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ABSTRACT 
 

In this paper, we propose a novel method that automatically generates real character images to familiarize existing OCR systems 
with new fonts. At first, we generate synthetic character images using a simple degradation model. The synthetic data is used to train 
an OCR engine, and the trained OCR is used to recognize and label real character images that are segmented from ideal document 
images. Since the OCR engine is unable to recognize accurately all real character images, a substring matching method is employed 
to fix wrongly labeled characters by comparing two strings; one is the string grouped by recognized characters in an ideal document 
image, and the other is the ordered string of characters which we are considering to train and recognize. Based on our method, we 
build a system that automatically generates 2350 most common Korean and 117 alphanumeric characters from new fonts. The ideal 
document images used in the system are postal envelope images with characters printed in ascending order of their codes. The 
proposed system achieved a labeling accuracy of 99%. Therefore, we believe that our system is effective in facilitating the generation 
of numerous character samples to enhance the recognition rate of existing OCR systems for fonts that have never been trained. 
 
Keywords: Character Sample Generation, Optical Character Recognition, Postal Envelope Images, Training Samples, Degradation 
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1. INTRODUCTION AND PREVIOUS WORK 
 

 Optical character recognition (OCR) [1] is the mechanical or 
electronic translation of scanned images of handwritten, 
typewritten or printed text into machine-encoded text for the 
purpose of compact storage, editing, fast retrieval, and other 
file manipulations through the use of computers. An OCR 
system enables you to take a book, a magazine article or even 
specialized documents, such as a check, a receipt, a name card 
or a postal envelope, and feed it directly into an electronic 
computer file that can then be edited using a word processor. 
Because of its wide range of applications, OCR has been a 
research interest of many researchers working on pictorial 
pattern recognition. 

Over the past years, a lot of studies have been made on the 
OCR field, which proposed several ways to implement various 
OCR systems and achieved important results. Sarhan and Al-
Zobaidy et al. [2] proposed an OCR system using well-known 

                                            
*  Corresponding author, Email: ypencil@daum.net 
Manuscript received Jul. 25, 2012; revised Aug 31, 2012; 
accepted Sep 10, 2012 

Neocognitron Artificial Neural Network for its fast processing 
time and its good performance for pattern recognition problems. 
They achieved the recognition rate of 95% with 600 Assyrian 
character sample images for both training and testing stages. H. 
Guo and J. Zhao et al. [3] proposed a modification of K-
Nearest Neighbors for the Chinese minority scripts 
classification, using wavelet energy distribution and wavelet 
energy proportions features generated from the discrete wavelet 
multi-resolution decomposition. The average accuracy of their 
system is up to 96% with 800 sample images automatically 
generated by means of random function. Rawat and Kumar et 
al. [4] described adaptive OCR for Digital Library with human 
intervention to get feedback for learning. Their system was 
trained using synthetic data generated from the degradation 
model of Kanungo [6], and within few iterations of retraining 
the accuracy of their system was improved to close to 95%. 
Meshesha and Jawahar et al. [5] used Principal Component 
Analysis (PCA) and Linear Discriminant Analysis (LDA) for 
feature extraction and Decision Directed Acyclic Graph 
(DDAG) for multi class Support Vector Machine (SVM) 
classifier. They obtained the accuracy of 96% with the 
synthetic testing data set and the accuracy of 90% with the real-
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life testing data set. By combining the entire concept from these 
papers we know that one of the most important factors that 
affect the results of OCR systems is training character samples. 
Advanced OCR systems can recognize a lot of characters from 
a wide variety of fonts, but they still have difficulty with new 
fonts, whose characters have never been trained. 

New fonts constantly emerge and formulate a myriad of new 
characters with different typefaces. This, as a consequence, 
reduces the accuracy of the existing OCR systems. Thus, these 
existing OCR systems need to be retrained with new character 
samples, which include labeled character images of new fonts. 
However, manual generation of these new training character 
samples is a tedious, time-consuming and costly process, as 
each single character has to be marked and labeled with the 
correct character code. Therefore, it is necessary to construct a 
tool that automatically generates training character samples to 
avoid the demanding manual tasks. 

