Insang Chung : Modeling Pairwise Test Generation from Cause-Effect Graphs as a Boolean Satisfiability Problem 41

http://dx.doi.org/10.5392/1J0C.2014.10.3.041

Modeling Pairwise Test Generation from Cause-Effect Graphs
as a Boolean Satisfiability Problem

Insang Chung
Department of Computer Engineering
Hansung University, Seoul, 136-792, Korea

ABSTRACT

A cause-effect graph considers only the desired external behavior of a system by identifying input-output parameter relationships in
the specification. When testing a software system with cause-effect graphs, it is important to derive a moderate number of tests while
avoiding loss in fault detection ability. Pairwise testing is known to be effective in determining errors while considering only a small
portion of the input space. In this paper, we present a new testing technique that generates pairwise tests from a cause-effect graph.
We use a Boolean Satisbiability (SAT) solver to generate pairwise tests from a cause-effect graph. The Alloy language is used for
encoding the cause-effect graphs and its SAT solver is applied to generate the pairwise tests. Using a SAT solver allows us to
effectively manage constraints over the input parameters and facilitates the generation of pairwise tests, even in the situations where

other techniques fail to satisfy full pairwise coverage.

Key words: Cause-Effect Graph, Pairwise Testing, Alloy, SAT problem, Requirements-based Testing.

1. INTRODUCTION

The focus of requirements-based testing is to design a
necessary and sufficient set of tests from the requirement
specifications to ensure that the design and code fully meet the
requirements. The cause-effect graph technique formulates the
requirements specification in terms of logical between inputs
and outputs of a software system by using Boolean operators
like AND, OR, and NOT for system modeling and test design
[1]. One of the major challenges in testing a software system
with cause-effect graphs is to reduce the total number of tests
while still achieving the desired quality.

Pairwise testing is a combinatorial technique used to
reduce the number of tests in situations where exhaustive
testing is not feasible [2]. Given a set of input parameters, a
pairwise test set consists of tests which capture all possible
combinations of pairs of input parameter values. For example,
consider a system of 30 input parameters where each parameter
can be assigned one of 10 values. Exhaustive testing would
require the execution of 10*° input combinations. On the other
hand, there are a total of 100 pairwise tests which capture all
possible pairs of input values. Pairwise testing is based on the
premise that most software faults can be captured by either
single-value inputs or by an interaction between pairs of input
values. Studies have shown pairwise testing to be a very
practical and effective software testing criterion even though
the size of test sets is dramatically reduced.

* Corresponding author, Email: golsung@naver.com
Manuscript received May. 21, 2014, revised Jul. 01, 2014;
accepted Jul. 08, 2014

Traditional pairwise testing does not consider any
relationships among input and outputs. It just requires input
parameters and values which each input parameter can take on
in order to generate pairwise test sets. The black-box nature of
pairwise testing may miss some important tests [3]. For
example, consider the following Boolean expressions with
three Boolean input parameters (x, y, and z): Fp=x or y; F;=F)
or z. Then, the following test set of 4 tests captures all
possible pairs of Boolean values for each pair of the Boolean
variables x, y, and z: (x:T, y:T, z:T), (x:T, y:F, z:F), (x:F, y:T,
z:F), and (x:F, y:F, z:T). Even when the operator ‘or’ is
changed to ‘and’, the test set can also be a pairwise test set for
the modified Boolean expressions because pairwise testing
does not consider how inputs and outputs are related and what
operators are used to connect them. Such ignorance in pairwise
test generation can miss tests which would reveal certain faults
such as ORF (Operator Reference Fault).

We formulate the problem of generating pairwise tests
from a cause-effect graph as a SAT (SATisfiability) problem
and make advantage of a SAT solver for test generation. The
idea of using a SAT solver was introduced in [4]. However, it
is developed for test generation from feature diagrams used in
the context of software product lines. We adapt the strategy to
generate pairwise tests from cause-effect graphs. Specifically,
we transform cause effect graphs into Alloy models and then
produce pairwise tests via the Alloy analyzer [5]. Furthermore,
we enhance traditional pairwise testing to consider how inputs
and outputs are related and what operators are used to connect
them.

