie a set of observed phenomena. These phenomena 
include the firing of a set of neurons from microarray datasets. 
ICA has been applied to many goals, such as separation of 
artifacts in magnetoencephalogram (MEG) data, as well as 
visualization, localization, and feature extraction of the
electroencephalogram (EEG) signal [7–10].

PCA projects the data to a new space in a lower dimension to 
capture the data with the highest variance spanned by the 
orthogonal principle components. This means that PCA finds a 
set of signals with a much weaker property than independence, 
while ICA finds a set of independent source signals [6], [22]. 
Specifically, PCA finds a set of signals that are uncorrelated to 
each other. In some cases, if the data are Gaussian, estimation 
of the model requires an orthogonal transformation [11]. 
However, PCA suffers from its orthogonality requirement for 
real world data whose distribution is not Gaussian. In 
probability theory, the Central Limit Theorem (CLT) states 
conditions under which the sum of a sufficiently large number 
of independent random variables, each with finite mean and 
variance, will be approximately normally distributed [12]. That 
is, mixtures of several sources tend to be more Gaussian than 
the distribution of the original sources [13]. PCA does provide 
a set of independent components but only if those components 
are Gaussian. Conversely, ICA is considered as a non-Gaussian 
factor analysis, in which ICA decomposes the statistical 

independent components. Many studies have shown that ICA 
outperforms PCA in microarray analysis.

Many applications dealing with massive microarray datasets 
are emerging. It is necessary to analyze the data as soon as the 
data arrives [7], [14]–[16]. Unfortunately, the traditional way of 
processing microarray datasets always treats these data as static. 
Besides, batch processing, especially in time series data 
requires time that depends on the duration t, which grows to 
infinity. Both classical PCA and ICA involve the calculation of 
Singular Value decomposition (SVD), which consumes huge 
amounts of memory [17]. As the space requirement also 
depends on t, the consumption of space is proportional to the 
duration t. Thus, batch mode processing always suffers from 
the large memory requirement and is time consuming, 
especially when the size of the data increases. On the fly 
processing is desirable to efficiently process the data. The 
incremental learning model is therefore proposed as a better 
alternative to process the data with less memory and time 
consumption. The incremental model works by processing the 
data at each input vector while the historical data are stored in a 
few variables. The previous values of the variables are updated 
by the next input vector [17]–[21]. This process is repeated 
until the end of the input data. Since historical values are kept 
in the variables, the incremental model has only a small 
memory requirement and thus accelerates the processing speed.

In this paper, we propose a method that integrates ideas
based on an incremental approach and ICA. The proposed 
method computes an orthogonal weight by updating each 
weight vector in a predefined energy range. Upon obtaining the 
orthogonal weight, it is converged to become a non-Gaussian 
weight. This methodology works incrementally by updating the 
non-Gaussian weight using past variables instead of re-
computing the entire dataset when new data input arrives; thus, 
it has a low computation cost. Our proposed method adapts the 
concepts of converging statistically independent components of 
multivariate data in an incremental way. The traditional batch 
method is limited by the requirement of re-computation of the 
entire data matrix when there is new input data. In contrast, our 
proposed method can efficiently integrate newly arriving data 
with past variables without involving the entire data matrix. 

The remainder of this paper is organized as follows. Section 
2 reviews the principal of ICA and our proposed methodology. 
The experimental results are presented in Section 3. Finally, 
conclusions and future work are outlined in Section 4.

2. PROPOSED METHOD

In this chapter, the fundamental concept of ICA is first 

presented. Then, a newly proposed method is modeled in order 

to enhance the way in which the idea of ICA is integrated

incrementally to successful analysis of multivariate microarray 

time series data. 

2.1 Fundamentals of ICA Model for Microarrays
The data from microarray experiments can be formed by 

large matrices of expression levels of genes (n columns) under 
different conditions (m rows). Time series microarray 
experiments can be represented in the ICA model by the
following equation:

Asx =                    (1)
Where bold lower-case letters indicate vectors and bold
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upper-case letters denote matrices. ],...,,[ 21 nxxxx = is an

mxn microarray gene expression matrix of t experiments and n
genes. A is the mixing parameter and s is the hidden variable. 
To precisely illustrate the ICA mixing model, Equation 1 can 
be expanded as follows:
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Where nnaaaa ,...,, 13,1211 are some parameters representing

the controlling factors. )()...(),(),( 321 tstststs n are the 

biological processes that form the evolving base of the 
experiments. This can be summarized in that x is the sum of the 
amount of controlling factors, A weighted by the biological 
process, s. We denote the weight, W as the inverse matrix of 
mixing parameter, A and thus the hidden variables, s can be 
found using the expression. ICA finds A such that the source 
signals, s or components are statistically independent. After 
estimating the matrix A , we can compute its inverse, W to 
obtain the independent components as shown below:                                                                                                             

xAs 1-=           (3)
Wxs =                     (4)

