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ABSTRACT 

 

We propose a new distance measure between 2-dimensional points to provide a total order for an entire point set and to reflect the 

correct geometric meaning of the naturalness of the point ordering. In general, there is no total order for 2-dimensional point sets,  

so curve reconstruction algorithms do not solve the self-intersection problem because the distance used in the previous methods is 

the Euclidean distance. A natural distance based on Brownian motion was previously proposed to solve the self-intersection problem. 

However, the distance reflects the wrong geometric meaning of the naturalness. In this paper, we correct the disadvantage of the 

natural distance by introducing a polar-natural distance, and we also propose a new curve reconstruction algorithm that is based on 

the polar-natural distance. Our experiments show that the new distance adequately reflects the correct geometric meaning, so non-

simple curve reconstruction can be solved.   
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1. INTRODUCTION 

 

The problems of reconstructing a shape from sample 

points appear in many scientific and engineering applications. 

Because of its practical importance, many algorithms have been 

proposed over the last two decades in the fields such as the 

reverse engineering of geometric models and image processing 

of medical images. Especially, curve reconstruction plays an 

important role in the shape reconstruction problems because 

most of boundaries of shapes are represented by the set of 

curves. 

Curve reconstruction is the problem of computing a 

piecewise linear approximation to a curve from a set of sample 

points. So curve reconstruction consists of two steps: the first 

step is how to order the given points and the second step is how 

to interpolate the ordered points [1]-[4]. The first step is called 

the point ordering problem. Many approaches have been 

suggested for the point ordering problem. Edelsbrunner et al. [5] 

defined the  -shapes of point sets as the underlying space of a 

simplicial complex. Attali proposed the r-regular shape method, 

where the r-regular shapes are characterized by requiring that 

any circle passing the points on the boundary has radius greater 

than r [6]. These methods deal with only uniform sample points. 
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For the non-uniform sample points, Amenta et al. [7] proposed 

the first algorithm to reconstruct a curve from non-uniform 

sample points with guarantee. This algorithm uses the Voronoi 

diagram and the Delaunay triangulation of the sample points. 

Dey et al. [8] proposed the nearest neighbor approach based on 

the properties of Voronoi diagrams. These algorithms work 

only under the assumption that the sample points are dense and 

do not work for non-simple curve reconstruction because they 

reconstruct curves without the consideration of curve's 

orientation [9]-[12]. Kim et al. [3] proposed a point ordering 

approach with a natural distance to reflect the orientation. The 

natural distance is based on properties of Brownian motion so 

that the approach enables us to give 1-dimentional order to 

points on 2-dimentional space. However, the approach missed 

important geometric property: the right direction of Brownian 

motion.  

In this paper, we introduce a new natural distance based 

on polar coordinates so that the distance enables our algorithm 

to reflect the direction properly and resolve the non-simple 

curve reconstruction. 

 

 

2. POLAR-NATURAL DISTANCE 

 

In this section, we review the properties of Brownian 

motion and the natural distance [3]. First of all, we will discuss 

naturalness for a direction-based distance. In order to do this, 
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we define the naturalness for a distance between points which 

is suitable to order the points on a 2D plane. For chosen 

consecutive points     and    which are already ordered, we 

define the ordering direction vector as vector       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  . For the 

ordering direction, what will be the next point     ? 

 

Let   be the sample point sets. We define the candidate 

set          for the next point      as  

 

         {                } 

 

as shown in Fig. 1, where        is the Euclidean distance 

between   and  , and    is the radius of the ordering 

neighborhood. The radius    is computed by the average 

length of the consecutive points: 

 

    
 

   
∑            

   
   . 

 

 
Fig. 1. The candidate set     for the next point     . 

 

If a measure μ prefers to pick up the next point        

satisfying the following conditions, then we say that the 

measure has a naturalness and call it as a natural distance: 

 

(C-1) Suppose    and                   are on the same 

line. Then the measure prefers to choose the closest one    to 

the previous point    among   ’s :  

 

d        min          . 

 

(C-2) Suppose                   are on the same circle 

with center   , and the angle between       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is 

strictly smaller than the angle between       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and     ⃗⃗ ⃗⃗ ⃗⃗  ⃗. Then 

   is more preferable to   : 

 

           min
 

            

 

  
(a)                     (b) 

Fig. 2. Geometric conditions for naturalness of ordering: 

 (a) (C-1) condition and (b) (C-2) condition  

 

The condition (C-2) implies that, among the points with 

the same Euclidian distance from   , we want to choose the 

point which makes the arc, made by connecting the chosen 

points, most smooth as shown in Fig. 2. To show the 

naturalness of distance, we adopt a simple property of one 

dimensional Brownian motion. 