The rest of the paper is organized as follows. In Section 2,
we present a brief overview of the cause-effect graph and give

International Journal of Contents, Vol.10, No.3, Sep. 2014



42 Insang Chung : Modeling Pairwise Test Generation from Cause-Effect Graphs as a Boolean Satisfiability Problem

some background on existing pairwise testing techniques.
Section 3 presents our approach. Finally, Section 4 concludes
the paper and presents some ideas for future extension of this
work.

2. RELATED WORK

2.1 Cause-effect Graph

A cause-effect graph is originally developed for hardware
testing, which is adapted to software testing. It specifies only
the desired external behavior of a system by logically relating
causes to effects to produce test cases. A cause represents a
distinct input condition that brings about an internal change in
the system. An effect represents an output condition, a system
transformation or a state resulting from a combination of causes.
Basic symbols used in cause-effect graphs are shown in Fig. 1.

Each node has the value 0 or 1. The identity relation is
denoted by Iden(C, E). It means that that C is equivalent to E.
That is, if Cis 1, Eis 1 or we can say if C is 0, E is 0. The NOT
relation states that if C is 1, E is 0 and vice-versa. The NOT
relation is denoted by NOT(C, E). The OR relation, denoted by
OR (E, {C1, C2}), states that if C1 or C2is 1, Eis 1 else E is 0.
Similarly, the AND relation, denoted by AND(E, {Cl, C2}),
states that if both C1, and C2 are 1, E is 1; else E is 0. The
AND and OR relations are allowed to have any number of
inputs.

AND OR

Fig. 1. Basic elements of cause-effect graphs

Furthermore, a cause-effect graph can specify constraints
among causes. Fig. 2 shows the constraints expressed in cause-
effect graphs: E(Exclusive-or), O(One and only one), 1
(Inclusive-or), and R (Requires). The Exclusive-or constraint,
denoted by E(C1, C2, C3), states that at most one of the causes
Cl1, C2, and C3 can be 1, i.e. they cannot be 0 simultaneously.
The Inclusive-or (at least one) constraint, denoted by I(E1, E2,
E3), states that at least one of the causes C1, C2 or C3 must be
1. That is, all cannot be 0 simultaneously. The One and Only
one constraint, denoted by O(C1, C2), states that only one of
the causes C1 or C2 can be 1.

M M
[a] al . 7~ -

NJ S M A [
; ¢ lao LY 18]

I ." _ ‘__r'lk?l.f ! o ff"l.._.."

[ N A a N i i
E !“"{ a ] IE"-t & I P I:Ifl Y] _ir
oS S R ) o

[ W i ' 1 i

1 i ] ] '

1‘. . I'Ll s 1'& I 1'-! Ea 1l|Il —
A VA Vel Ya) -
|l %1 L L 17
W S M W L)

Fig. 2. Constraints of cause-effect graphs

The Requires constraint states that if cause C1 is 1, then
cause C2 must be 1. The Requires constraint is also denoted by
R(C1, C2). The E, I, and O constraints can be related with any
number of causes. In contrast to these constraints on causes,
there is one constraint on effects known as Masking (M). The
masking constraint states that if effect E1 is 1 then effect E2 is
0. The masking relation is also denoted by M(E1, E2)

2.2 Pairwise Test Generation

Pairwise testing is the most commonly used form of
combinatorial testing which tests at least once all possible
combinations for every pair of input parameters of software. As
an example, consider software that takes four input parameters,
say, X, ¥, z, and w. If each parameter can have three different
values, then there will be 81 different pairs: (xi, y1), (x1, ¥2), --.»
(z3, w3). A test (x1, ¥y, 23, Wy), for example, covers six of these
81 pairs: (xy, ¥2), (X1, 23), (X1, W2), (V2, 23), (V2, W2), and (z3, ).
In the example, a set of nine tests can capture all 81 pairs.

There is a large body of work on pairwise test generation.
The IPO (In-Parameter Order) strategy builds a test set by
repeating the two steps, so-called horizontal growth and
vertical growth [6]. The AETG system uses a greedy algorithm
which produces a certain number of candidate tests when a new
test is needed and selects the one with the largest number of
pairs that have not been covered yet [7]. Another interesting
approach was presented in [8] which applied genetic algorithms
to pairwise testing, and developed a testing tool called
“PWiseGen”.

Although many pairwise testing techniques have been
proposed, little work has been done in the context of generating
minimal pairwise tests from the cause-effect graph. In practice,
pairwise test generation from the cause-effect graph needs to
address the following issues:

® To formalize the cause-effect graph for pairwise test
generation,

®  To take into account the constraints on causes, and

®  To exploit the structural information of the cause-effect
graph.