The model can be also written as:

å =
=

n

i
ii xws

1
             (5)

Assumptions on the ICA model are that the components s is
statistically independent and that the independent components 
must have non-Gaussian distribution. Consider y, a linear 
combination of is . We seek one of the independent components,

y:

xwy T=                   (6)

By maximizing the non-Gaussianity of xwT , we can obtain 
the independent component y.

2.2 Incremental Non-Gaussian Analysis for Microarrays
Incremental non-Gaussian analysis for microarray expression,

which integrates an incremental model with the concept of ICA 
to update the non-Gaussian weight, is presented here. Table 1 
shows the description of the symbols used in the proposed 
method. 

Table 1. Notation

Symbol Description

x Input vector (lower-case bold)

xt The n stream input values at time t

W Weight matrix (upper-case bold)

wi The i-th participation weight vector

n Number of streams

k Number of hidden variables

y
t

Vector of hidden variables for xt

d i Energy estimate of i-th hidden variable

ei Reconstruction error

E it , Total energy of hidden variables up to time t , and 

hidden variable i

Ehv Total energy of hidden variables

E x Energy of input data x

l Exponential forgetting factor

f Lower bound predefined energy

F Upper bound predefined energy

The propose method will be described as follows. In the time 

series microarray data, n
tx ÂÎ is the n genes measurement 

column-vector of each experimental sample time, t that might 
grow continuously to infinity. In the first experiment, the basis 
vector is adopted by weight vector, iw . Each of the weight 

vectors iw is projected onto the input vector, tx in the linear 

transformation of the data stream to obtain the hidden variables 
or components, ty over time. The core idea of the 

incremental approach is to gradually update each of the 
participation weight vectors, iw at each time tick in the newly 

projected space. The weight vector of the proposed method is 
non-Gaussian. Upon obtaining the orthogonal weight vector, 

iw from the incremental model, each of the weight vectors, 

iw are updated until the maxima of non-Gaussianity is 

obtained.  
Firstly, the number of hidden variables, k is initialized with 

an arbitrary number. Then, we obtain the input vector, 

[ ]Tnttt xxx ,1, ,...= at time, t with n dimensions. From the input 

vector, we compute the i-th component, ity , based on the 

previous weight, kiw it ££- 1,,1 . The computation of the i-th

component is shown in the following equation. It is computed 
by the sum of the weight vector projected onto the input vector 
at time, t:

å =
=

n

n
ntnint XWy

1
,,,            (7)

Next, we estimate the energy, 2
iii ydd += l and the 

reconstruction error, iii xxe -= ~ based on the hidden variable 

calculated from the previous step. The initial value of energy is 
set to a small positive value. 

The exponential forgetting factor, λ is introduced so that new 
data can adapt to previous behavior in the data stream. The 
value of the exponential forgetting factor is between 0 and 1. 
The introduction of the λ value helps to reduce the huge 
memory usage, because there is no buffer space requirement 
for the whole data stream. The common choices of the 
exponential forgetting factor are values between 0.96 and 0.98.
The exponential forgetting factor should be set to a high value, 
so that the data can adapt to the past values [18]. As long as the 
value does not vary too much, the result is similar. The 
magnitude of the estimates should also consider the past data 
captured by the participation weight vector, iw . For this 

reason, the update is inversely proportional to the current 
energy, itE , of the i-th hidden variable; that is 

å =
=

t

iit y
t

E
1

2
,,

1

t
t and iti tEd ,= . The participation weight 

vector is updated based on the following equation:

i

ii
ii

d

ey
ww +=                   (8)

Finally, we obtain the updated participation weight,
kiwi ££1, . The actual hidden variables, ty at time t, are 

computed by projecting the weight matrix, w with the input 
vector, x.
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To make sure that there are sufficient components to 
represent the data, energy thresholding is applied to determine 
how many hidden variables are needed. The energy retained by 
the hidden variables, hvE is compared with the upper, EF E

and lower bound energy, Ef
E

of the original input data. If 

the hidden variables maintain too little energy, the number of 
hidden variables are increased, k. Conversely, if the maintained 
energy is too high, the number of hidden variables, k, will be 
decreased. This ensures that the energy of the hidden variables 
is always within the predefined specified interval of low and 
high energy values. Whenever a new datum arrives, the process 
of updating the weight vector will be repeated and the number 
of hidden variables will be adjusted to retain the energy of the 
components between the predefined low and high energy 
bounds. The algorithm is shown in Figure 1 below.

