
 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 83

International Journal of Contents, Vol.8, No.3, Sep 2012

Automatic Generation of Training Character Samples for OCR Systems

Ha Le, Soo Hyung Kim, In Seop Na, Yen Do
School of Electronics and Computer Engineering
Chonnam National University, Gwangju, Korea

Sang Cheol Park

Samsung Medison, Seoul, Korea

Sun Hwa Jeong
Electronics and Telecommunications Research Institute

ABSTRACT

In this paper, we propose a novel method that automatically generates real character images to familiarize existing OCR systems
with new fonts. At first, we generate synthetic character images using a simple degradation model. The synthetic data is used to train
an OCR engine, and the trained OCR is used to recognize and label real character images that are segmented from ideal document
images. Since the OCR engine is unable to recognize accurately all real character images, a substring matching method is employed
to fix wrongly labeled characters by comparing two strings; one is the string grouped by recognized characters in an ideal document
image, and the other is the ordered string of characters which we are considering to train and recognize. Based on our method, we
build a system that automatically generates 2350 most common Korean and 117 alphanumeric characters from new fonts. The ideal
document images used in the system are postal envelope images with characters printed in ascending order of their codes. The
proposed system achieved a labeling accuracy of 99%. Therefore, we believe that our system is effective in facilitating the generation
of numerous character samples to enhance the recognition rate of existing OCR systems for fonts that have never been trained.

Keywords: Character Sample Generation, Optical Character Recognition, Postal Envelope Images, Training Samples, Degradation
Model, and Substring Matching.

1. INTRODUCTION AND PREVIOUS WORK

 Optical character recognition (OCR) [1] is the mechanical or
electronic translation of scanned images of handwritten,
typewritten or printed text into machine-encoded text for the
purpose of compact storage, editing, fast retrieval, and other
file manipulations through the use of computers. An OCR
system enables you to take a book, a magazine article or even
specialized documents, such as a check, a receipt, a name card
or a postal envelope, and feed it directly into an electronic
computer file that can then be edited using a word processor.
Because of its wide range of applications, OCR has been a
research interest of many researchers working on pictorial
pattern recognition.

Over the past years, a lot of studies have been made on the
OCR field, which proposed several ways to implement various
OCR systems and achieved important results. Sarhan and Al-
Zobaidy et al. [2] proposed an OCR system using well-known

* Corresponding author, Email: ypencil@daum.net
Manuscript received Jul. 25, 2012; revised Aug 31, 2012;
accepted Sep 10, 2012

Neocognitron Artificial Neural Network for its fast processing
time and its good performance for pattern recognition problems.
They achieved the recognition rate of 95% with 600 Assyrian
character sample images for both training and testing stages. H.
Guo and J. Zhao et al. [3] proposed a modification of K-
Nearest Neighbors for the Chinese minority scripts
classification, using wavelet energy distribution and wavelet
energy proportions features generated from the discrete wavelet
multi-resolution decomposition. The average accuracy of their
system is up to 96% with 800 sample images automatically
generated by means of random function. Rawat and Kumar et
al. [4] described adaptive OCR for Digital Library with human
intervention to get feedback for learning. Their system was
trained using synthetic data generated from the degradation
model of Kanungo [6], and within few iterations of retraining
the accuracy of their system was improved to close to 95%.
Meshesha and Jawahar et al. [5] used Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA) for
feature extraction and Decision Directed Acyclic Graph
(DDAG) for multi class Support Vector Machine (SVM)
classifier. They obtained the accuracy of 96% with the
synthetic testing data set and the accuracy of 90% with the real-

http://dx.doi.org/10.5392/IJoC.2012.8.3.083

84 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems

International Journal of Contents, Vol.8, No.3, Sep 2012

life testing data set. By combining the entire concept from these
papers we know that one of the most important factors that
affect the results of OCR systems is training character samples.
Advanced OCR systems can recognize a lot of characters from
a wide variety of fonts, but they still have difficulty with new
fonts, whose characters have never been trained.

New fonts constantly emerge and formulate a myriad of new
characters with different typefaces. This, as a consequence,
reduces the accuracy of the existing OCR systems. Thus, these
existing OCR systems need to be retrained with new character
samples, which include labeled character images of new fonts.
However, manual generation of these new training character
samples is a tedious, time-consuming and costly process, as
each single character has to be marked and labeled with the
correct character code. Therefore, it is necessary to construct a
tool that automatically generates training character samples to
avoid the demanding manual tasks.