The first issue has not been dealt with in existing pairwise
testing techniques because they construct test sets without
considering specific testing models. They assume that a testing
model consists of input parameters with each parameter having
several values [9].

International Journal of Contents, Vol.10, No.3, Sep. 2014



Insang Chung : Modeling Pairwise Test Generation from Cause-Effect Graphs as a Boolean Satisfiability Problem 43

Most pairwise testing techniques either ignore or
incompletely address the problem of constraints related to the
second issue. For example, meta-heuristic techniques which use
genetic algorithms or simulated annealing totally ignore
constraints [8], [10]. The AETG system considers only simple
constraints of type “Requires” [7], [9], while IPO does not
support any constraint handling mechanisms. Cohen et. al.
investigated the impact of ignoring constraints during test
generation and recognized handling constraints as a highly
desirable feature of a testing method [11]. They also presented
a framework to support combinatorial testing in the presence of
constraints. It, however, requires that constraints should be
modeled only in a canonical form of Boolean formulae as
forbidden tuples which define pairs that cannot occur in a valid
test.

The third issue was dealt with the WBPairwise algorithm
[3]. Unlike traditional pairwise test strategies mentioned in the
above, the WBPairwise further considers the logical relations
between inputs and outputs for pairwise test generation.
However, it does not provide any constraint handling
techniques. For certain cases, furthermore, the WBPairwise
algorithm does not generate tests that guarantee full pairwise
coverage.

This paper proposes the use of a SAT solver to cope with
the above issues. To this aim, we transform the cause-effect
graph to the Alloy specification. Then, constraints on causes
and any structural relations in the cause-effect graph are
expressed as Boolean formulae. Each pair to be covered is also
represented as a corresponding Boolean predicate. We use the
Alloy analyzer to check the validity of each pair. For only valid
pairs, we compose as many as possible pairs into an extended
predicate. When composing an extended predicate, we ensure
that the pairs do not contradict each other. Using this
extended predicate, we derive a pairwise test that covers the
pairs in the extended predicate and the newly created test is
added to the test suite. This process is repeated until all valid
pairs are covered by the test suite.

3. PAIRWISE TEST GENERATION WITH SAT

3.1 Overview of Alloy

Alloy is a formal language which was developed at MIT
by Daniel Jackson and his team [5]. Alloy has been applied to
modelling and analysis of systems in a wide range of
application domains including security analysis [12].

It is supported by Alloy Analyzer, a tool, which allows
fully automated analysis. Alloy can specify elements and
constraints between them.

The first construct is Signature. A signature declares a set
of elements and can possibly introduce fields which represent
the relationships with other atoms. Constraints are defined by
facts, predicates and functions. Facts are axioms that are
intended to always hold. Predicates are parameterized
constraints which can evaluate to true or false. We use the
Alloy analyzer to find instances that satisfy all constraints and
evaluate one predicate to true. The search space in which Alloy
looks for solutions is limited by the scope which is the
maximum number of instances for each signature.

Fig. 3. An example cause-effect graph

3.2 Transformation rules

Firstly, a signature is generated for each node of a cause-
effect graph. For example, there are 10 nodes in the cause-
effect diagram, shown in Fig. 3. The transformation generates
10 signatures to represent these nodes as shown in Fig. 4.

one sig 12 {}
one sig I3 {}
one sig 14 {}
one sig C1 {}
one sig C2 {}
one sig C3 {}
one sig C4 {}
one sig E1 {}
one sig E2 {}

}

Fig. 4. Signatures corresponding to nodes of the cause-effect
graph in Fig. 3

We also declare a signature Config which specifies the
semantics of a cause-effect graph. A configuration is mapped to
a set of nodes and is a basis from which a test can be generated.
The semantics of a cause-effect graph is the set of all possible
configurations that satisfy all constraints among nodes. The
Config signature corresponding to the cause-effect graph in Fig.
3 is shown in Fig. 5.

