
 Yoon Kim : A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems 1

International Journal of Contents, Vol.8, No.4, Dec 2012

A Fault-tolerant Mutual Exclusion Algorithm

in Asynchronous Distributed Systems

Yoon Kim
Dept. of Computer Information and Security

Korea National College of Welfare, Pyeongtaek, Korea

ABSTRACT

Mutual Exclusion is one of the most studied topics in distributed systems where processes communicate by asynchronous message
passing. It is often necessary for multiple processes at different sites to access a shared resource or data called a critical section (CS)
in distributed systems. A number of algorithms have been proposed to solve the mutual exclusion problem in distributed systems. In
this paper, we propose the new algorithm which is modified from Garg's algorithm[1] thus works properly in a fault-tolerant system.
In our algorithm, after electing the token generator, the elected process generates a new token based on the information of the
myreqlist which is kept by every process and the reqdone which is received during election. Consequently, proposed algorithm
tolerates any number of process failures and also does even when only one process is alive.

Keyword: Mutual Exclusion, Critical Section, Fault-Tolerant, Fault Detection, timeout, safety, liveness, fairness

1. INTRODUCTION

 Mutual Exclusion has been one of the fundamental issues in
distributed systems. It is often necessary for multiple processes
at different sites to access a shared resource or data called a
critical section (CS) in distributed systems. The problem is to
ensure that only one process is allowed to enter the critical
section at a time. A number of algorithms have been proposed
to solve the mutual exclusion problem in distributed systems.
These algorithms are mainly divided into two groups:
permission-based and token-based.

In permission-based algorithms, a process may enter the critical
section after receiving permissions from all other processes. In
token-based algorithms, a unique token (also known as a
PRIVILEGE message) is shared among all processes and only
one process can enter its critical section if it possesses the token.
Examples of permission-based algorithms are Agrawal-Abbadi's
algorithm[2], Ricart- Agrawala's algorithm[3], Singhal's
algorithm[4] and Maekawa's algorithm[5]. Examples of token-
based algorithms are Susuki-Kasami's broadcast algorithm[6],
Singhal's heuristic algorithm[7], Mamum’s Group algorithm[8]
and Raymond's tree based algorithm[9] .

Few fault-tolerant token-based algorithms [10,11,12,13] have
been proposed to handle node failures and message loss.
Mishra and Srimani algorithm[11] uses the concept of
circulating a privilege message (token) among the sites. Nodes

* Corresponding author, Email : ykim@hanrw.ac.kr
Manuscript received Aug. 10, 2012; revised Sep 17, 2012;
accepted Sep 27, 2012

use timeout and probe messages to detect failure of the current
token holder.

In this paper, we present a new fault-tolerant distributed
mutual exclusion extension for Garg's decentralized token-
based mutual exclusion algorithm in distributed system which
assumes a fault-free system. Garg's Algorithm works properly
in fault-free systems. However, it does not tolerate failure of a
process, especially a token holding process or a process that has
requested the token, which results in the token loss in the entire
system.

In this case, a system is in deadlock because any request does
not arrive from a process holding the token and thus any
process can not enter the critical section. This does not satisfy
liveness property of mutual exclusion, that every request for the
critical section is eventually granted. We also have
implemented the solution of this problem in this paper.
Consequently, it is designed to perform properly even when
any of the cooperating processes in the system are
malfunctioned. That is, the algorithm designed in this paper
tolerates any number of process failures even in case that only
one process is alive in the system.

2. GARG'S ALGORITHM

To request the critical section, a process increases its
component in v vector and sends the request with its v vector to
all the processes. If a process has the token, then it checks for
eligible requests and sends the token to one of the eligible
processes. On receiving the token, a process is eligible to enter
the critical section. To release the critical section, it sends the

http://dx.doi.org/10.5392/IJoC.2012.8.4.001

2 Yoon Kim : A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems

International Journal of Contents, Vol.8, No.4, Dec 2012

token to the next eligible process or if there's no eligible
process, it holds the token until it receives a request. To ensure
fairness, all the processes piggyback v vector on all outgoing
messages.
When a process receives a program message, it updates its old
value in v vector. To solve the problem that a request broadcast
may never reach the token if it was made when the token was
in transit between two processes, each process maintains
myreqlist. Whenever the token is received, it is updated with all
the entries in the myreqlist. This algorithm requires, at most, N
messages per critical section invocation: (N-1) request
messages and one token message.