Fig. 1. Non-Gaussian analysis algorithm snippet

3. EXPERIMENTAL RESULTS

3.1 Datasets
To evaluate the effectiveness of our proposed method in the 

microarray dataset, the Gene Expression Omnibus (GEO

datasets deposited by Blalock are utilized for the experiment 

[19]. The datasets are studied to analyze the hippocampal gene 

expression in the control and Alzheimer’s Disease (AD) of 

varying severity on 31 dedicated microarrays. The samples are 

obtained from the Brain Bank of the Alzheimer's Disease 

Research Center at the University of Kentucky. Human 

GeneChips (HG-U133A) and Microarray Suite 5 are used for 

data collection. The samples with significant noise are 

eliminated, leaving eight control and five severe AD samples. 

The unregulated genes in microarray data often contain little 

information, thus these unregulated genes are removed from the 

experiment. Therefore, we have 13 samples and 3617 genes for 

each sample.

3.2 Clustering of Microarray Datasets
Our proposed method decomposes the non-Gaussian weight 

vectors that are statistically independent. The underlying 
biological processes of the microarray gene expression data are 
more super-Gaussian than the mixture of the original sources.
Only a small number of genes are expected to be changed at 
each pathological transition [8]. This leaves the majority of 
genes unaffected. Therefore, it forms a super-Gaussian 
distribution. Non-Gaussian analysis is thus suitable to analyze 
the microarray gene expression data. We perform unsupervised 
hierarchical clustering on the AD microarray dataset. Let the 
microarray data, X (m,n) be a two-dimensional m by n matrix. 
Each row, m contains the observation of gene profiles and each 
column, n shows the genes across the experiments. The data are 
first normalized to zero-mean and unit variance to standardize 
the data. This is done by subtracting the data from the mean 
value and then dividing the value by the standard deviation.
Prior to the clustering process, the input vector and gene 
profiles of each experiment are decomposed into non-Gaussian 
weight vectors. Then, the non-Gaussian weight vectors are 
updated at the next input vector (gene profiles at the next 
experiment). This process is repeated by updating the weight of 
the gene profiles at each experimental observation until the last 
observation. Upon completion of the pre-processing on the 
microarray data, the final non-Gaussian weight vectors are 
obtained. In this experiment, the forgetting factor is determined 
to be 0.96 and the energy range from 95 per cent to 98 per cent. 
From the pre-processing process, the final dimension of the 
microarray data matrix is reduced to four. The data matrix used 
for clustering is a 13 by four matrix. Figure 2a shows the 
clustering result of the projection of the microarray data on the 
non-Gaussian weight vectors. The control and severe AD 
samples can be clearly discriminated using a small number of 
features. 

Incremental PCA [17] is adopted to compare other methods 
in this section. The main difference between our proposed 
method and incremental PCA is that the decomposed 
components are not independent. That is, incremental PCA is 
similar to PCA, except that it works in an incremental fashion. 
The experiment is conducted in the same way for our proposed 
method and with the same parameter setting. Figure 2b shows 
the clustering result. It is evident that one AD sample, AD2 
cannot be clustered correctly. 

The experimental results are compared to the ICA result by 
Kong [16]. Figure 2c illustrates the clustering result by ICA. 
The entire data matrix is conducted by fastICA algorithm [8]. 
FastICA is repeated 50 times to alleviate the instability of the 
slightly different results generated from each looping. Eleven 
ICA latent variables are identified to sufficiently capture the 
significant underlying biologically information from the 
original data matrix. Both the control and AD severe samples 
can be discriminated into correct clusters. However, comparing
this with our proposed method, the proposed method achieves 
promising results with fewer components.