The relations f1~f10 declared in the Config signature maps
each configuration instance to at most one instance in the
corresponding signature. For example, if c.f5 exists for a
configuration instance c, it indicates that the cause Cl1 is true.

sig Config {

fl: lone I1;
f2: lone 12;
f3: lone 13;
f4: lone 14;
f5: lone C1;
f6: lone C2;
f7: lone C3;
8: lone C4;
9: lone E1;
f10: lone E2;

Fig. 5. A Config signature

International Journal of Contents, Vol.10, No.3, Sep. 2014



44 Insang Chung : Modeling Pairwise Test Generation from Cause-Effect Graphs as a Boolean Satisfiability Problem

Furthermore, the constraints among the nodes are
transformed to Alloy facts because they must hold for all
configurations. Table 1 shows the transformation rules for
Alloy facts.

Table 1. Transformation rules for Alloy facts

Constraints Alloy facts

Ident(N1, N2) all ¢: Config | #c.fl=#c.f2

all c: Config | #c.f2=1 and #c.f3=1

AND(NI, {N2,....Nm}) and ... and #c.fim=1<=>c.f1=1

All c:Config| #(c.f2+...+c.fm)>=1<=>

OR(NI, {N2,...Nm}) ol

NOT(N1, N2) all ¢: Config | #c.fl=0<=>#c.f2=1
E(N1, ..., Nm) all ¢: Config [#(c.f2+...+c.fm)<=1
I(N1, ..., Nm) all ¢: Config [#(c.f2+...+c.fm)>=1
O(NI, ..., Nm) all ¢: Config [#(c.f2+...+c.fm)=1
R(N1, N2) all ¢: Config [#c.fl1=1=>c.f2=1
M(N1, N2) all ¢: Config |#c.fl=1=>c.£2=0

Fig. 6 shows the Alloy facts which represent the relations
and constraints in the cause-effect graph of Fig. 3.

fact {
all c: Config | (#c.£5=1 and #c.f6=1) <=> #c.f1 = 1
all ¢: Config | (#c.f2 = 1 <=> #c.f1=0)
all c: Config | #(c.f2+c.f7)>=1 <=> #c.f3=1
all c: Config | #c.f3=1 <=> #c.f9=1
all ¢: Config | (#c.f3=1 and #c.f8=1) <=> #c.f4=1
all c: Config | #c.f4=1 <=> #c.f10=1
all c: Config | #(c.f8+c.f6)<=1
all ¢: Config | #c.f7=1=>#c.f5=1

}

Fig. 6. Alloy facts for the cause-effect graph in Fig. 3

3.3 Pairwise Test Generation

Once a cause-effect graph has transformed to the Alloy
model, we generate all possible combinations of pairs of nodes
of the graph. If there are N nodes, there are a total of ,nC,. Of
course, we need to remove the pairs with repetitions of the
same node. For example, the cause-effect graph in Fig. 1
generates 180 pairwise tests with 10 repetitions of the same
node removed.

In the next step, we need to eliminate the pairs which are
not valid with respect to the Alloy model. A combination of
nodes is said to be valid if it satisfies the semantics of the
cause-effect graph. In order to determine if a pair satisfies the
semantics of a cause-effect graph, we just check if there exists
a configuration where the pair holds true. For example,
consider the situation which both of the causes C2 and C4 in
Fig. 1 are true. We know that C2 and C4 can never hold
simultaneously because an Exclusive-or constraint between
them exists. In the first place, we formulate the pair as the
following Alloy predicate:

pred t68 {
some c: Config| #c.f6=1 and #c.f8=1

}

We perform the semantic check by giving a bound of
exactly one on the Configuration signature. Then, the Alloy
analyzer looks for an instance of the predicate, which would
fail in the present case. In the example cause-effect graph, 36
invalid pairs are captured, leading to 144 valid pairs which
should be covered by tests.

Finally, we generate pairwise tests from the Alloy model
with valid pairs. Observe that we are concerned with tests
consisting of only causes. Thus, nodes except causes need to be
projected out from valid configurations. In the case of the
example Alloy model, this can be done with the following
predicate:

pred construct_test[c: Config, t: Test] {
#t.t1=#c.f5 and
#t.12=#c.f6 and
#t.t3=#c.f7 and

#t.t4=t#c.f8
h
sig Test {
tl: lone CI,
t2: lone C2,
t3: lone C3,
t4: lone C4
}

For example, in order to determine if it is possible to
derive a test which cover two pairs, (C1:1, C2:0) and (C4:1,
11:0), the following predicate is employed:

pred testGen {
some t: Testjsome c: Config | #c.f5=1 and #c.f6=0 and
construct_test[c, t]
some t: Testjsome c: Config | #c.f8=1 and #c.f1=0 and
construct_test[c, t]

We can generate pairwise tests by including all the Alloy
representations of valid pairs in the above ‘testGen’ predicate
and solve the resulting Alloy model at once. However this
approach may fail if the number of pairs to be covered is huge.