3. PROPOSED ISSUES

We have modified the Garg's algorithm in order to make it
also work properly in a fault-tolerant system. In this section, we
discuss the problems of Garg's algorithm in terms of process
failures and present the changes needed to make the Garg's
algorithm fault tolerant to these failures.

3.1 Process Failures

Processes may fail by crashing. Crashed processes nay stop
their execution permanently or recover from failures restarting
execution. In this paper, we focus on only the former case
called fail-stop failures. Since we assume that the
communication link is reliable, we do not consider the link
failures at this time. In addition, we distinguish crashed
processes into the following two cases.
- A process with the token (token holder) fails.
- A process that has requested the token fails.

3.2 Fault Detection

To detect process failures, we use Acknowledgements and
timeout-based re- transmission of messages which are
commonly used techniques for fault detection in a distributed
system. In our algorithm, a process detects process failures in
the following cases.

First case is that process does not receive message that it is
using the token now from the token holder while waiting for
the token periodically. Second case is that process does not
receive an acknowledgement from the process that will receive
the token after it asks aliveness before sending the token.

3.3 Fault-Tolerance

Our algorithm is fault-tolerant because a process detects
above two cases of process failures and takes an action as
follows:
1) Process Failure Case 1: When a process detects the failure of
the token holder, it starts an election algorithm to elect a token
generator. The token generator sends the token after checking
the next eligible process.
2) Process Failure Case 2: Before a process sends the token, it
asks the receiving process' aliveness. If it does not receive an
acknowledgment within a timeout period, it detects the process
failure and checks again for the next eligible process to send
the token.

4. SPECIFICATION OF FAULT-TOLERANT
ALGORITHM

In this section, we propose our own fault tolerant extension to

the original Garg's algorithm[1]. We consider a distributed
system consisting of N processes denoted by {P1, P2, …, Pn},
which are fully connected, communicating only by message
passing. The system is synchronous i.e. both process speed and
message transmission times are bounded. Processes can fail
only by crashing, and crashes are permanent.

4.1 Basic Idea

The rules of our algorithm are as follows:
To request the critical section, a process increments its
component in v vector and sends the request with its v vector to
all the processes.

On receiving a request message, a process updates its old
value in v vector and appends the request in the list (myreqlist).
If it has the token and does not use the critical section, then it
checks for eligible requests and sends the token to one of the
eligible processes. But if it is in the critical section, it sends
"token_using" message to the requesting process.

On receiving the token, a process is eligible to enter the
critical section and sends back an acknowledgment. To release
the critical section, a process checks for eligible requests in the
list (myreqlist) and sends the token to one of the eligible
processes. If there is no eligible process to send the token, the
process holds the token.

When a process receives a request, it sends a "token_using"
message to the requesting process if it has the token and is in
the critical section. The token holding process periodically
sends the "token_using" message to the processes in the
myreqlest.

After a process sends a request, if it does not receive the
token and the "token_using" message within a timeout, it
suspects token loss due to the token holding process failure.
Then, it sends a "token_loss_detect' message to all other
processes to initiate an election process. After a process sends
the token to the next eligible process, if it does not receive an
acknowledgement within a timeout period, it suspects the
process failure. Then, it checks the eligible process and sends a
newly generated token.

In our algorithm, after electing the token generator, the
elected process generates a new token based on the information
of the myreqlist which is kept by every process and the reqdone
which is received during election. To ensure fairness, all the
processes piggyback v vector on all outgoing messages. When
a process receives a program message, it updates its old value
in v vector.

4.2 System Model

The model of our algorithm is an asynchronous system
composed of a set of N processes denoted by P1, P2, …, Pn. The
processes are fully connected without any shared memory or a
global clock and communicate only through message passing.
Further assumptions on the message delay and system failures
are as follows:

 Yoon Kim : A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems 3

International Journal of Contents, Vol.8, No.4, Dec 2012

(1) Message Delay : Message delay is unbounded since the
algorithm is based on an asynchronous model.
(2) Communication Links : Communication links are
bidirectional and reliable, that is, no message is lost and
changed.
(3) System Failures : There are no faults in the system, that
is, processes are reliable.
(4)Token Loss : Since the processes and communication
links are reliable, the token loss does not happen.
(5) Timeout : We use timeout as a timer to detect the token
loss.

