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ABSTRACT 
 

In recent decades, analyzing the activities of human brain achieved some accomplishments by using the functional Magnetic 
Resonance Imaging (fMRI) technique. fMRI data provide a sequence of three-dimensional images related to human brain’s activity 
which can be used to detect instantaneous cognitive states by applying machine learning methods. In this paper, we propose a new 
approach for distinguishing human’s cognitive states such as “observing a picture” versus “reading a sentence” and “reading an 
affirmative sentence” versus “reading a negative sentence”. Since fMRI data are high dimensional (about 100,000 features in each 
sample), extremely sparse and noisy, feature selection is a very important step for increasing classification accuracy and reducing 
processing time. We used the Fisher Discriminant Ratio to select the most powerful discriminative features from some Regions of 
Interest (ROIs). The experimental results showed that our approach achieved the best performance compared to other feature 
extraction methods with the average accuracy approximately 95.83% for the first study and 99.5% for the second study. 
 
Keywords: functional Magnetic Resonance Imaging, Regions of Interest, feature selection, Fisher Discriminant Ratio. 
 
 

1. INTRODUCTION 
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Investigating activities in human brain for disease detection 
is one of the challenges in the past decades. Many scientists 
tried to find some techniques to access the human’s cognitive 
states through brain activation. Several techniques such as 
electro encephalography (EEG), magneto encephalography 
(MEG) and positron emission tomography (PET) also allow 
researchers to measure the brain activation. Generally, these 
techniques are concerned with the activity arising from a large 
group of neurons but they differ in what they measure, as well 
as in the temporal and spatial resolution. EEG and MEG 
techniques are based on the information of electrical and 
magnetic activity in the brain. They provide temporal 
resolution precisely while fMRI and PET techniques, which are 
based on the information of blood flow changes, provide a high 
spatial resolution. Since fMRI technology has the promise of 
achieving good performance for studying human cognitive 
processes, this article focuses on the classification issues 
related to fMRI which has taken an important position in the 
neuroimaging domain. 

Manuscript received Aug. 31, 2012; revised Nov 11, 2012; 
accepted Nov 14, 2012     

The fMRI technique is most commonly performed using 
blood oxygenation level-dependent (BOLD) contrast to study 
local changes in deoxyhemoglobin concentration in a brain [2]. 
Based on the diamagnetic property of oxygenated hemoglobin 
and paramagnetic property of deoxygenated hemoglobin, 
BOLD signals can help us to measure the activation of brain for 
generating three-dimensional images. Each image consists of a 
number of uniformly spaced volume elements, called voxels. 
Changes in voxel intensity across time can be used to infer 
when and where an activity is taking place. Multiple 2D images 
can be captured, forming a 3D image that may contain on the 
order of 15,000 voxels, each of which can measure the 
response of a 3x3x5 region of the brain. Images of 15,000 
voxels can be acquired at the rate of one or two per second with 
high field (3 Tesla) echo planar imaging.  
The analysis of fMRI data is made complex by a number of 
factors. First, the data are liable to a number of artifacts, such 
as those caused by head movement. Second, there are a number 
of sources of variability in the data, including variability 
between individuals and variability across time within 
individuals. Third, the dimensionality of the data is very large, 
which causes a number of challenges in comparison to the 
small datasets that many scientists are accustomed to working 
with. The major components of fMRI analysis are meant to 
deal with each of these problems [3]. They include: 
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- Quality control: ensuring that the data are not 
corrupted by artifacts. 

- Distortion correction: the correction of spatial 
distortions that often occur in fMRI images. 

- Motion correction: the realignment of scans across 
time to correct head motion. 

- Slice timing correction: the correction of differences 
in timing across different slices in the image. 

- Spatial normalization: the alignment of data from 
different individuals into a common spatial 
framework so that their data can be combined for a 
group analysis. 

- Spatial smoothing: the intentional blurring of the 
data in order to reduce noise. 

Figure 1 illustrates the processing stream for analyzing fMRI 
data. The pre-processing step is necessary before using fMRI 
data as the input for classification. With exception of removing 
noises, standardizing the brain space and correcting head 
motion, this step was conducted to shift the time series so they 
can be considered to have been measured simultaneously.  