PCA is a linear projection in the sense that the variables of 
the projection space are linear combinations of the gene 
expressions. In the PCA case, the result is also obtained from 
Kong [16]. The experiment is carried out by decomposing the 
gene expression matrix into principal components by 
preserving 95.5 per cent of the variance. The principal 
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components with low variance that contained noise are 
removed from the clustering process. Figure 2d demonstrates 
the clustering result of PCA. The control samples are 
successfully clustered, but in the case of AD samples the AD2 
sample is clustered incorrectly.

(a) proposed method      (b) incremental PCA

(c) ICA (d) PCA

Fig. 2. Hierarchical clustering of proposed method (a), 
incremental PCA (b), ICA (c), and PCA (d) outputs.

We examine the abilities of the methods above in 
discriminating the AD samples from the control samples after 
the reconstruction. The reconstructed data are obtained by 
projecting the raw data into the latent variables found in these 
methods. A comparison is made against the hierarchical 
clustering results performed on the normalized raw data and the 
reconstructed data by the methods above. Figure 3a displays 
the clustering result of the normalized raw data. Some of the 
AD samples are clustered together, but the hierarchy of the 
cluster does not discriminate the two different clusters 
successfully. 

(a) Normalized raw data (b) Proposed method

(c) Incremental PCA (d) ICA

(e) PCA

Fig. 3. Hierarchical clustering of the normalized raw data (a), 
data reconstructed by proposed method (b), incremental PCA 

(c), ICA (d), and PCA (e).

For our proposed method, the data are reconstructed by 
projecting the raw data into the four dimensional non-Gaussian 
weight vectors obtained by incrementally updating the weight 
vectors at each observation using 0.96 as the exponential 
forgetting factor and an energy range of 95 percent to 98
percent. Figure 3b shows the clustering result applied to the 
reconstructed data by our proposed method. It is evident that 
the control and AD samples are separated into different groups. 
The proposed method can improve the discriminative ability of 
the clustering result. 

Figure 3c depicts the clustering result of the reconstructed 
data by incremental PCA. The data is reconstructed by 
projecting the raw data into the orthogonal weight vectors
obtained from incremental PCA. The parameter setting is the 
same as for our proposed method, to achieve fair comparison. 
The result demonstrates that incremental PCA fails to separate 
one AD sample, AD2, from the control samples. 

In the PCA and ICA method, ten principal components 
captured 95.5 per cent of the variance and eleven independent 
components, which are identified as being involved in 
biological processes, are selected to reconstruct the data 
respectively. One AD sample, AD2, is not clustered into the 
AD group correctly by PCA and ICA [16]. Although more 
components are used for reconstruction, the proposed method 
shows a more promising clustering result with fewer 
components than those of other methods. 

3.3 Qualitative Evaluation
This section compares the qualitative performance of our 

proposed method with that of ICA. ICA is chosen for the 
comparison with respect to our proposed method because both 
algorithms decompose non-Gaussian components. In this 
section, experiments are conducted on the AD microarray 
dataset because they have different behaviors in multivariate 
data. Synthetic data are augmented on these datasets so that 
more features and more observations are generated. Figure 4 
shows the plot of execution time against number of genes on 
the microarray dataset. The proposed method is plotted with 
star symbols, whereas ICA is plotted with plus signs. In the 
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microarray experiments, the number of observations and the 
other parameters setting are fixed. However, the number of 
genes increases in each loop, so that the execution time of 
different number of genes in both our proposed method and 
ICA can be recorded. The exponential forgetting factor is set at 
0.96, the energy range is from 95 to 98 per cent and there are 
initially three hidden variables. When the number of genes 
increases, the execution times of both methods proportionally 
increase. However, from the graph, it is evident that ICA 
requires more computation time than our proposed method 
when the number of genes increases. 
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Fig. 4. Plot of execution time against number of genes on the 
microarray dataset

As shown in Fig. 4, the proposed method only involves 

floating operation, whereas ICA involves covariance matrix 

calculation. ICA requires a longer computation time when the 

size of the matrix increases. Thus, our proposed method is 

proven more efficient when the number of genes or sources is 

growing.
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Fig. 5. Plot of execution time against number of experiments 

in microarray data.

Fig. 5 illustrates the plot of execution time against the 

number of experiments in the microarray dataset. The 

parameters are the same as in the previous experiment, except 

that the number of genes is fixed in this experiment. The 

number of experiments is varied in each iteration, so that the 

execution time of different experiment sizes can be observed. 

When the number of experiments increases, the execution time 

does not increase proportionally since, when a new experiment 

contains gene expression; our algorithm updates weight vectors 

with a new input vector using the past value stored in variables. 