4.3 Data Structures
Each process Pi has variables described in Fig. 1.

v An array of integers. v[i] represents the
number of request of Pi.
Initially, v[i]=0 for Pi (1 = i = N).

myreqlist A list of (pid, reqvector). It denotes some
request that has not been fulfilled yet. When
Pi receives a request, it appends the request
to the list. The list is used to update the
token.

inCS A boolean variable which is set to true when
Pi is in the critical section.

havetoken A boolean variable which is set to true when
Pi receives the token and is set to false when
Pi releases the token. The token has the
following variables. Any process holding the
token does the computation using these two
variables

reqdone An array of integers. reqdone[i] equals the
number of requests made by Pi that has been
fulfilled. Initially, reqdone[i]=0 for Pi (1 = i
= N).

reqlist A list of (pid, reqvector). It denotes some
request that has not been fulfilled yet. For the
fault-tolerance, two more variables are used.

timeout A timer for the detection of token loss.
flag A string variable which is set to

"request/token_using/new_token"
Fig. 1. Data Structures

5. DESCRIPTION OF FAULT-TOLERANT
AlGORITHM

In this section, we describe the exact algorithm performed by

an arbitrary node i. The exact algorithm is shown in Fig. 1.

5.1 Requesting Critical Section
To request the critical section, a process increments its

component in v vector and sends the request with its v vector to
all the processes including itself. After then, it sets timeout and
flag to "request". If it does not receive the token and
"token_using" message within a timeout, it suspects the token
loss as denoted by line 1-5 in algorithm of Fig. 2.

5.2 Receiving a request of Critical Section
On receiving a request, a process updates its v vector with the

maximum. After then, it appends the request to the myreqlist. If
it has the token and does not use the critical section, then it
checks for eligible requests and sends the token to one of the
eligible processes. But if it is in the critical section, it sends
"token_using" message to the requesting process as denoted by
line 6-11

5.3 Receiving a token

On receiving the token, a process sends back an
acknowledgment, which is efficient in case of the process
failure. It receives the reqdone vector with the token. Processes
keep reqdone updated through token passing. It sets inCS and
havetoken to true. Then, it calls checkdone()procedure to delete
the fulfilled request from the myreqlist. After then, it sends
'token_using" message to all the processes in myreqlist as
denoted by line 12-17 in algorithm of Fig. 2.

5.4. deleting the fulfilled requests from myreqlist

To delete the fulfilled requests from the myreqlist, a process
uses the reqdone vector. A request w is considered fulfilled if
w.v is at most reqdone as denoted by line 18-21 in algorithm

5.5 releasing critical section

To release the critical section, a process sets inCS to false.
Then, it calls checkreq() procedure in order to check for
eligible requests in the myreqlist to send the token as denoted
by line 22-24 in algorithm of Fig. 2.

5.6 Checking Eligible Requests in myreqlist

To send the token, a process checks for eligible requests in
the list (myreqlist). A request w is eligible if w.v is at most
reqdone, that is, there is no request that happened before w and
has not been fulfilled yet. Then, it deletes the eligible process
from the myreqlest and the increments reqdone vector of the
eligible process. It sends the token to one of the eligible
processes and sets havetoken to false. If there is no eligible
process to send the token, the process holds the token denoted
by line 27-37

5.7 Receiving message that token has been occupied

On receiving a "token_using" message, a process keeps flag
to "request"and sets timeout. If it does not receive the token and
"token_using" message within a timeout, it suspects the token
loss. In our algorithm, if a process uses token, it sends a
"token_using" message to the requesting process when it
receives a request or the token. In addition, the token holding
process periodically sends the "token_using" message to the
processes in the myreqlist. As denoted by line 38-40 in
algorithm of Fig 2.

4 Yoon Kim : A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems

International Journal of Contents, Vol.8, No.4, Dec 2012

Fig 2. Proposed Algorithm

5.8 Actions to be made upon timeout

When timeout period has been elapsed, actions are made
according to the value of flag. After sending a request
(flag="request"), if Pi does not receive the token within a
timeout period and "token_using" message periodically, it
suspects the failure of the process with token. Then it starts
election process.
After finishing the election process, Pi informs the elected

process that it is the token generator. Then, it generates a new
token and sends it to the next eligible process and
"new_token"message to all processes to inform that a new
token has been generated.

After setting flag to "start_election", if Pi does not receive
"new_token" message within a timeout period, it suspects the
failure again (during election , after election or after generating
token) and restarts the election process Those procedures are
denoted by line 41-49 in algorithm of Fig. 2.

5.9 Sending newly generated token

If Pi is informed that it is the token generator, then it
generates a new token and checks for the eligible process to
send the token. In addition, it sends "new_token" message to all
processes to inform that a new token has been generated as
denoted by line 50-52 in algorithm of Fig 2.