Several approaches on the generation of training database
have been published in literature. One approach is to use
synthetic images generated from an electronic document, where
the ground truth is available, on which an image degradation
model is applied. Different degradation models have been
described in literature [9]. However, we can categorize them in
two general models. The first models the physics of the
apparatus in detail [11], [12]. The completeness of such models
can then be justified in part by pointing to the physics.
Certainly this can lead to accurate models, but they may be
unnecessarily specific and complicated. The second model is
more empirical: the simplest model that merely saves the
appearances, that is able to generate duplicates of real defective
images. Such models cannot be justified by appeals to physics,
and must rest on purely statistical measures of completeness
[13], [14]. Although, using synthetic data has some advantages
over scanning and manual entry, including rapid generation of
data at lower cost and continuous control of degradation,
synthetic data is generated artificially and may not give as good
recognition results as real data. Therefore generating real data
is indispensable for training advanced OCR systems. In
literature, forced alignment has been used for generating real
data for OCR systems. The concept of these methods is to force
the transcription of the text line to fit to the image representing
the text line using an initially trained recognizer. Zimmermand
et al. [15] generated handwriting data using a hidden Markov
model recognizer. The path maximizing the probability of
finding the word from the transcription gives the optimal
cutting points. A similar method is presented by Jaeger et al.
[16], and this method was applied to both handwriting and
printed text. The disadvantage of this method, apart from being
less accurate than manually labeled data, is that both a trained
HMM recognizer and the transcription are required. To
overcome this problem, Kanungo et al. [7] combined the ease
of synthetic data together with real world document image
degradation. He used electronic documents to extract the
ground truth information (character position, size and code).
Furthermore, the document is printed and scanned again. Then
the electronic document and the scanned document image are
aligned, allowing the computation of the positions of characters
in the scanned document image. Since the distortions produced
by scanners cannot be described by similarity transformations,

a calibration step was introduced to adjust the bounding box of
characters. Kim and Kanungo et al. [8] proposed a more robust
alignment method, which gives a better result on the UW3
dataset. Recently, Beusekom et al. [10] used Kim and
Kanungo’s method to estimate the global transformation
parameters. Then a local alignment was applied to adapt
automatically to scanner distortions. Those methods of
generating real data are strictly dependent on the layout of the
input documents and the alignment results. The layout
information needs to be 100 percent accurate otherwise the
systems being evaluated or trained penalized incorrectly [7].
However, the layout of the input documents may vary, so
generating layout information is not an easy task.

In this paper, we proposed a novel method that automatically
generates real character data without the neccessity of layout
information. At first, we generate synthetic character images
using a simple degradation model. The synthetic data is used to
train an OCR engine, and the trained OCR is used to recognize
and label real character images that are segmented from ideal
document images. Due to the limitation of using synthetic data
in training, the OCR engine is unable to recognize accurately
all real character images. Thus, a substring matching method is
employed to fix wrongly labeled characters by comparing two
strings; one is the string grouped by recognized characters in an
ideal document image, the other is the ordered string of
characters which we are considering to train and recognize.
After substring matching process, recognized characters are
classified into three groups, namely correctly recognized group,
revised group and wrongly segmented group. The characters of
correctly recognized group and revised group are used as
training character samples. Based on our method, we build a
system that automatically generates 2350 most common
Korean and 117 alphanumeric characters from new fonts. The
ideal document images used in the system are postal envelope
images with characters printed in ascending order of their codes.

The rest of the paper is organized as follows. Section 2
presents a detailed flowchart of the proposed system. Section 3
illustrates an experiment to validate its performance.
Discussions and conclusions of this work are given in section 4
and section 5.

2. THE SYSTEM ARCHITECTURE

Manual generation of training character samples is normally
done in three steps as shown in Fig. 1. In the first step, a large
number of postal envelop images is collected to acquire a
complete set of characters with various typefaces, font sizes
and font styles. In the second step, these postal envelope
images are segmented into character images. Lastly, the most
tedious step is to manually label a vast number of character
images using visual inspection. Mistakes are inevitable in
manual labeling, which consequently affects the accuracy of
the recognition results of OCR systems.

 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 85

International Journal of Contents, Vol.8, No.3, Sep 2012

Fig. 1. Routine Procedure for Manual Generation of Training

Character Samples

To overcome the problems associated with manual
generation, collecting postal envelop images is replaced with
creating ideal postal envelope images. Additionally, an OCR

Fig. 2. Training Database Generation System

engine is employed to identify unlabeled character images
instead of manually labeling them. Here, an ideal postal
envelope image is a postal envelope image whose characters
are known and printed in ascending order of their codes. In the
overview, our proposed system consists of two main stages:
synthetic data generation (SDG) and real data generation
(RDG) as shown in Fig. 2.