However, when the number of experiments increases, the plot 

for ICA shows a dramatic upwards trend. Further, the execution 

time of ICA is also higher than that of our proposed method.

The graph in Fig. 5 shows that ICA takes a long time to 
execute. This can be explained by ICA’s involving a 
covariance matrix calculation, requiring high levels of memory 
and computation time. In addition, when a new experiment is 
available, ICA requires re-computation of the entire microarray 
matrix. Therefore, more computation is required. It is proven 
that our proposed approach is robust in both the number of 
features (gene) and number of observations. Hence, it is 
suitable for microarray analysis. 

4. CONCLUSION AND FUTURE WORK

It has been shown that an incremental non-Gaussian model 

can be used to effectively cluster data for microarray 

expression matrices. In the microarray dataset, the super-

Gaussian weight matrix reveals the underlying biological 

processes in the microarray data. The clustering accuracy for 

the microarray shows promising results using our proposed 

method when compared with previous analysis such as ICA or 

PCA. 

Furthermore, the proposed method demonstrates a robust 

approach, with low memory and computation costs. It scales 

linearly with the stream size, number of sources, and hidden 

variables. In contrast, both ICA and PCA have limitations on 

computation power when the number of genes and observations 

grows larger. They are also constrained to re-compute the 

entire microarray matrix when a new experiment is added.

For future work, the proposed method can be investigated in 

multi-way data analysis. Analyzing multi-way data can reveal 

more behavior by discovering the correlation between different 

dimensions. We can capture a multi-linear structure using 

higher order statistics incrementally. If the data consists of 

more than two modes, the underlying structures can be detected 

more efficiently using our incremental approach.

REFERENCES

[1] M. Madan Babu, “Introduction to microarray data 
analysis,” in Computational Genomics Horizon Press, 
U.K, 2009, pp. 225-249.

[2] B. Xie, W. Pan and X. Shen, “Penalized mixtures of 
factor analyzers with application to clustering high 
dimensional microarray data,” in Bioinformatics, 2009, 
pp. 501-508..

[3] S. Raychaudhuri, J. M. Stuart and R. B. Altman, 
“Principal component analysis to summarize microarray 
experiments: application to sporulation Time Series’” in
Pacific Symposium on Biocomputing, 2000, pp. 452-463.

[4] A. L. Boulesteix, C. Porzelius and Martin Daumer, 
“Microarray-based classification and clinical predictors: 
on combined classifiers and additional predictive value,”
in Bioinformatics, 2008, pp. 1698-1706.

[5] C. Das, P. Maji and S. Chattopadhyay, “Supervised gene 
clustering for extraction of discriminative features from 
microarray data,” in India Conference (INDICON), 
Annual IEEE, 2010, pp. 1-4.



Hyung-Jeong Yang : Unsupervised Clustering of Multivariate Time Series Microarray Experiments based on 

Incremental Non-Gaussian Analysis

29

International Journal of Contents, Vol.8, No.1, Mar 2012

[6] S. I. Ao and M. K. Ng, “Gene expression time series
modeling with principal component analysis,” in Soft 
Computing, A Fusion of Foundations, Methodologies and 
Appications, Springer Berlin, February 2006,  vol. 10, 
pp. 351-358.

[7] M. Ungureanu, C. Bigan, R. Strungaru and V. Lazarescu, 
“Independent component analysis applied in biomedical 
signal processing,” in Measurement Science Rev, 2004, 
vol. 4, pp. 1-8.

[8] A. Hyvarinen and E. Oja, “Independent component 
analysis: algorithms and applications,”, in Neural 
Network, vol. 13, 2000, pp. 411-430.

[9] M. Dyrholm, “Model selection for convolutive ICA with 
an application to spatio-temporal Analysis of EEG,” in
Neural Computation, vol. 19, 2007, pp. 934-955.

[10] E. Acar, C. A. Bingol, H. Bingol, R. Bro and B. Yener, 
“Multiway analysis of epilepsy tensors,” in 
Bioinformatics, vol. 23, 2007, pp. 10-18.

[11] JV. Stone, “Independent component analysis: a tutorial 
introduction,” in MIT Press, 2004.

[12] Pan JY, H. Kitagawa, C. Faloutsos and M. Hamamoto, 
“AutoSplit: fast and scalable discovery of hidden 
variables in stream and multimedia databases,” in 
Proceedings of the Eighth Pacific Asia Conference on 
Knowledge Discovery and Data Mining (PAKDD), 2004.