Fig. 1. fMRI stream processing [2] 
 
The fMRI technology has been used to conduct hundreds of 

studies that identify which regions of the brain are activated 
when a human performs a particular cognitive function 
(reading, mental imagery, remembering) [4]. In this approach, 
researchers focus on mapping from a task to brain locations 
activated by this task. In contrast, many other researchers are 
interested in mapping from fMRI data to the human subject’s 
cognitive states [12-17] which are known as clustering and 
classification problem. The goal of this approach is training 
machine learning classifiers to automatically detect the 
subject’s cognitive state at a single time interval. This 
capability would be useful not only in tracking the hidden 
cognitive states of a subject performing a single, specific task 
but also in solving some medical diagnosis problems such as 
diagnosing Alzheimer’s disease [5].  

This problem is a challenge because it must solve the issue 
of extremely high dimensional, sparse and noisy data. In our 
case, we encountered problems where the examples are 
described by more than 80,000 features and we have only 
several dozens of examples per class. The fMRI data were 
collected when some human subjects were shown special 
pictures and simple sentences. Our target was training classifier 
for distinguishing cognitive states such as “observing a picture” 

versus “reading a sentence” and “reading an affirmative 
sentence” versus “reading a negative sentence”. At first, we 
chose some Regions of Interest (ROIs) which have a good 
performance when classifying the above cognitive states. After 
that, by computing the Fisher Discriminant Ratio of every 
feature in each ROIs, we selected the most powerful 
discriminative features. In the end, by using Gaussian Naïve 
Bayes classifier, our system achieved the average accuracy 
approximately 95.83% for the “observing a picture” versus 
“reading a sentence” study and 99.5% for the “reading an 
affirmative sentence” versus “reading a negative sentence” 
study. 
The remainder of this paper is organized as follows. Section 2 
describes approaches of others researchers and their 
achievements. Section 3 discusses about the proposed method. 
The data description and experimental results are detailed in 
Section 4. Section 5 is our conclusion.  
 
 

2. RELATED WORK 
 

Over recent years, various techniques were applied for 
analyzing fMRI data. Friston et al. and Bly used Generalized 
Linear Models (GLM) to perform a regression for each voxel 
[6,7]. GLM approach models the time series as a linear 
combination of several different signal components. Therefore, 
they can predict the signal value at every voxel based on 
properties of the stimulus and test whether activities in a brain 
region are systematically related to any of the known input 
functions. Hojen-Sorensen, Hansen and Rasmussen used 
Hidden Markov Models (HMM) to learn a model of activities 
in the visual cortex resulting from a flashing light stimulus [8]. 
Although the program was not told the stimulus, the on-off 
stimulus was recovered as the hidden state by the HMM. Jung 
et al. referred to Independent Component Analysis (ICA) as a 
useful method for fMRI analysis [9]. It has proven to be a 
powerful approach for detecting task-related activations, 
including unanticipated activations that could not be detected 
by standard analyses. Mc Keown et al. used Principle 
Component Analysis (PCA) to determine spatial factors that 
can be linearly combined to reconstruct the fMRI signal [10]. 
Haxby et al. showed that different patterns of fMRI activity 
were generated when a human subject viewed a photograph of 
a face, a house, a shoe, a chair [11]. Cox and Savoy applied 
Support Vector Machine and Linear Discriminant Analysis to a 
set of data to successfully classify patterns of fMRI activation 
evoked by the presentation of photographs of various 
categories of objects [12].  

Since fMRI data is high dimensional, dimensionality 
reduction is typically performed before classification to 
improve the performance of system. The Principle Component 
Analysis (PCA) and the Regions of Interest (ROIs) are most 
widely used as feature selection method. PCA is a standard 
dimensionality reduction method that transforms high 
dimensional data onto a linear eigen-space learned from the 
training dataset. However, the performance of PCA is generally 
limited when the dimension of original data is much higher 
than the number of available training samples which is the 
common case of fMRI data. Therefore, many researchers tried 
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to apply the enhanced version of PCA or the combination of 
PCA and other techniques. T. Hoang et al. used incremental 
PCA (iPCA) to develop an incremental subspace tracking for 
reducing computation and storage requirements [13]. Y. Fan et 
al. applied PCA after extracting regional features which are 
formed by statistical information [14]. They achieved a very 
high accuracy by using nonlinear support vector machine 
(SVM) in lie detection study.  