2.1 Synthetic Data Generation

Fig. 3. Degradation Model

In SDG stage, a database of synthetic character images is

created using new fonts. At first, a set of character images with
various typefaces, font sizes and font styles is produced using

new fonts. As these synthetic character images are directly
generated from the specified typefaces, font sizes and styles in
the Windows OS, they are definitely clear. In contrast, real
character images undergo processes like printing and scanning,
which may distort or introduce noises to them. Therefore, to
mimic real character images with distortion and noises, we
build a degradation model to help synthetic character images
resemble real ones. Our degradation model has two steps that
mimic the degradation of printing and scanning process as
shown in Fig. 3.

2.1.1 Degradation of printing process: We can see that real
character images may get noises due to effects of printing such
as ink smudges or faint lines running over characters. Thus,
pepper noise is added to synthetic character images to resemble
the characteristic found in real characters. For example, we
used the Korean character “쟀”. This character was generated
using font Samsung Gothic with the size of 10 points. This size
was modified by our system based on Eq. 1 with DPI = 240, so
the actual size of the generated character is 29.5 points as
shown in Fig. 4(a). Then, pepper noise is distributed randomly
in the synthetic character images as shown in Fig. 4(b).
However, noises unassociated with characters are removed as
shown in Fig. 4(c). Each real character image has a different

86 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems

International Journal of Contents, Vol.8, No.3, Sep 2012

quantity of noise, so we add a noise rate option in our system to
customize the quantity of noise and diversify the synthetic
characters.

 (a) (b) (c)

Fig. 4. Degradation of Printing Process, (a) an electronic
character image, (b) after adding pepper noise, (c) noises

unassociated with character are removed

2.1.2 Degradation of Scanning Process: A real character is
affected not only by printing but also scanning. Based on our
observation, there are four kinds of degradation on the scanned
result: the expansion of the character size caused by the
scanning dots per inch (DPI), the noises caused by the specks
of dirt on the scanner bed, the spread of the strokes of character
caused by the scanner mechanism and the tilt of character when
the input documents are slanted in the scanning process by
human action.

DPI is a measure of spatial printing or video dot density, in
particular the number of individual dots that can be placed in a
line within the span of one inch. Sizes of characters on the
document image are changed when the document is scanned in
different DPIs. The relationship between the size of the hard-
copy character and the scanned character is described as,

4.25
312.0' ptDPIpt ××

= (1)

where pt is the size of hard-copy character, pt' is the size of
character after scanned and DPI is the scanning resolution.
Thus, the Eq. 1 is used to modify the size parameter in our
system, which makes the synthetic character resemble the real
scanned character in terms of size.

The noises caused by the specks of dirt on the scanner bed
and the low DPI are simulated in three small steps: scaling
down the input character image, adding pepper noise to it and
finally scaling up the image to its original size. To demonstrate
the noises, we scale down the input image with a scale vector
v=(2/3,2/3) where it gives the most similar effect with scanning
process. Then, some pepper noises are added to the image to
simulate specks of dirt on the scanner bed. Finally, the input
image is scaled up to its original size with a scale vector v'=1/v.

Due to the disadvantages of digital scanner, such as
reflection, shadow or low contrast, the strokes of character tend
to spread out and become bolder. In particular, the characters
with bold style are significantly affected by this characteristic.
To mimic this characteristic, the morphological dilation
operation is performed on the characters with bold style to
enlarge their stroke widths. Since the characters with normal
style are less affected by this characteristic, instead of dilation
operation, we applied morphological closing operation, which
associates both dilation and erosion operation, to keep their
stroke widths, remove small holes and make the character

contours smoother. The structuring element used in our system
is the cross element.

Because the input documents may be slanted in the scanning
process, the real character images may be askew. For this
reason, a rotation operation is employed to imitate this
characteristic. Some angles of rotation are applied to diversify
the synthetic database.

Fig. 5 shows a synthetic character generated by our
degradation model.

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Fig. 5. Degradation of Scanning Process (a) noise image, as
described in section 2.1.1, with the noise rate of 5%, (b) scaling

down using scale vector v=(2/3,2/3), (c) adding more pepper
noises, (d) scaling up using scale vector v', (e) after dilation of
character with bold style, (f) after rotation by 1° of (e), (g) after
closing of character with normal style and (h) after rotation by

1° of (g)

2.2 Real Data Segmentation

2.2.1 Ideal Postal Envelope Images: Ideal postal envelope
images are generated in binary by ETRI (Korea Electronics and
Telecommunications Research Institute) using new fonts. Since
the focus of this paper is on Korean and English characters,
2467 characters, including 2350 most common Korean
characters and 117 alphanumeric characters, are printed in the
postal envelope images in ascending order of their code (ideal).
As it is not possible to print all characters in one postal
envelope, these characters are divided into small groups, each
of which will be printed in one postal envelope. Fig. 6 is an
example of ideal postal envelope images with characters
printed on the right bottom corner of the postal envelope.