An easier way to understand Brownian motion is to think 

of it as a continuous version of the random walk process. As 

documented in an enormous amount of literature on stochastic 

processes such as [17], [18], Brownian motion has several 

properties which explain the irregular motion observed in 

nature; for example, in two-dimensional space the motion of 

pollen grains suspended in liquid which does not flow. Among 

those, we use only the following property throughout this paper: 

 

(P.B) For given time T, Brownian motion starting at 0 is a 

random variable normally distributed with mean 0 and 

variance T. 

 

Roughly speaking, (P.B) means that the set of original 

points on the real line at time 0, which move randomly, become 

the set which is normally distributed with mean 0 and variance 

T after T time. Now, we will introduce the polar-natural 

distance function by understanding the right geometric meaning 

of the Brownian property.  

We assume that      and    are already chosen and   

is an arbitrary point in     . In order to determine the next 

point     , Kim et al. [3] defined the natural distance in the 

following manner. They applied a 2-dimension transformation 

so that      is on the negative  -axis and    is the origin of 

  . In order to help the geometric understanding, let 

           be the ray with the initial point    and the 

directional vector       ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   and              be the 

perpendicular line to            passing through the point   

satisfying (C-1) as shown in Fig. 3. Therefore, the arbitrary 

point   can be represented by the new coordinates   

        as follows: 

 

   ‖   ⃗⃗⃗⃗⃗⃗ ‖          ,    ‖   ⃗⃗⃗⃗⃗⃗ ‖  in      , 

 

where  

         
      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗      ⃗⃗⃗⃗⃗⃗ 

‖      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ‖‖   ⃗⃗⃗⃗⃗⃗ ‖
  

 

 
Fig. 3. New coordinates for point    [3] 

 

The coordinate    is the Euclidian distance between    

and the intersection of           and            , and the 

coordinate    is the signed Euclidian distance between   and 

the intersection of            and             . Then we 

can think the pair         as the new coordinates of  . With 

the property (P.B) of Brownian motion, we further think of the 

  -axis as the time axis with the original point   , and   -axis 

as the axis representing the value of Brownian motion. 
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Therefore, if     ,    is considered as a sample point of the 

random variable which has the normal distribution with mean 0 

and variance    as shown in Fig. 4, then we consider the point 

  as one of the normally distributed points after    time, 

which is randomly diffused from the original point. 

 

 
Fig. 4. The distribution of Brownian motion [3] 

 

The value of distribution cannot directly be applied to the 

natural distance because the distribution changes according to 

the position of  . So we transform the distribution into the 

standard normal distribution so that the random variable    is 

transformed to the standard random variable 
  

√  
. It is well 

known that the larger the value of the standard random variable 

is, the smaller the probability is. Therefore, the problem of 

determining the next point     is transformed into that of 

computing the minimum of the standard random variables. Kim 

et al. [3] defined a natural distance by the following manner: 

 

             
  

√  
, 

 

where   is a constant and plays a role of a subjective weight. 

 

It is well known that the natural distance of Kim et al. [3] 

marked a turning point in the research on point ordering 

problem. Most of the distances used in the previous point 

ordering research cannot give a total order to the set of points 

on   , whereas the natural distance can do that. So we could 

solve the problem of reconstructing curves having self-

intersections. However, there are obvious shortcomings in the 

natural distance. The first is that the random variable 
  

√  
 used 

in the natural distance cannot reflect the right geometric 

meaning of the conditions (C-1) and (C-2. The second is that 

the result of point ordering is very sensitive to the value of 

subjective weight. The condition (C-1) shows that all points on 

the same line with    have the same value   , the condition 

(C-2) shows that all points on the same circle with center    

have the same value   . So the random variable 
  

√  
 cannot 

resemble the right geometric meaning of conditions. In this 

paper, we introduce a new natural distance which may give a 

total order to two-dimensional points and reflect the right 

geometric meaning of conditions (C-1) and (C-2). First of all, 

we define the polar-natural coordinates as              , 

where       √  
    

  and              

  
. By using 

this coordinates and understanding the geometric meaning as 

shown in Fig. 5, we define the polar-natural distance as 

                
  n      

√     
 

 

   
 

 
Fig. 5. The new distribution of Brownian motion based on the 

polar-natural coordinates  

 

 

3. POLAR-NATURAL DISTANCE BASED POINT 

ORDERING ALGORITHM 

 

In this section, we will describe a practical algorithm for 

ordering points in an unorganized point cloud. Assume that 

there are arbitrarily scattered n points, called sample points, in 

  . Denote the set of all sample points by  . The point 

ordering problem aims to choose a subset    of  , where    

is a well-ordered set satisfying the natural conditions (C-1) and 

(C-2) mentioned in Section 2. In the above theoretical section, 

we have assumed that the first point   and the second point    

are known. This easily enabled us to initialize the algorithm at 

the first point with an initial direction     ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. In general, the 

result of the point ordering problem is dependent on the initial 

direction. But, in practice,    and    are not known. 