Several approaches on the generation of training database 
have been published in literature. One approach is to use 
synthetic images generated from an electronic document, where 
the ground truth is available, on which an image degradation 
model is applied. Different degradation models have been 
described in literature [9]. However, we can categorize them in 
two general models. The first models the physics of the 
apparatus in detail [11], [12]. The completeness of such models 
can then be justified in part by pointing to the physics. 
Certainly this can lead to accurate models, but they may be 
unnecessarily specific and complicated. The second model is 
more empirical: the simplest model that merely saves the 
appearances, that is able to generate duplicates of real defective 
images. Such models cannot be justified by appeals to physics, 
and must rest on purely statistical measures of completeness 
[13], [14]. Although, using synthetic data has some advantages 
over scanning and manual entry, including rapid generation of 
data at lower cost and continuous control of degradation, 
synthetic data is generated artificially and may not give as good 
recognition results as real data. Therefore generating real data 
is indispensable for training advanced OCR systems. In 
literature, forced alignment has been used for generating real 
data for OCR systems. The concept of these methods is to force 
the transcription of the text line to fit to the image representing 
the text line using an initially trained recognizer. Zimmermand 
et al. [15] generated handwriting data using a hidden Markov 
model recognizer. The path maximizing the probability of 
finding the word from the transcription gives the optimal 
cutting points. A similar method is presented by Jaeger et al. 
[16], and this method was applied to both handwriting and 
printed text. The disadvantage of this method, apart from being 
less accurate than manually labeled data, is that both a trained 
HMM recognizer and the transcription are required. To 
overcome this problem, Kanungo et al. [7] combined the ease 
of synthetic data together with real world document image 
degradation. He used electronic documents to extract the 
ground truth information (character position, size and code). 
Furthermore, the document is printed and scanned again. Then 
the electronic document and the scanned document image are 
aligned, allowing the computation of the positions of characters 
in the scanned document image. Since the distortions produced 
by scanners cannot be described by similarity transformations, 

a calibration step was introduced to adjust the bounding box of 
characters. Kim and Kanungo et al. [8] proposed a more robust 
alignment method, which gives a better result on the UW3 
dataset. Recently, Beusekom et al. [10] used Kim and 
Kanungo’s method to estimate the global transformation 
parameters. Then a local alignment was applied to adapt 
automatically to scanner distortions. Those methods of 
generating real data are strictly dependent on the layout of the 
input documents and the alignment results. The layout 
information needs to be 100 percent accurate otherwise the 
systems being evaluated or trained penalized incorrectly [7]. 
However, the layout of the input documents may vary, so 
generating layout information is not an easy task. 

In this paper, we proposed a novel method that automatically 
generates real character data without the neccessity of layout 
information. At first, we generate synthetic character images 
using a simple degradation model. The synthetic data is used to 
train an OCR engine, and the trained OCR is used to recognize 
and label real character images that are segmented from ideal 
document images. Due to the limitation of using synthetic data 
in training, the OCR engine is unable to recognize accurately 
all real character images. Thus, a substring matching method is 
employed to fix wrongly labeled characters by comparing two 
strings; one is the string grouped by recognized characters in an 
ideal document image, the other is the ordered string of 
characters which we are considering to train and recognize. 
After substring matching process, recognized characters are 
classified into three groups, namely correctly recognized group, 
revised group and wrongly segmented group. The characters of 
correctly recognized group and revised group are used as 
training character samples. Based on our method, we build a 
system that automatically generates 2350 most common 
Korean and 117 alphanumeric characters from new fonts. The 
ideal document images used in the system are postal envelope 
images with characters printed in ascending order of their codes. 

The rest of the paper is organized as follows. Section 2 
presents a detailed flowchart of the proposed system. Section 3 
illustrates an experiment to validate its performance. 
Discussions and conclusions of this work are given in section 4 
and section 5. 
 
 

2. THE SYSTEM ARCHITECTURE 
 

Manual generation of training character samples is normally 
done in three steps as shown in Fig. 1. In the first step, a large 
number of postal envelop images is collected to acquire a 
complete set of characters with various typefaces, font sizes 
and font styles. In the second step, these postal envelope 
images are segmented into character images. Lastly, the most 
tedious step is to manually label a vast number of character 
images using visual inspection. Mistakes are inevitable in 
manual labeling, which consequently affects the accuracy of 
the recognition results of OCR systems. 
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Fig. 1. Routine Procedure for Manual Generation of Training 

Character Samples 

To overcome the problems associated with manual 
generation, collecting postal envelop images is replaced with 
creating ideal postal envelope images. Additionally, an OCR 

 

 
Fig. 2. Training Database Generation System 

 
engine is employed to identify unlabeled character images 
instead of manually labeling them. Here, an ideal postal 
envelope image is a postal envelope image whose characters 
are known and printed in ascending order of their codes. In the 
overview, our proposed system consists of two main stages: 
synthetic data generation (SDG) and real data generation 
(RDG) as shown in Fig. 2. 
 
2.1 Synthetic Data Generation 

 
Fig. 3. Degradation Model 

 
In SDG stage, a database of synthetic character images is 

created using new fonts. At first, a set of character images with 
various typefaces, font sizes and font styles is produced using 

new fonts. As these synthetic character images are directly 
generated from the specified typefaces, font sizes and styles in 
the Windows OS, they are definitely clear. In contrast, real 
character images undergo processes like printing and scanning, 
which may distort or introduce noises to them. Therefore, to 
mimic real character images with distortion and noises, we 
build a degradation model to help synthetic character images 
resemble real ones. Our degradation model has two steps that 
mimic the degradation of printing and scanning process as 
shown in Fig. 3. 