Fig. 6. An ideal postal envelope image

 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 87

International Journal of Contents, Vol.8, No.3, Sep 2012

2.2.2 Character Segmentation of Envelope Images: After
generating enough postal envelope images, we apply four
image processing steps to extract characters in these images.
The image processing steps are shown in Fig. 7.

Fig. 7. Character Segmentation in Envelope Images

2.2.2.1 Detection of Region of Interest: The detection of

region of interest (ROI) in each envelope image is the
foundation of subsequent processing and recognition in the
proposed system. In this step, we detect the text region on the
right bottom corner of an input postal envelope image, which is
considered as the receiver’s address, using horizontal and
vertical projection profiles. Horizontal projection profile of a
binary image is a column vector whose elements indicate the
number of black pixels in each row of this image. Vertical
projection profile of a binary image is a row vector whose
elements indicate the number of black pixels in each column of
this image.

The region of interest detection process is conducted as
follows:

Step 1: Calculate the horizontal projection profile to y-
axis on the input image. The visualization of the horizontal
projection values of the input image in Fig. 8(a) is shown in Fig.
8(b). Suppose that H is the height of the input image and the
projection value of each row is projy(i), i=1..H. We define a
horizontal projection threshold Th as,

∑
=

=
H

i
h iprojy

H
T

1
)(

2
1 (2)

The horizontal projection threshold Th is used to remove

noises and distinguish text lines in the input images. Thus,
horizontal projection values are less than or equal to Th are
marked as 0.

⎩
⎨
⎧ ≤

=
otherwiseiprojy

Tiprojyif
iprojy h

)(
)(0

)((3)

Fig. 8. Horizontal Projection Profile, (a) the input envelope

image, (b) horizontal projection profile and (c) the horizontal

projection profile after thresholding and the threshold value is
the dash line

The visualization of horizontal projection values after

thresholding is shown in Fig. 8(c). After thresholding, we
remove these text lines whose height is less than a very small
value. Based on the constraint that the ROI is located in the
right bottom corner of the input envelope, we find the top and
bottom coordinates of the text region. The red lines in Fig. 8
present the detected top and bottom coordinates.

Step 2: Extract a text region from the input image using
the top and bottom coordinates. The extracted text region is
shown in Fig. 9(a).

Step 3: Calculate the vertical projection profile to x-axis
on the extracted text region. The visualization of the vertical
projection values of the input text region is shown in Fig. 9(b).
Suppose that the projection value of each column is projx(j),
j=1..W. Here, W is the width of the input image. We define a
new vertical projection threshold Tv as,

∑
=

=
W

j
v jprojx

W
T

1
)(

3
1 (4)

As similar to Th, Tv is used to remove noises and

distinguish these vertical lines in the extracted text region. Thus,
vertical projection values are less than Tv are marked as 0.

⎩
⎨
⎧ ≤

=
otherwisejprojx

Tjprojxif
jprojx v

)(
)(0

)((5)

The visualization of vertical projection values after

thresholding is shown in Fig. 9(c). After thresholding, we can
simply remove text lines with small widths and select these
vertical text lines close to each other. From these selected
vertical text lines, we can find the left and right coordinates of
the text region. The red lines in Fig. 9 present the detected left
and right coordinates.

Fig. 9. Vertical Projection Profile, (a) the extracted text region,

(b) vertical projection profile and (c) the vertical projection
profile after thresholding and the threshold value is the dash

line

Step 4: Adjust top, bottom, left, right coordinates of text
region to ensure that the text region is completely inside these
coordinates. The final detected ROI is shown in Fig. 10.

88 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems

International Journal of Contents, Vol.8, No.3, Sep 2012

Fig. 10. The detected ROI

2.2.2.2 Skew Correction: As seen in the detected ROI, the

text region is tilted slightly at an angle. Thus, Hough Transform
[17, 18] is applied to detect the skew angle of the text region.
The Hough Transform uses the parametric representation of a
line,

θθρ sincos yx += (6)

The variable ρ is the distance from the origin to the line

along a vector perpendicular to the line. θ is the angle of the
perpendicular projection from the origin to the line measured in
degrees clockwise from the positive x-axis, where 0≤θ<180. An
illustration of Hough Transform is shown in Fig. 11.

Fig. 11. An illustration of Hough Transform

Since the skew angle of the text lines in the detected ROI is

small, a small θ resolution is required for accurate skew angle
detection. However, small θ resolution increases the time taken
for Hough Transform to process. Thus, in our system, we
compute Hough Transform of the text region image twice with
different θ resolutions. In the first computation, the range of θ
value is (85, 95) and the resolution is 1 degree. Hough
Transform checks every angle from 85, 86, …, 95 and chooses
the appropriate angle (α) for the input detected ROI. In the
second computation, we again apply Hough Transform in the θ
range from α-1 to α+1, however, with much smaller theta
resolution of 0.2. With the detected skew angle in the second
computation, we rotate the text region image to account for
skewing. The corrected ROI after skew correction is shown in
Fig. 12.