Brain regions that are relevant to the problem under study 
must first be selected from a background of brain activity [14]. 
It’s believed that any mental task is activated in some special 
location of the brain, called Regions of Interest (ROIs). Instead 
of using all features of the entire brain, considering only 
specific ROIs can improve the performance of classifiers. Etzel 
et al. tried to solve classification problem of fMRI by using 
anatomical ROIs [15]. They selected all voxels containing in 
some specific ROIs to evaluate the performance of anatomical 
ROIs-based fMRI classification approach. Mitchell et al. and S. 
Bapi et al. selected the most active voxels per ROIs [16]. While 
Mitchell et al. could not reach a high accuracy for the Picture 
versus Sentence study, S. Bapi et al. had a good result with 
Early versus Late Learning study.  

However, Mitchell et al. proposed another feature selection 
method by providing the definition of fixation condition [5]. 
This fixation condition contains data observed during the time 
that human subject is generally at rest. Therefore, their binary 
classification problem became the classification between three 
classes: two classes indicate the cognitive states of a human 
subject, the remaining one is fixation. They called the voxels 
which have ability to distinguish the target class from fixation 
condition as active voxels. They applied t-test for each voxel of 
each target class to measure the power of active voxels. This 
method had a good result with the highest accuracy compared 
to other methods proposed by Mitchell et al. [5].   
Instead of using standard classifiers such as Gaussian Naïve 
Bayes (GNB), Support Vector Machine (SVM) and K-Nearest 
Neighbor (KNN), Bernard et al. proposed a new group of 
classifiers, called Generalized Sparse Classifiers (GSC) to 
alleviate the over-fitting problem of standard classifiers [17]. 
They constructed a Spatial-Smooth Sparse Linear 
Discriminative Analysis (SSLDA) classifier to demonstrate the 
power of GSC. SSLDA reached a very high accuracy for the 
Picture versus Sentence study provided by Mitchell [5].  
 
 

3. PROPOSED METHOD 
 

In this paper, we propose an approach for classifying 
human’s cognitive states from fMRI data using the Fisher 
Discriminant Ratio to select the most powerful discriminative 
features from some Regions of Interest (ROIs). By using 
Gaussian Naïve Bayes classifier, our approach performed the 
best performance compared to other feature extraction methods 
for the Picture versus Sentence study and Affirmative versus 
Negative sentence study. 
 
3.1 Regions of Interest 
 

In order to localize the task-related regions, some researchers 

tried to divide the entire brain into some Regions of Interest 
(ROIs). We followed Mitchell et al. [5] to mark up the brain 
with 25 anatomical Regions of Interest (ROIs). They included: 
calcarine sulcus (CALC), dorsolateral prefrontal cortex – left & 
right (LDLPFC, RDLPFC), frontal eye fields – left & right 
(LFEF, RFEF), left inferior frontal gyrus (LIFG), inferior 
parietal lobule – left & right (LIPL, RIPL), intraparietal sulcus 
– left & right (LIPS, RIPS), opercularis – left & right (LOPER, 
ROPER), posterior precentral sulcus – left & right (LPPREC, 
RPPREC), supramarginal gyrus – left & right (LSGA, RSGA), 
superior parietal lobule – left & right (LSPL, RSPL), temporal 
lobe –left & right (LT, RT), triangularis – left & right (LTRIA, 
RTRIA),  supplementary motor areas (SMA), inferior 
temporal lobule – left & right (LIT, RIT). In order to create 
these ROIs, Mitchell et al. used structural image which captures 
the static physical brain structure at high resolution. For each 
subject, this structural image was used to identify the 
anatomical regions of interest, using the parcellation scheme of 
Caviness and Rademacher [18]. After that, the mean of fMRI 
images was co-registered to the structural image. Hence, 
individual voxels in fMRI images could be associated with the 
ROIs identified in the structural image. We applied Gaussian 
Naïve Bayes (GNB) classifier for each ROI to check the 
effectiveness of ROIs in our study. Based on the classification 
accuracy of each ROIs, we could find some specific regions of 
the brain that most related to the tasks of viewing a picture or 
reading a sentence. The details of this work will be described 
more in section 4.  
 