2.1.1 Degradation of printing process: We can see that real 
character images may get noises due to effects of printing such 
as ink smudges or faint lines running over characters. Thus, 
pepper noise is added to synthetic character images to resemble 
the characteristic found in real characters. For example, we 
used the Korean character “쟀”. This character was generated 
using font Samsung Gothic with the size of 10 points. This size 
was modified by our system based on Eq. 1 with DPI = 240, so 
the actual size of the generated character is 29.5 points as 
shown in Fig. 4(a). Then, pepper noise is distributed randomly 
in the synthetic character images as shown in Fig. 4(b). 
However, noises unassociated with characters are removed as 
shown in Fig. 4(c). Each real character image has a different 
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quantity of noise, so we add a noise rate option in our system to 
customize the quantity of noise and diversify the synthetic 
characters. 

    
 (a) (b) (c) 

Fig. 4. Degradation of Printing Process, (a) an electronic 
character image, (b) after adding pepper noise, (c) noises 

unassociated with character are removed 
 

2.1.2 Degradation of Scanning Process: A real character is 
affected not only by printing but also scanning. Based on our 
observation, there are four kinds of degradation on the scanned 
result: the expansion of the character size caused by the 
scanning dots per inch (DPI), the noises caused by the specks 
of dirt on the scanner bed, the spread of the strokes of character 
caused by the scanner mechanism and the tilt of character when 
the input documents are slanted in the scanning process by 
human action. 

DPI is a measure of spatial printing or video dot density, in 
particular the number of individual dots that can be placed in a 
line within the span of one inch. Sizes of characters on the 
document image are changed when the document is scanned in 
different DPIs. The relationship between the size of the hard-
copy character and the scanned character is described as, 

 

4.25
312.0' ptDPIpt ××

=            (1) 

 
where pt is the size of hard-copy character, pt' is the size of 
character after scanned and DPI is the scanning resolution. 
Thus, the Eq. 1 is used to modify the size parameter in our 
system, which makes the synthetic character resemble the real 
scanned character in terms of size. 

The noises caused by the specks of dirt on the scanner bed 
and the low DPI are simulated in three small steps: scaling 
down the input character image, adding pepper noise to it and 
finally scaling up the image to its original size. To demonstrate 
the noises, we scale down the input image with a scale vector 
v=(2/3,2/3) where it gives the most similar effect with scanning 
process. Then, some pepper noises are added to the image to 
simulate specks of dirt on the scanner bed. Finally, the input 
image is scaled up to its original size with a scale vector v'=1/v. 

Due to the disadvantages of digital scanner, such as 
reflection, shadow or low contrast, the strokes of character tend 
to spread out and become bolder. In particular, the characters 
with bold style are significantly affected by this characteristic. 
To mimic this characteristic, the morphological dilation 
operation is performed on the characters with bold style to 
enlarge their stroke widths. Since the characters with normal 
style are less affected by this characteristic, instead of dilation 
operation, we applied morphological closing operation, which 
associates both dilation and erosion operation, to keep their 
stroke widths, remove small holes and make the character 

contours smoother. The structuring element used in our system 
is the cross element. 

Because the input documents may be slanted in the scanning 
process, the real character images may be askew. For this 
reason, a rotation operation is employed to imitate this 
characteristic. Some angles of rotation are applied to diversify 
the synthetic database. 

Fig. 5 shows a synthetic character generated by our 
degradation model. 

 

    
 (a) (b) (c) (d) 

    
 (e) (f) (g) (h) 

Fig. 5. Degradation of Scanning Process (a) noise image, as 
described in section 2.1.1, with the noise rate of 5%, (b) scaling 

down using scale vector v=(2/3,2/3), (c) adding more pepper 
noises, (d) scaling up using scale vector v', (e) after dilation of 
character with bold style, (f) after rotation by 1° of (e), (g) after 
closing of character with normal style and (h) after rotation by 

1° of (g) 
 

2.2 Real Data Segmentation 
 

2.2.1 Ideal Postal Envelope Images: Ideal postal envelope 
images are generated in binary by ETRI (Korea Electronics and 
Telecommunications Research Institute) using new fonts. Since 
the focus of this paper is on Korean and English characters, 
2467 characters, including 2350 most common Korean 
characters and 117 alphanumeric characters, are printed in the 
postal envelope images in ascending order of their code (ideal). 
As it is not possible to print all characters in one postal 
envelope, these characters are divided into small groups, each 
of which will be printed in one postal envelope. Fig. 6 is an 
example of ideal postal envelope images with characters 
printed on the right bottom corner of the postal envelope. 

 

 
Fig. 6. An ideal postal envelope image 
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2.2.2 Character Segmentation of Envelope Images: After 
generating enough postal envelope images, we apply four 
image processing steps to extract characters in these images. 
The image processing steps are shown in Fig. 7. 