Moreover, the well-ordered subset    may have several 

connected components, and may be open or closed according to 

the distribution of the data points. So we need to analyze the 

distribution of the sample points in order to find out the 

property of the subset   . In general, the sample points of the 

unorganized point cloud for curve reconstruction may cluster in 

several groups and the points of each group are densely located 

near meaningful trajectories. So, the shape of each cluster looks 

like the union of bands. The objective of our algorithm is to 

remove outliers in each cluster and find out a well-ordered 

subset that plays a role of skeletons of clusters. Our algorithm 

consists of three major steps: data clustering, determination of 

the initial direction, and local point ordering. 

 

3.1 Data Clustering 

Most partitioning methods cluster objects based on the 

Euclidean distance between objects. Such methods can find 

only spherical-shaped clusters and encounter difficulty at 

discovering clusters of arbitrary shapes. We cannot apply such 

clustering methods directly to our problem because the shape of 
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the input point set   is unknown. In this paper, we adopt the 

DBSCAN clustering algorithm based on the density, which is 

useful to filter out outliers and discover clusters of an arbitrary 

shape. The general idea is to continue growing the given cluster 

as long as the density in the neighborhood exceeds some 

threshold; that is, for each data point within a given cluster, the 

neighborhood of a given radius   , called clustering radius has 

to contain at least a minimum number of points. By exploiting 

DBSCAN algorithm, we may obtain    clusters 

                , in P of a band-like shape. For each cluster 

   , we choose a point which may well represent the character 

of the shape of the cluster as the initial point, denoted by    . 

 

3.2 Determination of Initial Direction 

Now, we will try to determine the initial direction of the 

natural distance at the initial point     for each cluster    . 

For the sake of convenience, we set the initial point as   . In 

order to analyze the distribution of points near   , we compute 

the neighborhood     ,r) of    with a given radius  , called 

ordering radius;         {                } , where 

        is the Polar-Natural distance between two points   

and  , which is defined in Section 2. And then we apply the 

PCA (Principal Components Analysis) to the neighborhood 

because the principal component analysis of a set of points 

gives us the mean, an orthogonal frame, and the standard 

deviation of the neighbors. Let            be the points in 

the neighborhood          We compute the mean   of the 

neighbors such that   
 

 
∑   

 
    and then we construct the 

covariance matrix   We compute the eigenvector of the 

covariance matrix which corresponds to the maximal 

eigenvalue so that it plays a role of the major principal axis in 

the neighborhood. Let   ⃗⃗⃗⃗  be the unit vector on the principal 

axis. Then the neighborhood         may be subdivided into 

two half discs:  

 

                           , 

 

Where 

 

          {                ⃗⃗ ⃗⃗ ⃗⃗     ⃗⃗⃗⃗        }, 

          {                ⃗⃗ ⃗⃗ ⃗⃗     ⃗⃗⃗⃗        }. 

 

If       or      , then the point    is one of 

the two end points of   . Otherwise the point is a middle point 

of    so that we should apply the following one-way ordering 

algorithm to both     and     with the direction vectors 

  ⃗⃗⃗⃗  and    ⃗⃗⃗⃗ , respectively. Let     and     be the solutions 

of the one-way ordering problem with the initial directions   ⃗⃗⃗⃗  

and    ⃗⃗⃗⃗ , respectively. Then the solution    of the original 

point ordering problem may be obtained by merging the subsets 

    and    , i.e.,           . 

 

3.3 Local Point Ordering 

Now, we are ready to explain the one-way point ordering 

algorithm with the first point    and the initial direction   ⃗⃗⃗⃗ . 

First of all, we have to select the candidates of the next point 

   in the neighborhood        . It is well known that the 

candidate set    is the same as the half disc          . So, 

without loss of generality, we may put              . Next, 

we select the second point    in         satisfying the 

following condition:        min              , where the 

function       is derived from the initial direction vector   ⃗⃗⃗⃗ . 

We have known that the above condition satisfies the properties 

of conditions       and      . Then the point    is added to 

the well-ordered set so that     {     }. 

In order to find out the third point    we compute the 

candidate set    that is the half disc           with the 

direction vector  ⃗⃗      ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗. The third point    should satisfy 

the following condition:        min              , where 

the function       is derived from the direction vector  ⃗⃗ . 

Then     {        }. We apply the above process until 

the candidate set      is empty or the intersection of      

and         is not empty. When the algorithm meets the 

former condition, it generates one of the two end points for an 

open curve, so it has to be applied to the other region of the 

cluster with the direction    ⃗⃗⃗⃗ . If the latter is satisfied, then the 

new obtained point    
 is near the first point   .We can 

consider the well-ordered set is a closed piecewise curve so that 

there is no need to continue this one-way point ordering 

algorithm in the cluster. The solution of the one-way point 

ordering problem is     {            
} . By similar 

process, we may get     {    
             } as the 

solution of the backward one-way ordering algorithm. Now, we 

may obtain the first connected well-ordered subset    

        . Therefore, the global point ordering problem can 

be solved by applying the above process to all of clusters in  . 