[13] J. L. Semmlow and S. L. Semmlow “Biosignal and 
biomedical image processing: matlab based application,  
Marcel Dekker, Inc, 2004.

[14] M. Journee, A. E. Teschendorft, P. A. Absil, S. Tavare 
and R. Sepulchre, “Geometric optimization methods for 
the analysis of gene expression data,” in Principal 
Manifolds for Data Visualization and Dimension 
Reduction, vol. 58, 2007, pp. 272-292.

[15] L. Zhu and C.Tang “Microarray sample clustering using 
independent component analysis,” in IEEE /SMC 
International Conference on System of Systems 
Engineering, 2006.

[16] W. Kong, X. Mou, Q. Liu, Z. Chen, X. R. Vanderburg, J. 
T. Rogers and XUdong Huang, “Independent component 
analysis of Alzheimer’s DNA microarray gene expression 
data,” in Molecular Neurogenereration, 2009.

[17] S. Papadimitriou, J. Sun and C. Faloutsos,  “Streaming 
pattern discovery in multiple time-series,” in Proceedings 
of the 31st VLDB Conference, 2009.

[18] J. Sun, , S. Papadimitriou and C. Faloutsos,  “Online 
latent variable detection in sensor networks,” in
Proceedings of the 21st International Conference on Data 
Engineering, ICDE, 2005.

[19] E. M. Blalock, J. W. Geddes, K. C. Chen, N. M. Porter, 
W. R. Markesbery and P. W. Landfied, “Incipient 
Alzheimer's disease: Microarray correlation analyses 
reveal major transcriptional and tumor suppressor 
responses,” Proceedings of the National Academy of 
Sciences of the United States of America, vol. 7, 2004, pp. 
2173-2178.

[20] R. Mario, S. Cuciniello and D. Feminiano, “Incremental 
generalized eigenvalue classification on data streams,” in
International Workshop on Data Stream Management and 
Mining, 2005.

[21] K.S Ng, H. J. Yang and S. H Kim,” in BioSystems, vol. 
97, 2009, pp. 15-27.

[22] R. Vigario, S. Jaako and O. Erkki, “Searching for 
independence in electromagnetic brain waves,” in
Advances in Independent component analysis, Springer, 
2005.

Kam Swee Ng
She received her B.S in University of

Technology Malaysia and M.S. in 

computer science from Chonnam 

National University. Her current work is 

Intel Corporation in Malaysia. Her main 

research interests include data mining, 

sensor mining and bioinformatics,

Hyung Jeong Yang
She received her B.S., M.S. and Ph. D 

from Chonbuk National University, 

Korea. She is currently an associate

professor at Dept. of Electronics and 

Computer Engineering, Chonnam 

National University, Gwangju, Korea. 

Her main research interests include

multimedia data mining, pattern recognition, artificial 

intelligence, e-Learning, and e-Design. 

Soo Hyung Kim
He received his B.S. at Dept. of 

Computer Engineering, Seoul National 

University, and M.S. and Ph.D. at Dept. 

of Computer Science, Korea Advanced 

Institute of Science and Technology, 

Korea. He is currently a professor at Dept. 

of Electronics and Computer Engineering 

and a vice-Dean of the Engineering College, Chonnam 

National University, Gwangju, Korea. 

Sun Hee Kim

She received the B.S in Multimedia from 

Korean Educational Development 

Institute in 2004 and the M.S. degree in 

Computer Science from Dongguk 

University, Korea in 2006. She received 

the Ph. D. degrees in Computer Science 

from Chonnam National in 2011. She 

recently works in Carnegie Mellon University as a researcher. 

Her research interests include Data Mining, Sensor Mining and 

Bioinformatic.

Ngoc Anh Nguyen Thi

She received the B.S, in Faculty 

Mathematics-Informatics from Da Nang 

Education University, Viet Nam in 2006, 

and M.S. at Dept. Electronics and 

Computer Engineering, Chonnam 

National University, Korea. She is 

currently a Ph.D. student at Dept.  of 

Electronics and Computer Engineering, Chonnam National 

University, Korea. From 2006 to 2008, she worked as a lecturer 

and researcher at Faculty Mathematics-Informatics of Da Nang 

Education University, Viet Nam. Her research interests focus 

on the intelligent computing in many applications such as 

pattern recognitions, bioinformatics, data analysis of data 

mining and machine learning.