 

 
Fig. 7. Character Segmentation in Envelope Images 

 
2.2.2.1 Detection of Region of Interest: The detection of 

region of interest (ROI) in each envelope image is the 
foundation of subsequent processing and recognition in the 
proposed system. In this step, we detect the text region on the 
right bottom corner of an input postal envelope image, which is 
considered as the receiver’s address, using horizontal and 
vertical projection profiles. Horizontal projection profile of a 
binary image is a column vector whose elements indicate the 
number of black pixels in each row of this image. Vertical 
projection profile of a binary image is a row vector whose 
elements indicate the number of black pixels in each column of 
this image. 

The region of interest detection process is conducted as 
follows: 

Step 1: Calculate the horizontal projection profile to y-
axis on the input image. The visualization of the horizontal 
projection values of the input image in Fig. 8(a) is shown in Fig. 
8(b). Suppose that H is the height of the input image and the 
projection value of each row is projy(i), i=1..H. We define a 
horizontal projection threshold Th as, 

 

∑
=

=
H

i
h iprojy

H
T

1
)(

2
1            (2) 

 
The horizontal projection threshold Th is used to remove 

noises and distinguish text lines in the input images. Thus, 
horizontal projection values are less than or equal to Th are 
marked as 0. 
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Fig. 8. Horizontal Projection Profile, (a) the input envelope 

image, (b) horizontal projection profile and (c) the horizontal 

projection profile after thresholding and the threshold value is 
the dash line 

 
The visualization of horizontal projection values after 

thresholding is shown in Fig. 8(c). After thresholding, we 
remove these text lines whose height is less than a very small 
value. Based on the constraint that the ROI is located in the 
right bottom corner of the input envelope, we find the top and 
bottom coordinates of the text region. The red lines in Fig. 8 
present the detected top and bottom coordinates. 

Step 2: Extract a text region from the input image using 
the top and bottom coordinates. The extracted text region is 
shown in Fig. 9(a). 

Step 3: Calculate the vertical projection profile to x-axis 
on the extracted text region. The visualization of the vertical 
projection values of the input text region is shown in Fig. 9(b). 
Suppose that the projection value of each column is projx(j), 
j=1..W. Here, W is the width of the input image. We define a 
new vertical projection threshold Tv as, 

 

∑
=

=
W

j
v jprojx

W
T

1
)(

3
1            (4) 

 
As similar to Th, Tv is used to remove noises and 

distinguish these vertical lines in the extracted text region. Thus, 
vertical projection values are less than Tv are marked as 0. 
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The visualization of vertical projection values after 

thresholding is shown in Fig. 9(c). After thresholding, we can 
simply remove text lines with small widths and select these 
vertical text lines close to each other. From these selected 
vertical text lines, we can find the left and right coordinates of 
the text region. The red lines in Fig. 9 present the detected left 
and right coordinates. 

 

 
Fig. 9. Vertical Projection Profile, (a) the extracted text region, 

(b) vertical projection profile and (c) the vertical projection 
profile after thresholding and the threshold value is the dash 

line 
 

Step 4: Adjust top, bottom, left, right coordinates of text 
region to ensure that the text region is completely inside these 
coordinates. The final detected ROI is shown in Fig. 10. 
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Fig. 10. The detected ROI 

 
2.2.2.2 Skew Correction: As seen in the detected ROI, the 

text region is tilted slightly at an angle. Thus, Hough Transform 
[17, 18] is applied to detect the skew angle of the text region. 
The Hough Transform uses the parametric representation of a 
line, 

 
θθρ sincos yx +=            (6) 

 
The variable ρ is the distance from the origin to the line 

along a vector perpendicular to the line. θ is the angle of the 
perpendicular projection from the origin to the line measured in 
degrees clockwise from the positive x-axis, where 0≤θ<180. An 
illustration of Hough Transform is shown in Fig. 11. 

 

 
Fig. 11. An illustration of Hough Transform 

 
Since the skew angle of the text lines in the detected ROI is 

small, a small θ resolution is required for accurate skew angle 
detection. However, small θ resolution increases the time taken 
for Hough Transform to process. Thus, in our system, we 
compute Hough Transform of the text region image twice with 
different θ resolutions. In the first computation, the range of θ 
value is (85, 95) and the resolution is 1 degree. Hough 
Transform checks every angle from 85, 86, …, 95 and chooses 
the appropriate angle (α) for the input detected ROI. In the 
second computation, we again apply Hough Transform in the θ 
range from α-1 to α+1, however, with much smaller theta 
resolution of 0.2. With the detected skew angle in the second 
computation, we rotate the text region image to account for 
skewing. The corrected ROI after skew correction is shown in 
Fig. 12. 
 

  
 (a) (b) 

Fig. 12. Skew Correction 

(a) the detected ROI, as shown in Fig. 10, (b) the corrected ROI 
2.2.2.3 Text line and character segmentation: After skew 

correction, to separate the corrected ROI into text lines, we 
calculate the horizontal projection profile to y-axis on the 
corrected ROI and find the top and bottom coordinates of each 
text line. Sample results of text line segmentation are shown in 
Fig. 13. 