3.2 Fisher Discriminant Ratio 
 

Fisher linear discriminant is one of efficient approaches for 
dimension reduction in statistical pattern recognition. Fisher 
discriminant ratio (FDR) is commonly employed to qualify the 
discriminatory power of individual features between two 
classes. In other words, it is independent of the type of class 
distribution. FDR value is defined as:  

FDR =  
(𝑚1 − 𝑚2)2

(𝜎12 +  𝜎22)
, 

where 𝑚1 and 𝑚2 are respective mean values, 𝜎12 and  𝜎22 
are respective variances associated with the values of a feature 
in two classes. For the features that have large differences 
between the means of two classes and small variances in each 
class, a high value of FDR will be obtained. It means that if two 
features have the same absolute mean difference and a different 
sum of variances, the one with the smallest sum of variances 
will get a higher FDR value. On the other hand, if two features 
have the same sum of variances and different mean differences, 
the one with larger mean difference will get a higher FDR 
value. This meaning of Fisher Discriminant Ratio is illustrated 
as Figure 2. We can imagine that features in each class are 
performed by a circle where the center is the mean and the 
radius is variance. Two circles are located more separately 
when distance between two centers is large and their radius are 
small. In our studies, we selected n features which have highest 
FDR values as the most discriminative power features from 
seven ROIs which are explained in experimental section. These 
selected features not only improve the performance of our 
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classifiers but also reduce the processing time compared to the 
method of using only ROIs and the method of computing FDR 
value of features from the whole brain. 

 
Fig. 2. Illustration of Fisher Discriminant Ratio 

 
3.3 Gaussian Naïve Bayes Classifier 
   

The Bayes Theorem is a statistical principle for combining 
prior knowledge of the classes with the new evidence gathered 
from data [20]. Bayes theorem is described as the following 
formula: 

P(Y|X) =  
𝑃(𝑋|𝑌)𝑃(𝑌)

𝑃(𝑋)
, 

where X is attribute set and Y is the class variable. Based on 
this theorem, given attribute value X = x we can compute the 
probability of class Y = y. This conditional probability P(Y|X) is 
also known as the posterior probability for Y, as opposed to its 
prior probability P(Y). We need to learn the posterior 
probabilities P(Y|X) for every combination of X and Y based on 
information gathered from training data. Hence, a test record 
X1 can be classified by finding the class Y that maximizes the 
posterior probability.  

In order to express the posterior probability, we need to 
estimate the class-conditional probability P(X|Y). The Naïve 
Bayes classifier solved this problem by assuming that the 
attributes are conditionally independent, given the class label y. 

P(X|Y = y) =  �𝑃(𝑋𝑖|𝑌 = 𝑦)
𝑑

𝑖=1

 

where each attribute set X consists of d attributes.  
For the continuous attributes, we can estimate the class-

conditional probabilities by using Gaussian distribution. This 
distribution is characterized by two parameters, its mean μ and 
variance  𝜎2  . For each class y, the class-conditional 
probability for attribute X is:  
 

P(X = x|𝑌 = 𝑦) =  
1

√2𝜋𝜎
𝑒𝑥𝑝

−(𝑥−𝜇)2
2𝜎2  

The Gaussian Naïve Bayes (GNB) classifier uses the training 

data to estimate probability distribution over fMRI observations, 
conditioned on the subject’s cognitive state. It classifies a new 
example x based on the posterior probability P(𝑐𝑖|𝑥)  of 
cognitive state 𝑐𝑖 given fMRI observation x.  
 

P(𝑐𝑖|𝑥) =  
𝑃(𝑐𝑖)∏𝑃(𝑥𝑗|𝑐𝑖)

∑[𝑃(𝑐𝑘)∏𝑃(𝑥𝑗|𝑐𝑘)]
 

 
Each distribution of the form P(x|c)  is modeled as Gaussian 
using maximum likelihood estimates of the mean and variance 
derived from training data. Distributions of the form P(c) are 
modeled as Bernoulli using maximum likelihood estimates 
based on training data. 
 
 

4. EXPERIMENTAL RESULT 
 
4.1 Data Description 
 

We used the StarPlus data collected by Mitchell et al. for 
validation [5]. This data were preprocessed to remove artifacts 
and noises using the FIASCO program. All voxel activity 
values were presented by the percent difference from their 
mean value during rest conditions. These preprocessed images 
were used as input to our classifiers.  

fMRI data were collected many times for each human 
subject, performs a set of trials. During each trial, the subjects 
were shown a sequence of sentences and a simple picture. They 
also had to answer whether the sentences described the pictures 
correctly to ensure that they concentrated on their tasks. In half 
of trials, a picture was presented first, followed by a sentence 
and the remaining trials are vice versa with sentence was 
presented first, followed by picture. The experiments from six 
human subjects consist of a set of trials with 27 seconds of time 
interval for each one. Since fMRI images were captured every 
500msecond, a total of 54~55 images were collected for each 
trial. The timing within each such trial is as follows:  

- The first stimulus (sentence or picture) was presented 
at the beginning of trial (1st image). 