In this paper, incremental test generation is performed. In
the incremental approach, we continue to add a new pair until
solutions can be found within the specified scope. If the Alloy
analyzer fails to find any solutions to the Alloy model, the
current scope value is incremented by one and tries to solve the
model in that incremented scope. This process continues until
no more pairs to be considered exist or the specified scope is
reached. If the specified scope is reached and there still remain
pairs to be considered, we reset the scope and the process is
repeated for the remaining pairs. We then delete all the
redundant tests in the final test suite.

Table 2. A test set generated using our approach

Cl1 1 1 0 1 1 0
C2 0 1 1 1 0 0
C3 0 0 0 1 1 0

International Journal of Contents, Vol.10, No.3, Sep. 2014




Insang Chung : Modeling Pairwise Test Generation from Cause-Effect Graphs as a Boolean Satisfiability Problem 45

Table 3. Pairwise test set generated by our approach for the
cause-effect graph in Fig. 7

A 1 1

o|l=|—|o
—_| —] | =
—|—|olo
o|lo|o|lo

B 0 1
C 1 0
D 0 0

C4 0 0 0 0 1 1
Il 0 1 0 1 0 0
12 1 0 1 0 1 1
I3 1 0 1 1 1 1
14 0 0 0 0 1 1
El 1 0 1 1 1 1
E2 0 0 0 0 1 1

In the example cause-effect graph, 6 tests are generated as
follows: (1,0,0,0), (1,1,0,0), (0,1,0,0), (1,1,1,0), (1,0,1,1), and
(0,0,0,1). Here the value in the i-th position of each test
corresponds to Ci. If traditional pairwise test generation is
carried out for the example using PICT developed at Microsoft
[13], the following 5 tests would be generated: (0,1,1,1),
(0,0,0,0), (1,0,1,0), (1,1,0,0), and (1,0,0,1). However, the test
(0,1,1,1) is not valid because there exists the Require relation
between C1 and C3. Table 2 shows the resulting test sets when
using our approach.

Note that the traditional approach does not include certain
interactions of nodes of the cause-effect graphs. For example,
the pair (C2:1, El:1) is not covered by the test set. This
indicates that the situation where C2 affects E1 can be ignored.
The proposed approach generates the tests (1,1,1,0) and
(0,1,0,0) which cover the pair. We also ensure that all cases
where every cause can affect every effect are covered in the test
set. However, the case where E2=1 when C2=1 is absent. Since
C2 and C4 are related with Exclusive-Or, C4=0 when C2=1,
leading to E2=0.

The most relevant work to our technique is the
WBPairwise algorithm [3]. Unlike traditional strategies
mentioned in the above, the WBPairwise further considers
internal operations which combine inputs. However, it does not

deal with the constraints among the causes such as Exclusive-or.

For certain cases, furthermore, the WBPairwise algorithm does
not guarantee full pairwise coverage because it depends on
which test sets are firstly generated on each node.

O\
L
—— f{r-\-"l. A _-_‘_‘_f"__“\‘ __——ﬂf:“\&
. " = L
- ’,/O(/
\_ 7 -~
o

Fig. 7. The cause-effect graph where the WBPairwise fails to
satisfy full pairwise coverage

For example, if the WBPairwise algorithm generates tests
which cause only one Boolean value (either True or False) in
the node 12 in Fig. 7, then it does not generate tests which cover
every pairwise combination of the two nodes D and 12.

The work in this paper is based on the observation that test
generation problem can be formulated as a SAT problem and
take advantage of a SAT solver for solutions. Consequently, we
can readily cope with any constraints among inputs and outputs.
As far as Alloy models for test generation can be solved by its
SAT solvers, our SAT-based technique can generate pairwise
tests even in situations where other methods including the
WBPairwise algorithm fails. Furthermore our approach can
generate all possible optimal pairwise tests because Alloy
performs exhaustive search for given bounds. For example,
Table 3 shows one of optimal test sets generated by our SAT-
based technique for the cause-effect graph in Fig. 7.