 

 
 (b) (a) 

Fig. 13. Text line segmentation 
(a) the corrected ROI and 

(b) the horizontal projection profile of (a) 
 

With each segmented text line, we calculate the vertical 
projection profile to x-axis and find the left and right 
coordinates of each character. After determining four 
coordinates of one character, we adjust them to ensure that this 
character fits within the frame established by these coordinates. 
Finally, we extract these characters and save as unlabeled real 
character images. Sample results of character segmentation are 
shown in Fig. 14. 

 

 
Fig. 14. Character segmentation 

 
2.2.3 Recognition: For character recognition, we use the 

OCR system developed by ETRI [19]. Character images are 
divided into 6 by 6 mesh blocks using nonlinear normalization. 
10-feature vector is acquired in each block including 8 
directional accumulative gradient values and 2 numbers of 
foreground pixels and background pixels in the block. Then, 
each character is represented with 360 dimensional features. 
Before recognizing character images, the OCR system 
categorizes characters into 7 types; 6 types for Korean 
characters and 1 type for alphanumeric characters, according to 
their shape using a multi-layer ANN. Lastly, 7 ANNs are 
designed for 7 character types, respectively. Here, 7 ANNs 
consist of 360 nodes for the input layer and 70 nodes for the 
hidden layer. However, each ANN has a different number of 
output nodes corresponding to the number of characters in the 
specified type. 

 
2.2.3 Substring Matching: As the current accuracy of 

recognizer is not high enough due to the use of synthetic 
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training character samples, some segmented characters may be 
wrongly recognized. However, we know that these characters 
are printed in ascending order of their codes. Thus, we present 
a substring matching method to fix the wrongly recognized 
characters using Longest Common Subsequence (LCS) [20] 
and Levenshtein distance [21]. 

Suppose that 2467 characters printed on postal envelope 
images are, 

 

⎩
⎨
⎧

<<
=

khifCC
jC

kh

j 2467..1,               (7) 

 
We call the string grouped by all 2467 characters Cj the 

whole string T={C1,C2,C3,…,C2467}. In addition, suppose that 
the recognized characters in an postal envelope image are Ri, 
i=1..n, in which n is the number of recognized characters. With 
recognized characters Ri, we can form a recognized string 
R={R1,R2,…,Rn}. In order to create ideal envelope images, we 
separate the whole string T into substrings and print them on 
envelopes. Thus, the recognized string R should be a substring 
of the whole string T. However, there are probably some 
segmentation and recognition errors in the previous steps; the 
recognized character string R is not exactly the same as a 
substring of the whole string T. Thus, we apply a sophisticated 
substring matching method to measure the agreement between 
these two strings. The matching process is conducted in three 
steps as follows. 

Step 1: Apply LCS algorithm to find the LCS between the 
recognized character string R and the whole string T. 

Step 2: Suppose that the positions of the first and the last 
character determined by LCS are u1 and u2 in recognized 
character string R and v1 and v2 in the whole string T. Then, we 
define the corresponding substring of the recognized character 
string R is the string extracted from v1-u1+1 to v2-u2+n of the 
whole string W. We call the corresponding substring is S, so 
that S={Cv1-u1+1,Cv1-u1+2,…,Cv2-u2+n }. 

Step 3: Use Levenshtein distance to measure the agreement 
between the recognized character string R and the 
corresponding substring S. The Levenshtein distance between 
two strings is defined as the minimum number of edits required 
to transform one string into another, with the allowable edit 
operations being insertion, deletion, or substitution of a single 
character. When computing Levenshtein distance to change the 
recognized character string to the corresponding substring, 
recognized characters are classified into three groups, namely 
correctly recognized group, revised group and wrongly 
segmented group. 

Fig. 15 and Fig. 16 show sample results of the proposed 
character labeling method. The difference between Fig. 15 and 
Fig. 16 is that there are some wrongly segmented characters 
marked as blue color in the third line as shown in Fig. 16(b). 
The codes of these blue characters are suggested by our 
substring matching method. 

 
Fig. 15. A sample result of the proposed character labeling 

method, the first line is the segmented characters, the second 
line is the recognized character using the OCR system trained 
by synthetic data and the third line is the labeling result after 

applying substring matching method. In the third line, the black 
characters are correctly recognized by the OCR system, and the 

red characters are revised using Levenshtein distance as 
presented in step 3 of the substring matching method. 

 

 
(a) 

 
(b) 

Fig. 16. A sample result of the character labeling method, (a) 
the detected ROI and the segmented result and (b) the labeling 

result 
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3. EXPERIMENTAL RESULTS 
 

To validate the effectiveness of our system, several 
experiments are conducted to assess the segmentation and 
labeling accuracy. 