- Four seconds later (9th image), first stimulus was 
removed, replaced by a blank screen. 

- Four seconds later (17th image), second stimulus 
(different from the 1st one) was presented and 
remained for 4 seconds. 

- The rest period of 15 seconds was added after 
removing second stimulus from the screen. 

The pictures simply were geometric arrangements of 
symbols such as +, *, @, $, --. The sentences were partitioned 
into affirmative sentences and negative sentences such as “It is 
true that the star is above the plus” or “It is not true that the 
plus is above the star”. Given a particular time interval of 8 
seconds, we wished to train a classifier to distinguish whether 
the subject is viewing a picture or reading a sentence and 
distinguish whether the subject is reading an affirmative 
sentence or a negative sentence. For each subject, we trained a 
classifier of the form: 

f : fMRI-sequence (t, t+8)  {Class1, Class2}  
where t is the starting time of stimulus.  
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Since the fMRI BOLD signal does not ‘disappear’ instantly 
when the stimulus is stopped, it is necessary to extend the time 
interval in order to capture the full fMRI activity associated 
with the stimulus. Therefore, although the stimulus was 
presented for only 4 seconds, a 8 seconds time interval was 
chosen to avoid lacking brain activity.  

For the Picture versus Sentence study, each subject includes 
80 samples, 40 samples for each label. For the Affirmative 
versus Negative Sentence study, each subject includes 40 
samples, 20 samples for each label. Table 1 shows the number 
of all features of each subject. Generally, every sample includes 
approximately 80,000 features. 
 
Table 1. Description of dataset 

 

 
Fig. 3. Brain activation at z = 4 slice in trial 4 

 

 
Fig. 4. fMRI image of the brain 

 
Figure 3 describes a 2D slice image of the brain for trial 4. 

Note that every fMRI image is a sequence of eight 2D slice 
images as shown in figure 4. Figure 5 describes the time series 
data of a single voxel. The red line indicates stimulus 
conditions including: fixation condition, sequence of picture – 
sentence with affirmative sentence, sequence of picture – 
sentence with negative sentence and ignorable data (condition 
= 0). The blue line indicates activation of this voxel. It seems 
that this activation signal does not follow the stimulus 
condition precisely. Hence, we cannot consider this voxel as a 
good feature for the tasks of viewing a picture and reading a 
sentence. 
 
 
 

 

 
Fig. 5. Time course of single voxel 

 
4.2 Evaluation 
 
  We restricted our system to consider only some specific 
Region of Interest (ROIs), not the whole brain. Table 2 shows 
the classification accuracy of each ROIs by using GNB 
classifier. With a high accuracy for most of human subjects, 
CALC region seems to be the center region of the brain in the 
task of viewing picture and reading sentence. In our 
experiments, a set of ROIs: {CALC, LIPL, LT, LTRIA, 
LOPER, LIPS, LDLPFC} produced the best accuracy for our 
studies. 

For evaluating the classification performance, we applied k-
fold cross validation with k = 10. The average accuracy was 
computed and compared to other methods such as iPCA [13], 
ROIs, and the methods from Mitchell et al. [5] including 
Discrim, Active, roiActive and roiActiveAvg. Our proposed 
method will be described as ROIs+FDR with 250 features 
selected and performed by using GNB classifier. Table 3 shows 
the classification accuracy of our method for each human 
subject and the comparison with other methods. It is very 
surprising that the subject 04799 had the lowest accuracy with 
other methods but highest accuracy with our one. Subject 
04847 has the highest accuracy with all methods. For all 
subjects, our proposed method had classification accuracy 
much higher than the others one. This performance proves that 
we detected the right patterns of the brain when activated by 

Subject ID 04799 04820 04847 05675 05680 05710 
Number of 

features 
79184 80240 75168 82160 80992 74144 
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the task of reading a sentence and viewing a picture.  
Table 2. Classification accuracy of each ROI 