4. CONCLUDING REMARKS

We presented a technique which generates pairwise tests
from a cause-effect graph. The work in this paper is based on
the observation that the problem of generating pairwise tests
from a cause-effect graph can be formulated as a SAT problem
and we can take advantage of a SAT solver for effective
pairwise test generation. Using a SAT solver allows us to
effectively handle any constraints among inputs. In addition,
our approach can generate all possible optimal pairwise tests
because Alloy performs exhaustive search for given bounds. In
contrast, previous pairwise test generation approaches remain
uncertain if the generated tests are optimal in terms of the
number of tests and also are not able to enumerate all possible
optimal pairwise tests. In order to produce more effective
pairwise tests, our technique considers how inputs and outputs
are related and what operators are used to connect them.

As future work, we plan to conduct more extensive
evaluation of our approach using more complex cause-effect
graphs to investigate scalability issues.

ACKNOWLEGEMENTS

This research was financially supported by Hansung
University.

REFERENCES

[11 G. J. Meyers, The Art of Software Testing, John Wiley &
Sons, 1979.

[2] C.Nie and H. Leung, “A survey of combinatorial testing,”
ACM Computing Surveys, vol. 43, no. 2, 2011.

[3] J. Kim, K. Choi, D. M. Hoffman, and G. Jung, “White box
pairwise test case generation,” Proc. 7th International
Conference on Quality Software, 2007, pp. 289-291.

International Journal of Contents, Vol.10, No.3, Sep. 2014




46 Insang Chung : Modeling Pairwise Test Generation from Cause-Effect Graphs as a Boolean Satisfiability Problem

[4] G. Perrouin, S. Sen, J. Klein, J. B. Baudry, and Y. le
Traon, “Automated and scalable t-wise test case
generation strategies for software product lines,” Proc.
ICST2010, pp. 459-468.

[5] D. Jackson, Software Abstractions, The MIT Press, 2006.

[6] K. C. Tai and Yu Lei, “A test generation strategy for
pairwise testing,” IEEE Trans. on Software Engineering,
vol. 28, no. 1, 2002, pp.109-111.

[7] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C.
Patton, “The AETG system: an approach to testing based
on combinatorial design,” IEEE Trans. on Software
Engineering, vol. 23, no. 7, 1997, pp. 437-444.

[8] Pedro Flores and Y. Cheon, “PWiseGen: generating test
Cases for pairwise testing,” Proc. the 2011 IEEE
International Conference on Computer Science and
Automation Engineering (CSAE 2011), 2011, pp. 747-752.

[9] C. Lott, A. Jain, and S. Dalal, “Modeling requirements for
combinatorial software testing,” Proc. the 1st International
Workshop on Advances in Model-based Testing, 2005, pp.
1-7.

[10] M. Patil and P. J. Nikumbh, “Pair-wise testing using
simulated annealing,” Proc. 2nd International Conference
on Computer, Communication, Control and Information
Technology (C31T-2012), Feb. 2012, pp. 25-26.

[11] M. B. Cohen, M. B. Dwyer, and J. Shi. “Constructing
interaction test suites for highly-configurable systems in
the presence of constraints: a greedy approach,” IEEE
Transactions on Software Engineering, vol. 34, no. 5,
2008, pp. 633-650.

[12] Julien Brunel, David Chemouil, Vincent Ibanez, and
Nicolas Meledo, “Formal Modelling and Safety Analysis
of an Avionic Functional Architecture with Alloy,” Proc.
ERTS? (Embedded Real Time Software and Systems),
2014.

[13] J. Czerwonka, “PICT-Pairwise testing in the real world:
practical extensions to test-case scenarios,” Proc. the 24th
Pacific Northwest Software Quality Conference, Oct.
2006, pp. 419-430.

Insang Chung

Dr. Insang Chung is a Professor in
Department of Computer Engineering,
Hansung University, Seoul, S. Korea. He
received his Bachelor of Engineering
degree at Seoul University, S. Korea in
1987. He also received MS and PhD in
Computer Science from KAIST(Korea
Advanced Institute of Science and Technology), S. Korea in
1989 and 1993, respectively. His research interests are in
automated test data generation, formal techniques including
model checking and testing process for automotive software.
He has authored many refereed journals and conference papers
about software testing.

International Journal of Contents, Vol.10, No.3, Sep. 2014




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