 
3.1 Data 

In our experiments, we test with 9 Korean fonts, and each 
font is used to generate 144 synthetic data sets for training and 
36 real data sets for testing. One data set consists of 2467 
characters. Synthetic data sets are generated by changing the 
following options: DPI (200 and 240), font styles (Bold, 
Regular), font sizes (9pt, 10pt and 13pt), noise rates (1%, 2%, 
5% and 7%) and rotation angles (-1◦, 0◦ and 1◦). Real data sets 
are created by changing font style and font size options. 
However, each real data set is separated into 51 small groups 
with different number of characters. Each group is printed into 
2 different kinds of postal envelopes, one is the regular 
envelope without plastic window and the other is the envelope 
with plastic window. In addition, each postal envelope is 
scanned 3 times in 200 DPI to enlarge the real character 
database. Thus, theoretically, in each font, we have 355,248 
synthetic characters and 88,812 real characters in 1,800 postal 
envelope images. However, due to the manual scanning, some 
images are scanned more than 3 times while some images may 
not be placed in the scanner. Therefore, we practically got a 
different number of real character images and postal envelope 
images for each font. Table 1 and 2 show the options for 
generating synthetic and real data sets, and table 3 shows the 
number of generated synthetic characters and the number of 
envelope images for each font. 

 
Table 1. Options for generating synthetic data sets 

Synthetic 
Data 

Options 

DPI Font 
Styles 

Font 
Sizes 
(pt) 

Noise 
Rates 
(%) 

Rotation 
Angles 

(o) 
200, 
240 

Bold, 
Regular 

9, 10, 
13 

1, 2, 5, 
7 -1, 0, 1 

 
Table 2. Options for generating real data sets 

Real 
Data 

Options 
Number 

of 
scanning 

Font 
Styles 

Font 
Sizes 
(pt) 

Kinds of 
Envelopes 

3 Bold, 
Regular 

9, 10, 
13 

Regular 
Envelope and 
Envelope with 
Plastic Window

 
Table 3. Experimental data 

Fonts 
Characters Envelope 

Images Synthetic Real 
Nanum Gothic 355,248 86,735 1,811 
UnDinaru 355,248 86,496 1,808 
Malgun Gothic 355,248 87,815 1,840 
Samsung Gothic 355,248 87,783 1,837 
Seoul Namsan 355,248 86,741 1,813 

Seoul Hangang 355,248 87,109 1,819 
Sun Mion 355,248 85,695 1,796 
Un Gothic 355,248 86,501 1,810 
The Gothic 355,248 86,920 1,830 

 
3.1 Results 
Our proposed system automatically segmented all characters 

from each postal envelop image and then classified the 
characters into three groups, correctly recognized group using 
the OCR system, revised group using substring matching and 
wrongly segmented group. To verify the accuracy, we manually 
checked if each character in these groups was correctly 
segmented and recognized. 

Because of segmentation errors, the summation of the 
number of incorrectly and correctly segmented characters may 
be different from the total number of characters. In our 
observation, there are three common segmentation errors: some 
characters are not detected, some characters are separated into 
two or three parts, and some noises are considered as characters. 
The segmentation accuracy is computed by the proportion of 
the number of correctly segmented characters to the summation 
of the number of incorrectly and correctly segmented 
characters. Our proposed system achieved the maximum 
accuracy of 99.5 and the minimum accuracy of 99.26% for 
Seoul Hangang and Sun Mion, respectively. Finally, the 
proposed system achieved the average segmentation accuracy 
of 99.66% as shown in the Table 4. 

 
Table 4. Results of Character Segmentation 

Fonts No. 
Char Incorrect Correct Accuracy

(%) 
Nanum Gothic 86,735 129 86,673 99.85 
Un Dinaru 86,496 159 86,328 99.82 
Malgun Gothic 87,815 132 87,598 99.85 
Samsung Gothic 87,783 181 87,230 99.79 
Seoul Namsan 86,741 519 85,773 99.40 
Seoul Hangang 87,109 106 85,880 99.88 
Sun Mion 85,695 628 84,774 99.26 
Un Gothic 86,501 312 86,143 99.64 
The Gothic 86,920 479 86,702 99.45 

AVERAGE 86,866 294 86,345 99.66 
 
The recognition accuracy of the OCR system trained with 
synthetic characters generated by the proposed degradation 
model is computed by the proportion of the number of correctly 
recognized characters to the total number of characters. The 
accuracy of the substring matching is computed by the 
proportion of the correctly labeled characters to the total 
number of characters. The performance of the OCR system and 
the substring matching is shown in Table 5 and Fig. 17. 
Average recognition of the OCR system trained with synthetic 
training samples was 68% while the average labeling accuracy 
was increased to 99% after applying substring matching. 
 