 (a) (b)

Fig. 12. Skew Correction

(a) the detected ROI, as shown in Fig. 10, (b) the corrected ROI
2.2.2.3 Text line and character segmentation: After skew

correction, to separate the corrected ROI into text lines, we
calculate the horizontal projection profile to y-axis on the
corrected ROI and find the top and bottom coordinates of each
text line. Sample results of text line segmentation are shown in
Fig. 13.

 (b) (a)

Fig. 13. Text line segmentation
(a) the corrected ROI and

(b) the horizontal projection profile of (a)

With each segmented text line, we calculate the vertical
projection profile to x-axis and find the left and right
coordinates of each character. After determining four
coordinates of one character, we adjust them to ensure that this
character fits within the frame established by these coordinates.
Finally, we extract these characters and save as unlabeled real
character images. Sample results of character segmentation are
shown in Fig. 14.

Fig. 14. Character segmentation

2.2.3 Recognition: For character recognition, we use the

OCR system developed by ETRI [19]. Character images are
divided into 6 by 6 mesh blocks using nonlinear normalization.
10-feature vector is acquired in each block including 8
directional accumulative gradient values and 2 numbers of
foreground pixels and background pixels in the block. Then,
each character is represented with 360 dimensional features.
Before recognizing character images, the OCR system
categorizes characters into 7 types; 6 types for Korean
characters and 1 type for alphanumeric characters, according to
their shape using a multi-layer ANN. Lastly, 7 ANNs are
designed for 7 character types, respectively. Here, 7 ANNs
consist of 360 nodes for the input layer and 70 nodes for the
hidden layer. However, each ANN has a different number of
output nodes corresponding to the number of characters in the
specified type.

2.2.3 Substring Matching: As the current accuracy of

recognizer is not high enough due to the use of synthetic

 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 89

International Journal of Contents, Vol.8, No.3, Sep 2012

training character samples, some segmented characters may be
wrongly recognized. However, we know that these characters
are printed in ascending order of their codes. Thus, we present
a substring matching method to fix the wrongly recognized
characters using Longest Common Subsequence (LCS) [20]
and Levenshtein distance [21].

Suppose that 2467 characters printed on postal envelope
images are,

⎩
⎨
⎧

<<
=

khifCC
jC

kh

j 2467..1, (7)

We call the string grouped by all 2467 characters Cj the

whole string T={C1,C2,C3,…,C2467}. In addition, suppose that
the recognized characters in an postal envelope image are Ri,
i=1..n, in which n is the number of recognized characters. With
recognized characters Ri, we can form a recognized string
R={R1,R2,…,Rn}. In order to create ideal envelope images, we
separate the whole string T into substrings and print them on
envelopes. Thus, the recognized string R should be a substring
of the whole string T. However, there are probably some
segmentation and recognition errors in the previous steps; the
recognized character string R is not exactly the same as a
substring of the whole string T. Thus, we apply a sophisticated
substring matching method to measure the agreement between
these two strings. The matching process is conducted in three
steps as follows.

Step 1: Apply LCS algorithm to find the LCS between the
recognized character string R and the whole string T.

Step 2: Suppose that the positions of the first and the last
character determined by LCS are u1 and u2 in recognized
character string R and v1 and v2 in the whole string T. Then, we
define the corresponding substring of the recognized character
string R is the string extracted from v1-u1+1 to v2-u2+n of the
whole string W. We call the corresponding substring is S, so
that S={Cv1-u1+1,Cv1-u1+2,…,Cv2-u2+n }.

Step 3: Use Levenshtein distance to measure the agreement
between the recognized character string R and the
corresponding substring S. The Levenshtein distance between
two strings is defined as the minimum number of edits required
to transform one string into another, with the allowable edit
operations being insertion, deletion, or substitution of a single
character. When computing Levenshtein distance to change the
recognized character string to the corresponding substring,
recognized characters are classified into three groups, namely
correctly recognized group, revised group and wrongly
segmented group.

Fig. 15 and Fig. 16 show sample results of the proposed
character labeling method. The difference between Fig. 15 and
Fig. 16 is that there are some wrongly segmented characters
marked as blue color in the third line as shown in Fig. 16(b).
The codes of these blue characters are suggested by our
substring matching method.

Fig. 15. A sample result of the proposed character labeling

method, the first line is the segmented characters, the second
line is the recognized character using the OCR system trained
by synthetic data and the third line is the labeling result after

applying substring matching method. In the third line, the black
characters are correctly recognized by the OCR system, and the

red characters are revised using Levenshtein distance as
presented in step 3 of the substring matching method.