 
Table 3. Classification result of single subject 

 
Table 4. Average accuracy 

 
Table 5. Processing time 

 
Table 6. Affirmative vs Negative Sentence study 

 
 
 
 
 
 
 
 
 

 
 

 
 

 
Table 4 shows the average accuracy of our proposed method 
and the comparison with the other one. The number in 
parentheses is the number of selected features. From our 
experiment, range of number of features from 200 to 400 will 
provide the best classification accuracy. In this range, the 
accuracy of Picture versus Sentence study always is more than 
95.5%. We tried to reduce the number of selected features from 
250 to 100 to check the power of our method with a limited 
number of features. In this case, the classification accuracy was 
still greater than 95% which was much better than other 
methods. Without using FDR, the accuracy was very low when 
we selected all voxels from ROIs. Without using ROIs, we had 
to compute FDR value for all features of the entire brain, so 
that the processing time was much slower than using 
ROIs+FDR as shown in table 5. Although the method of using 
FDR without ROIs had a similar accuracy to ROIs+FDR, we 
believe that ROIs+FDR is an optimal method.    

For the Affirmative versus Negative Sentence study, our 
proposed method achieved a surprising result while Mitchell et 
al. [5] failed in this kind of study with a very low accuracy. 
Table 6 shows that with a limited number of samples (about 40 
samples) our method had a perfect performance. iPCA also 
classified affirmative versus negative sentence successfully but 

its accuracy is about 20% lower than our method even though 
the number of samples are same.   
 
 

5. CONCLUSION 
 
In this paper, we have presented a new approach for classifying 
specific cognitive states of a single subject from fMRI data. We 
only consider the following Regions of Interest: {CALC, LIPL, 

ROIs / Subject 
ID 

04820 04799 04847 05675 05680 05710 

CALC 0.7125 0.8625 0.9375 0.8625 0.7875 0.8875 
LIPL 0.65 0.5875 0.6875 0.5625 0.55 0.6125 
LT 0.65 0.5875 0.7125 0.65 0.7125 0.6375 

LTRIA 0.625 0.675 0.5875 0.575 0.6125 0.7 
LOPER 0.6 0.7 0.7625 0.6 0.5625 0.6 

LIPS 0.6 0.525 0.85 0.6375 0.725 0.5875 
LDLPFC 0.5375 0.5125 0.7 0.55 0.5875 0.55 

Feature 
Selection  

04799 04820 04847 05675 05680 05710 

All features 56.75% 57.5% 75% 58.75% 67.5% 70% 
ROIs 61.5% 70% 97.5% 75% 80% 80% 
iPCA 80% 80% 90% 88.75% 78.75% 85% 

ROIs+FDR 100% 96.25% 100% 93.75% 90% 95% 

Feature Selection Average Performance 
All features (80,000) 63.75% 

Discrim(1440) 68% 
roiActiveAvg(120) 73% 

roiActive(240) 77% 
ROIs(20,000) 77.3% 
Active(240) 82% 
iPCA(250) 83.75% 

ROIs+FDR(100) 95.2% 
ROIs+FDR(250) 95.83% 

Method 0479
9 

0482
0 

0484
7 

0567
5 

0568
0 

0571
0 

FDR 20.2
9s 

20.9
s 

21.8
8s 

23.8
6s 

20.4
8s 

17.9
5s 

ROIs+F
DR 

4.88s 5.1s 4.72s 5.9s 5.77s 5.72s 

Methods 04799 04820 04847 05675 05680 05710 
iPCA 75% 82.5% 77.5% 92.5% 80% 75% 

ROIs+FDR 97.5% 100% 100% 100% 100% 100% 
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LT, LTRIA, LOPER, LIPS, LDLPFC}. By selecting features 
with highest FDR values from these ROIs, we achieved a set of 
the most powerful discriminative features. Finally, we used 
Gaussian Naïve Bayes to train classifier dealing with the 
Picture versus Sentence study and Affirmative versus Negative 
Sentence study. The experimental results showed that our 
proposed method had a good performance with the highest 
accuracy compared to the other ones. In the future, we will 
apply this method to another kind of study and dataset in order 
to investigate the effectiveness of Fisher Discriminant Ratio 
and Regions of Interest in the problem of classifying human 
cognitive states. We will also extend to the problem of 
detecting multiple-subject cognitive states. 
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