6. PROOF OF CORRECTNESS

In this section we prove that the algorithm ensures these three
properties of mutual exclusion.
Theorem 1: At any instant, only one process has permission to
use the critical section (safety property).
Proof: Because there is only one token in the system, no two
processes hold the token simultaneously. Thus, the only one
process holding the token can executes the critical section. ☐
Theorem 2: Every requesting process eventually executes the
critical section (liveness property).
Proof: A token request message of a process reaches other
processes in finite time since communication links are reliable
and thus message loss does not occur. Any request will be
placed in the token reqlist in finite time since one of the

41. Upon expire_timeout();
42. if (havetoken==false && flag==”request”) then
43. flag=”start_election”;
44. set timeout;; //wait for “new_token”
45. election();
46. if (flag==”start_election”);
set timeout;;
47. election();
48. if (flag==”alive_ask”);
49. checkreq();
50. Upon receive(election_result, reqdon):
51. Checkreq();
52. send new_token to all processes;

Pi::
var
υ: array[1…N] of integer initially ∀j : υ[j] = 0;
inCS: boolean initially false;
havetoken: boolean initially false except for P0;
myreqlist: list of(pid, reqvector) initially null;
reqdone: array[1…N] of integer initially 0;
timeout: timer initially t;
flag: request/random/new_token of string initially null;
1. To request:
2. υ[i] := υ[i] + 1;
3. send (request, υ) to all processes (including itself);
4. set timeout;
5. flag=”request”;
6. Upon receive(request, u):
7. υ := max(υ, u.υ);
8. append(myrequlist, u);
9. if (havetoken) then
10. if not inCS then checkreq();
11. else send(token_using, u) to the requesting processes;
12. receive(u, token, reqdone):
13. send an acknowledgement to the process which
has sent the token
14. inCS := true;
15. havetoken=true;
16. checkdone();
17. send token_using to all processes in myreqlist
18. checdone():
19. done := {x ∈ myrequlist such that
∀j: myreqlist[j] ≤ reqdone[j]};
20. if done ≠ {} then
21. delete(myreqlist, x);
22. release:
23. inCS := false;
24. checkreq();
25. receive(u): //program message
26. υ := max(υ, u.υ);
27. checkreq():
28. eligible := {w ∈ myrequlist such that
∀j: j ≠ w.p : w.υ[j] ≤reqdone[j]};
29. if eligible ≠ {} then
30 w := first(eligible);
31. delete(myreqlist, w);
32. reqdone[w.p] := reqdone[w.p] + 1;
34. send (alive_ask_msg) to Pw.p;
35. set timeout;
36. flag=”alive_ask”;
37. endif
38. Upon receive token_using message:
39. flag = “token_using”;
40. set timeout;;

 Yoon Kim : A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems 5

International Journal of Contents, Vol.8, No.4, Dec 2012

processes will eventually have the token and every process
maintains the records of all requests. Since there can be at most
N-1 requests made before the request of a process, the
requesting process will eventually have the opportunity to
execute the critical section after all the requests of other
processes made before its request have granted.
Theorem 3: Different requests must be granted in the order
they are made (fairness property).
Proof: Let Ri be the request from a process Pi and Rj be the
request from a process Pj. When Ri is made before Rj, we will
prove that for these two requests, Pj enters CS after Pi finishes
CS.

In the algorithm (Fig. 1.), to send the token, a token holding
process checks for the next eligible request. A request w is
eligible if there is no request that happened before w and has
not been fulfilled yet. If every component except Pj’s in υ
vector of Rj is at most reqdone, Rj is the next eligible request.
If Ri is not fulfilled yet, Pi’s component in υ vector of Rj is not
at most reqdone.
Therefore, since Rj can not be the next eligible request unless
Ri is not fulfilled, Pj can not enter CS before Pi. OnlyPj can
enter CS after Pi finishes CS.

7. SIMULATION AND PERFORMANCE ANALYSYS

We, here, analyse the performance of proposed algorithm and
simulate it in order to confirm if the algorithm works well on
the real world. For performance analysis, we use simulating
model as used in [7]. We use a distributed system with 10-50
processes(nodes). Each process makes request at random time
and to make our simulation rather simple, we assume that there
are no simultaneous requests from processes in the system at a
time. Request arrival pattern at a process(node) is Poisson
distribution. We assume that three different types of timeout
such as "request/token_using/new_token" has the same value
and we set it as 30ms. We also assume arbitrary process
failures. For performance analysis, we consider the parameter
LTS(latency to stable status) which means the latency from
time that a process detect failed process to the time that system
reach to the stable status. As showed in Table 1 and Fig.2, the
result of the simulation shows us that the system does not be
stopped by any kind of failures during execution. According to
the type of timeout, latency time to the stable status varies and
there is no formal pattern showed.