(a)

(b)

Fig. 16. A sample result of the character labeling method, (a)
the detected ROI and the segmented result and (b) the labeling

result

90 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems

International Journal of Contents, Vol.8, No.3, Sep 2012

3. EXPERIMENTAL RESULTS

To validate the effectiveness of our system, several
experiments are conducted to assess the segmentation and
labeling accuracy.

3.1 Data

In our experiments, we test with 9 Korean fonts, and each
font is used to generate 144 synthetic data sets for training and
36 real data sets for testing. One data set consists of 2467
characters. Synthetic data sets are generated by changing the
following options: DPI (200 and 240), font styles (Bold,
Regular), font sizes (9pt, 10pt and 13pt), noise rates (1%, 2%,
5% and 7%) and rotation angles (-1◦, 0◦ and 1◦). Real data sets
are created by changing font style and font size options.
However, each real data set is separated into 51 small groups
with different number of characters. Each group is printed into
2 different kinds of postal envelopes, one is the regular
envelope without plastic window and the other is the envelope
with plastic window. In addition, each postal envelope is
scanned 3 times in 200 DPI to enlarge the real character
database. Thus, theoretically, in each font, we have 355,248
synthetic characters and 88,812 real characters in 1,800 postal
envelope images. However, due to the manual scanning, some
images are scanned more than 3 times while some images may
not be placed in the scanner. Therefore, we practically got a
different number of real character images and postal envelope
images for each font. Table 1 and 2 show the options for
generating synthetic and real data sets, and table 3 shows the
number of generated synthetic characters and the number of
envelope images for each font.

Table 1. Options for generating synthetic data sets

Synthetic
Data

Options

DPI Font
Styles

Font
Sizes
(pt)

Noise
Rates
(%)

Rotation
Angles

(o)
200,
240

Bold,
Regular

9, 10,
13

1, 2, 5,
7 -1, 0, 1

Table 2. Options for generating real data sets

Real
Data

Options
Number

of
scanning

Font
Styles

Font
Sizes
(pt)

Kinds of
Envelopes

3 Bold,
Regular

9, 10,
13

Regular
Envelope and
Envelope with
Plastic Window

Table 3. Experimental data

Fonts
Characters Envelope

Images Synthetic Real
Nanum Gothic 355,248 86,735 1,811
UnDinaru 355,248 86,496 1,808
Malgun Gothic 355,248 87,815 1,840
Samsung Gothic 355,248 87,783 1,837
Seoul Namsan 355,248 86,741 1,813

Seoul Hangang 355,248 87,109 1,819
Sun Mion 355,248 85,695 1,796
Un Gothic 355,248 86,501 1,810
The Gothic 355,248 86,920 1,830

3.1 Results
Our proposed system automatically segmented all characters

from each postal envelop image and then classified the
characters into three groups, correctly recognized group using
the OCR system, revised group using substring matching and
wrongly segmented group. To verify the accuracy, we manually
checked if each character in these groups was correctly
segmented and recognized.

Because of segmentation errors, the summation of the
number of incorrectly and correctly segmented characters may
be different from the total number of characters. In our
observation, there are three common segmentation errors: some
characters are not detected, some characters are separated into
two or three parts, and some noises are considered as characters.
The segmentation accuracy is computed by the proportion of
the number of correctly segmented characters to the summation
of the number of incorrectly and correctly segmented
characters. Our proposed system achieved the maximum
accuracy of 99.5 and the minimum accuracy of 99.26% for
Seoul Hangang and Sun Mion, respectively. Finally, the
proposed system achieved the average segmentation accuracy
of 99.66% as shown in the Table 4.

Table 4. Results of Character Segmentation

Fonts No.
Char Incorrect Correct Accuracy

(%)
Nanum Gothic 86,735 129 86,673 99.85
Un Dinaru 86,496 159 86,328 99.82
Malgun Gothic 87,815 132 87,598 99.85
Samsung Gothic 87,783 181 87,230 99.79
Seoul Namsan 86,741 519 85,773 99.40
Seoul Hangang 87,109 106 85,880 99.88
Sun Mion 85,695 628 84,774 99.26
Un Gothic 86,501 312 86,143 99.64
The Gothic 86,920 479 86,702 99.45

AVERAGE 86,866 294 86,345 99.66

The recognition accuracy of the OCR system trained with
synthetic characters generated by the proposed degradation
model is computed by the proportion of the number of correctly
recognized characters to the total number of characters. The
accuracy of the substring matching is computed by the
proportion of the correctly labeled characters to the total
number of characters. The performance of the OCR system and
the substring matching is shown in Table 5 and Fig. 17.
Average recognition of the OCR system trained with synthetic
training samples was 68% while the average labeling accuracy
was increased to 99% after applying substring matching.