Table 5. Performance of the OCR system and the substring 
matching 

Fonts No. 
Char 

OCR system trained 
with synthetic data Substring matching
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Correct Accuracy Correct Accuracy
Nanum 
Gothic 86,735 68,208 78.64 86,644 99.90 

Un Dinaru 86,496 61,415 71.00 86,120 99.57 
Malgun 
Gothic 87,815 58,775 66.93 87,233 99.34 

Samsung 
Gothic 87,783 72,625 82.73 87,192 99.33 

Seoul 
Namsan 86,741 66,347 76.49 85,436 98.50 

Seoul 
Hangang 87,109 70,034 80.40 85,840 98.54 

Sun Mion 85,695 39,689 46.31 83,950 97.96 
Un Gothic 86,501 47,198 54.56 85,354 98.67 
The Gothic 86,920 49,247 56.66 85,760 98.67 
AVERAGE 86,866 59,282 68.00 85,948 99.00 

 

 
Fig. 17. The performance of proposed method, the accuracy of 
the OCR system trained with synthetic data generated by the 

proposed degradation model is shown in blue bar, and the 
accuracy of the labeling increases after applying substring 

matching is shown in red bar. 
 
 

4. DISCUSSION 
 

Our proposed method achieves a high accuracy of 99%, but 
there are two factors which can affect this accuracy: the 
accuracy of the segmentation result, and the performance of the 
degradation model. If the performance of the degradation 
model is too low, the substring matching method will fail to 
find the appropriate corresponding substring in step 2 of 
substring matching method. However, the performance of the 
degradation model is sufficient to avoid this problem. Even 
when the performance of the degradation falls to 46.31% in the 
case of the Sun Mion font, our proposed method still provide a 
high labeling accuracy of 97.96%. More critical than the 
performance of the degradation model is the accuracy of the 
segmentation result. One incorrect segmented character not 
only affects the labeling result of itself but also the labeling 
result of the characters around it. To increase the accuracy of 
the segmentation result, we can put some constraints in the 
ideal postal envelope images so that we can easily segment 
characters on each postal envelope images. However, we want 
to keep the ideal postal envelope images as closely similar to 

the real postal envelopes as possible. Thus, in our system no 
constraint is used. The accuracy of the segmentation result in 
our system is 99.66%, which is sufficient for a high labeling 
accuracy. 
 
 

5. CONCLUSIONS 
 

In this paper, we propose a new system for automatic 
generation of a training character samples for OCR systems. 
This system is based on our novel method using a degradation 
model, an OCR engine and a substring matching method. Our 
method does not need to use the layout information of the ideal 
documents, which may ruin the labeling result if the layout 
information is not 100 percent correct. Besides that, the 
proposed system yields promising labeling results. Therefore, 
we believe that the proposed system is able to reduce the need 
for manpower in generating huge training samples. The system 
can also be applied to several other applications to improve the 
recognition performance of existing OCR systems. 
 
 

ACKNOWLEDGMENT 
 

This research was supported by the MKE (The Ministry of 
Knowledge Economy), Korea, under the ITRC (Information 
Technology Research Center) support program supervised by 
the NIPA (National IT Industry Promotion Agency) (NIPA-
2012-H0301-12-3005). 

This research was supported by Basic Science Research 
Program through the National Research Foundation of 
Korea(NRF) funded by the Ministry of Education, Science and 
Technology(2012-0002883) 
 
 

REFERENCES 
 

[1] Nagy, G., Twenty years of document image analysis in 
PAMI, IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol.22, no.1, pp.38-62, 2000. 

[2] N. S. Sarhan and L. Al-Zobaidy, Recognition of Printed 
Assyrian Character Based on Neocognitron Artificial 
Neural Network, The International Arab Journal of 
Information Technology, vol4, no.1, 2007. 

[3] H. Guo and J. Zhao, A Chinese Minority Script 
Recognition Method Based on Wavelet Feature and 
Modified KNN, Journal of Software, vol.5, no.2, 2010. 

[4] Sachin Rawat, A Semi-automatic Adaptive OCR for 
Digital Libraries, Centre for Visual Information 
Technology, 2006. 

[5] M. Meshesha and C. V. Jawahar, Optical Character 
Recognition of Amharic Documents, Center for Visual 
Information Technology, 2007. 

[6] Tapas Kanungo, Robert M. Haralick, Henry S. Baird, 
Werner Stuezle and David Madigan, A Statistical, 
Nonparametric Methodology for Document Degradation 
Model Validation, IEEE Transaction on Pattern Analysis 
and Machine Intelligence 22, 2000. 



92 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 
 

International Journal of Contents, Vol.8, No.3, Sep 2012 

[7] T. Kanungo and R. M. Haralick, An automatic closedloop 
methodology for generating character groundtruth for 
scanned documents, IEEE Trans. Pattern Anal. Mach. 
Intell., pp.179–183, 1999. 

[8] D.-W. Kim and T. Kanungo, Attributed point matching 
for automatic ground truth generation, Int. Journal on 
Document Analysis and Recognition, pp.47–66, 2002. 

[9] H. S. Baird, The state of the art of document image 
degradation modeling, IAPR Workshop on Document 
Analysis Systems, 2000. 