8. CONCLUSIONS

Table 1. Simulation Results

Fig. 2. Simulation results

In this paper, we proposed a new fault-tolerant distributed

mutual exclusion algorithm in distributed system which
assumes a fault-free system. To detect process failures, we used
acknowledgements and timeout based re-transmission of
messages which are commonly used techniques for fault
detection in a distributed system.

As proved in section 6, proposed algorithm works properly
against both node and network failures satisfying three
properties of mutual exclusion. We can assume by
intuition that proper timeout value in our algorithm will vary
according to the system environments, that is, the number of
processes, and reliability of nodes and network etc. Future
works include
simulation and performance analysis which will be expected to
give us reference to deciding what are the proper values of
timeout in corresponding system.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50

No. of processes

L
a
te

n
c
y

to
 s

ta
b
le

 s
ta

tu
s
(s

e
c

request

token_using

new_token

No. of
processes

Type of timeout
(30 ms)

Latency to
stable status(sec)

10
request 0.91

token_using 0.84
new_token 1.27

20
request 1.24

token_using 1.19
new_token 1.38

30
request 1.85

token_using 1.94
new_token 2.38

40
request 2.18

token_using 2.03
new_token 2.35

50
request 3.49

token_using 3.52
new_token 3.94

6 Yoon Kim : A Fault-tolerant Mutual Exclusion Algorithm in Asynchronous Distributed Systems

International Journal of Contents, Vol.8, No.4, Dec 2012

REFERENCES

[1] Vijay K. Garg, Elements of Distributed Computing, A
John Wiley & Sons Inc., Publication, New York, 2002

[2] D. Agrawal and A. El Abbadi, An efficient solution to the
distributed mutual exclusion problem, in Proc. 8th ACM
Symposium on Principles of Distributed Computing, pp.
193-200, 1989

[3] G.Ricart and A.K.Agrawala, An optimal algorithm for
Mutual Exclusion in Computer Networks, Commu
nications of the ACM, 1981

[4] M. Singhal, A dynamic information structure for mutual
exclusion algorithm for distributed systems, IEEE
Transactions on Parallel Distributed Systems, 3(1):121-
125, 1992

[5] M. Maekawa, A Square Root N Algorithm for Mutual
Exclusion in Decentralized Systems, ACM Transactions
on Computer Systems(TOCS), 324):145-159, May 1985

[6] I. Suzuki and T. Kasami,A distributed mutual exclusion
algorithm, ACM Transactions on Computer Systems
(TOCS), 3(4):344-349, 1985

[7] M. Singhal, A Heuristically Aided Algorithm for Mutual
Exclusion in Distributed Systems, IEEE Transactions on
Computers, vol. 38, no. 5, pp. 651-662, May 1989

[8] Quazi Ehsanul Kabir Mamun and Hidenori Nakazato, A
New Token Based Protocol for Group Mutual Exclusion
in Distributed Systems, IEEE Proceedings of the fifth
International Symposium on Parallel and Distributed
Computing, 2006

[9] K. Raymond, A tree-based algorithm for distributed
mutual exclusion, ACM Transactions on Computer
Systems (TOCS), 7(1):61-77, 1989

[10] J. Sopena, L Arantes, M Bertier and P Sens. A Fault-
Tolerant Token-Based Mutual Exclusion Algorithm
Using a Dynamic Tree. In EuroPar 2005, Lisboa,
Portugal, September 2005. LNCS, 2005.

[11] S. Mishra and P.K. Srimani Fault-tolerant mutual
exclusion algorithms. Journal of Systems Software,
11(2):111-129, February 1990.

[12] M. Singhal, A heuristically-aided algorithm for mutual
exclusion in distributed systems, IEEE Transactions on
Computers, vol. 38, No.5, May 1989, pp. 651-662.

[13] Chang, M. Singhal, and M. Liu, A fault tolerant algorithm
for distributed mutual exclusion, in Proc. of 9th IEEE
Syrup. On Reliable Dist. Systems, 1990 pp. 146-154.

YYoooonn KKiimm [[RReegguullaarr mmeemmbbeerr]]
He received the B.S.,in mechanical
engineering from Hanyang university,
Korea in 1982 and received M.S. in
computer science from Stevens Institute
of Technology, USA and received PhD. in
computer science from Chungbuk
National University. Currently he is a

professor of Korea National College of Welfare.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