Table 5. Performance of the OCR system and the substring
matching

Fonts No.
Char

OCR system trained
with synthetic data Substring matching

 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 91

International Journal of Contents, Vol.8, No.3, Sep 2012

Correct Accuracy Correct Accuracy
Nanum
Gothic 86,735 68,208 78.64 86,644 99.90

Un Dinaru 86,496 61,415 71.00 86,120 99.57
Malgun
Gothic 87,815 58,775 66.93 87,233 99.34

Samsung
Gothic 87,783 72,625 82.73 87,192 99.33

Seoul
Namsan 86,741 66,347 76.49 85,436 98.50

Seoul
Hangang 87,109 70,034 80.40 85,840 98.54

Sun Mion 85,695 39,689 46.31 83,950 97.96
Un Gothic 86,501 47,198 54.56 85,354 98.67
The Gothic 86,920 49,247 56.66 85,760 98.67
AVERAGE 86,866 59,282 68.00 85,948 99.00

Fig. 17. The performance of proposed method, the accuracy of
the OCR system trained with synthetic data generated by the

proposed degradation model is shown in blue bar, and the
accuracy of the labeling increases after applying substring

matching is shown in red bar.

4. DISCUSSION

Our proposed method achieves a high accuracy of 99%, but
there are two factors which can affect this accuracy: the
accuracy of the segmentation result, and the performance of the
degradation model. If the performance of the degradation
model is too low, the substring matching method will fail to
find the appropriate corresponding substring in step 2 of
substring matching method. However, the performance of the
degradation model is sufficient to avoid this problem. Even
when the performance of the degradation falls to 46.31% in the
case of the Sun Mion font, our proposed method still provide a
high labeling accuracy of 97.96%. More critical than the
performance of the degradation model is the accuracy of the
segmentation result. One incorrect segmented character not
only affects the labeling result of itself but also the labeling
result of the characters around it. To increase the accuracy of
the segmentation result, we can put some constraints in the
ideal postal envelope images so that we can easily segment
characters on each postal envelope images. However, we want
to keep the ideal postal envelope images as closely similar to

the real postal envelopes as possible. Thus, in our system no
constraint is used. The accuracy of the segmentation result in
our system is 99.66%, which is sufficient for a high labeling
accuracy.

5. CONCLUSIONS

In this paper, we propose a new system for automatic
generation of a training character samples for OCR systems.
This system is based on our novel method using a degradation
model, an OCR engine and a substring matching method. Our
method does not need to use the layout information of the ideal
documents, which may ruin the labeling result if the layout
information is not 100 percent correct. Besides that, the
proposed system yields promising labeling results. Therefore,
we believe that the proposed system is able to reduce the need
for manpower in generating huge training samples. The system
can also be applied to several other applications to improve the
recognition performance of existing OCR systems.

ACKNOWLEDGMENT

This research was supported by the MKE (The Ministry of
Knowledge Economy), Korea, under the ITRC (Information
Technology Research Center) support program supervised by
the NIPA (National IT Industry Promotion Agency) (NIPA-
2012-H0301-12-3005).

This research was supported by Basic Science Research
Program through the National Research Foundation of
Korea(NRF) funded by the Ministry of Education, Science and
Technology(2012-0002883)

REFERENCES

[1] Nagy, G., Twenty years of document image analysis in
PAMI, IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol.22, no.1, pp.38-62, 2000.

[2] N. S. Sarhan and L. Al-Zobaidy, Recognition of Printed
Assyrian Character Based on Neocognitron Artificial
Neural Network, The International Arab Journal of
Information Technology, vol4, no.1, 2007.

[3] H. Guo and J. Zhao, A Chinese Minority Script
Recognition Method Based on Wavelet Feature and
Modified KNN, Journal of Software, vol.5, no.2, 2010.

[4] Sachin Rawat, A Semi-automatic Adaptive OCR for
Digital Libraries, Centre for Visual Information
Technology, 2006.

[5] M. Meshesha and C. V. Jawahar, Optical Character
Recognition of Amharic Documents, Center for Visual
Information Technology, 2007.

[6] Tapas Kanungo, Robert M. Haralick, Henry S. Baird,
Werner Stuezle and David Madigan, A Statistical,
Nonparametric Methodology for Document Degradation
Model Validation, IEEE Transaction on Pattern Analysis
and Machine Intelligence 22, 2000.

92 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems

International Journal of Contents, Vol.8, No.3, Sep 2012

[7] T. Kanungo and R. M. Haralick, An automatic closedloop
methodology for generating character groundtruth for
scanned documents, IEEE Trans. Pattern Anal. Mach.
Intell., pp.179–183, 1999.

[8] D.-W. Kim and T. Kanungo, Attributed point matching
for automatic ground truth generation, Int. Journal on
Document Analysis and Recognition, pp.47–66, 2002.