[10] J. van Beusekom, F. Shafait, and T. M. Breuel, 
Automated OCR Ground Truth Generation, In 8th IAPR 
Workshop on Document Analysis Systems, pp.111–117, 
2008. 

[11] H. S. Baird, Document image defect models. In 
Document image analysis, pp.315-325, 1995. 

[12] H. S. Baird, Calibration of Document Image Defect 
Models, 2nd UNLV Symp. on Document Analysis & 
Information Retrieval, pp.26-28, 1993. 

[13] T. Kanungo, Global and Local Document Degradation 
Models, Document Analysis and Recognition, pp.730-734, 
1993. 

[14] T. Kanungo, Document Degradation Models and 
Methodology for Degradation Model Validation, Ph.D. 
Dissertation, 1996. 

[15] M. Zimmermann and H. Bunke. Automatic segmentation 
of the IAM off-line database or handwritten english text. 
Proc Int. Conf. on Pattern Recognition, 2002. 

[16] S. Jaeger, S. Manke, J. Reichert, and A. Waibel. Online 
handwriting recognition: the npen++ recognizer. Int. 
Journal on Document Analysis and Recognition, 
pp.1433–2833, 2001. 

[17] P. V. C. Hough, Method and means for recognizing 
complex patterns, U.S. Patent 3069654, 1962. 

[18] R. O. Duda and P. E. Hart, Use of The Hough Transform 
to Detect Lines and Curves in Pictures, Commun. ACM, 
vol.15, no.1, pp.11–15, 1972. 

[19] Seung Ick Jang and Youn Seok Nam, A Method of 
Machine-Printed Hangul Recognition using Grapheme 
Recognizer, Proc. of Korea Information Processing 
Society Spring Conference, vol.11, no.1, pp.351 - 354, 
2004. 

[20] L. Bergroth, A Survey of Longest Common Subsequence 
Algorithms, Seventh International Symposium on String 
Processing and Information Retrieval, 2000. 

[21] V. I. Levenshtein, Binary codes capable of correcting 
deletions, insertions, and reversals, Cybemetics and 
Control Theory, vol.10, no.8, pp.707-710, 1966. 

 
 

Ha Le 
He received the B.S in Computer Science 
from Hanoi University of Science and 
Technology, Vietnam in 2010. Since 
2011, he has been a master student in the 
Department of Computer Science, 
Chonnam National University, Korea. 
His main research interests include 

pattern recognition, image processing,  text recognition, object 

segmentation and object tracking. 
 

Soo Hyung Kim 
He received his B.S. degree in Computer 
Engineering from Seoul National 
University in 1986, and his M.S. and 
Ph.D degrees in Computer Science from 
Korea Advanced Institute of Science and 
Technology in 1988 and 1993, 
respectively. From 1990 to 1996, he was 

a senior member of research staff in Multimedia Research 
Center of Samsung Electronics Co., Korea. Since 1997, he has 
been a professor in the Department of Computer Science, 
Chonnam National University, Korea. His research interests are 
pattern recognition, document image processing, medical 
image processing, and ubiquitous computing. 
 

In Seop Na 
He received his B.S., M.S. and Ph.D. 
degree in Computer Science from 
Chonnam National University, Korea in 
1997, 1999 and 2008, respectively. Since 
2012, he has been a research professor in 
Department of Computer Science, 
Chonnam National University, Korea. 

His research interests are image processing, pattern recognition, 
character recognition and digital library. 
 

Sang Cheol Park 
He received his B.S. and M.S degree in 
Computer Science from Chosun 
University, Korea in 1999 and 2001, 
respectively and his Ph.D. degree in 
Computer Science from Chonnam 
National University, Korea in 2006. 
From 2006 to 2010, he was a member of 

research staff in Medical Imaging Center, Department of 
Radiology, University of Pittsburgh. From 2010, he has been a 
research professor in the Department of Computer Science, 
Chonnam National University, Korea. His research interests are 
medical image processing, pattern recognition, content-based 
image retrieval, image matching and 3D image reconstruction. 
 

Yen Do 
She received her B.S. degree in 
Information Technology from Hanoi 
University of Science and Technology, 
Vietnam in 2009. Since 2011, she has 
been a master process student in the 
Department of Computer Science, 
Chonnam National University, Korea.  

Her main research interests include pattern recognition, 
document image processing and ubiquitous computing. 
 
 
 
 
 
 



 In Seop Na : Automatic Generation of Training Character Samples for OCR Systems 93
 

International Journal of Contents, Vol.8, No.3, Sep 2012 

Seon Hwa Jeong 
She received her B.S. and M.S. degrees 
in Statistics from Chonnam National 
University in 1996 and 1998 respectively 
and her Ph.D degree in Computer 
Science of the same university in 2001. 
Since 2001, she has been a senior 
researcher in Electronics and 

Telecommunications Research Institute, Korea. Her research 
interests are pattern recognition, postal image processing, 
postal automation, address and postcode system. 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