[9] H. S. Baird, The state of the art of document image
degradation modeling, IAPR Workshop on Document
Analysis Systems, 2000.

[10] J. van Beusekom, F. Shafait, and T. M. Breuel,
Automated OCR Ground Truth Generation, In 8th IAPR
Workshop on Document Analysis Systems, pp.111–117,
2008.

[11] H. S. Baird, Document image defect models. In
Document image analysis, pp.315-325, 1995.

[12] H. S. Baird, Calibration of Document Image Defect
Models, 2nd UNLV Symp. on Document Analysis &
Information Retrieval, pp.26-28, 1993.

[13] T. Kanungo, Global and Local Document Degradation
Models, Document Analysis and Recognition, pp.730-734,
1993.

[14] T. Kanungo, Document Degradation Models and
Methodology for Degradation Model Validation, Ph.D.
Dissertation, 1996.

[15] M. Zimmermann and H. Bunke. Automatic segmentation
of the IAM off-line database or handwritten english text.
Proc Int. Conf. on Pattern Recognition, 2002.

[16] S. Jaeger, S. Manke, J. Reichert, and A. Waibel. Online
handwriting recognition: the npen++ recognizer. Int.
Journal on Document Analysis and Recognition,
pp.1433–2833, 2001.

[17] P. V. C. Hough, Method and means for recognizing
complex patterns, U.S. Patent 3069654, 1962.

[18] R. O. Duda and P. E. Hart, Use of The Hough Transform
to Detect Lines and Curves in Pictures, Commun. ACM,
vol.15, no.1, pp.11–15, 1972.

[19] Seung Ick Jang and Youn Seok Nam, A Method of
Machine-Printed Hangul Recognition using Grapheme
Recognizer, Proc. of Korea Information Processing
Society Spring Conference, vol.11, no.1, pp.351 - 354,
2004.

[20] L. Bergroth, A Survey of Longest Common Subsequence
Algorithms, Seventh International Symposium on String
Processing and Information Retrieval, 2000.

[21] V. I. Levenshtein, Binary codes capable of correcting
deletions, insertions, and reversals, Cybemetics and
Control Theory, vol.10, no.8, pp.707-710, 1966.

Ha Le
He received the B.S in Computer Science
from Hanoi University of Science and
Technology, Vietnam in 2010. Since
2011, he has been a master student in the
Department of Computer Science,
Chonnam National University, Korea.
His main research interests include

pattern recognition, image processing, text recognition, object

segmentation and object tracking.

Soo Hyung Kim
He received his B.S. degree in Computer
Engineering from Seoul National
University in 1986, and his M.S. and
Ph.D degrees in Computer Science from
Korea Advanced Institute of Science and
Technology in 1988 and 1993,
respectively. From 1990 to 1996, he was

a senior member of research staff in Multimedia Research
Center of Samsung Electronics Co., Korea. Since 1997, he has
been a professor in the Department of Computer Science,
Chonnam National University, Korea. His research interests are
pattern recognition, document image processing, medical
image processing, and ubiquitous computing.

In Seop Na
He received his B.S., M.S. and Ph.D.
degree in Computer Science from
Chonnam National University, Korea in
1997, 1999 and 2008, respectively. Since
2012, he has been a research professor in
Department of Computer Science,
Chonnam National University, Korea.

His research interests are image processing, pattern recognition,
character recognition and digital library.

Sang Cheol Park
He received his B.S. and M.S degree in
Computer Science from Chosun
University, Korea in 1999 and 2001,
respectively and his Ph.D. degree in
Computer Science from Chonnam
National University, Korea in 2006.
From 2006 to 2010, he was a member of

research staff in Medical Imaging Center, Department of
Radiology, University of Pittsburgh. From 2010, he has been a
research professor in the Department of Computer Science,
Chonnam National University, Korea. His research interests are
medical image processing, pattern recognition, content-based
image retrieval, image matching and 3D image reconstruction.

Yen Do
She received her B.S. degree in
Information Technology from Hanoi
University of Science and Technology,
Vietnam in 2009. Since 2011, she has
been a master process student in the
Department of Computer Science,
Chonnam National University, Korea.

Her main research interests include pattern recognition,
document image processing and ubiquitous computing.

 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 93

International Journal of Contents, Vol.8, No.3, Sep 2012

Seon Hwa Jeong
She received her B.S. and M.S. degrees
in Statistics from Chonnam National
University in 1996 and 1998 respectively
and her Ph.D degree in Computer
Science of the same university in 2001.
Since 2001, she has been a senior
researcher in Electronics and

Telecommunications Research Institute, Korea. Her research
interests are pattern recognition, postal image processing,
postal automation, address and postcode system.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