The outline of our natural point ordering algorithm is as 

follows. 

 

Polar-Natural point ordering algorithm { 

    are given; 

               are the clusters of   ; 

     ; 

For each cluster     { 

             as the initial point ; 

Compute         and   ⃗⃗⃗⃗  ; 

Divide         into           and           ; 

          {  } and  ⃗⃗    ⃗⃗⃗⃗ ; 

                  ; 

While (        ) { //Forward one-way point ordering 

Define the polar-natural distance derived from  ⃗⃗ ; 

Find out the next point      in   ; 

           {    } ; 

 ⃗⃗         ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ ; 

                ; 

if (                 ) { 

       ; 

type := CLOSED; 

} 

} 

        ; 

if ( type = OPEN ) {  

 ⃗⃗       ⃗⃗⃗⃗  ; 

             ; 

While (        ) { // Backward one-way point ordering 
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Define the polar-natural distance derived from  ⃗⃗ ; 

Find out the next point      in   ; 

           {    }; 

               ; 

} 

               ; 

} 

              ; 

} 

} 

 

3.4 Time Complexity 

The three major steps of this algorithm are to partition the 

point set   into several clusters, to find out the neighbor points 

in       , and to select one point who has the minimum 

natural distance among them. The computational complexity of 

DBSCAN algorithm is           , where n is the number of 

the input cloud points. It is well-known that the algorithm is 

sensitive to the user-defined parameters. The second process of 

this algorithm runs in      time. The process is to find out a 

neighborhood        of a given point   and to apply the 

principal component analysis to the neighborhood in order to 

derive the initial direction. The third process is repeatedly to 

find out a candidate set     , and to select one point who has 

the minimum natural distance among the candidates. It takes 

     , where   is the number of the output points in    

and         
  |    . Our algorithm is output-sensitive. 

However, in the worst case, the total time complexity of this 

algorithm may be      , where the most of candidate sets 

have only one point as neighbors. 

 

 

4. EXPERIMENTS 

 

Our experimental results demonstrate the superiority of 

our point ordering algorithm based on the polar-natural distance. 

First of all, we compare the results of curve reconstruction for a 

sampled point set which are obtained by the natural distance 

and by the polar-natural distance. 

The point set is obtained by sampling from points on two 

circles with different radius. Figure 6 presents two piecewise 

linear curves obtained by the natural point ordering method (a) 

and the polar-natural ordering method (b). These figures show 

quite different curves. The curve generated by our distance is 

more natural than that by the natural distance in [3]. Moreover, 

the polar-natural point ordering method can be used to 

reconstruct a curve for the sample points set containing the 

noise points not on the curve as well as those on it. 

 

 
(a) 

 
(b) 

 

Fig. 6. The results of curve reconstruction for a sampled point 

set: the natural distance and the polar-natural distance 
 

Fig. 7 shows the results of curve reconstruction for a point 

cloud set. The cloud point set was obtained by mouse dragging-

and-dropping so that the global figure of the set has several 

self-intersections. Fig. 7(a) does not overcome the self-

intersection problem, whereas Fig. 7(b) well reflects the global 

configuration of the data set. 

 

 
(a)                       (b) 

 

Fig. 7. The results of curve reconstruction for a point cloud set: 

(a) the natural distance and (b) the polar-natural distance 

 

Fig. 8 shows the process of our polar-natural point 

ordering algorithm. Fig. 8(a) is the initial point set. The set was 

obtained by mouse dragging-and-dropping so that the global 

figure of the set is the union of two ‘C’-type point sets. Fig. 8(b) 

shows the middle state which has two curves. Each curve has 

two components     and    . The final result (c) has two 

curves. Since our algorithm has a special key that is the polar-

natural distance it can solve the self-intersection problem. 

Therefore our algorithm can be applied to non-simple curve 

reconstruction. 

 

 
(a)              (b)             (c) 

 

Fig. 8. The process of our point ordering algorithm: (a) point 

set (initial state), (b) each curve has two components (middle 

state), and (c) two curves (final state) 
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5. CONCLUSION 

 

In this paper, we proposed an improved curve 

reconstruction algorithm by exploiting a new distance. We 

already introduced a natural distance in [3] which is based on a 

useful property of Brownian motion. The distance enables us to 

provide a totally order for the set of arbitrarily scattered points. 

However, the work of [3] missed the geometric meaning of the 

naturalness conditions (C-1) and (C-2). In this paper we 

proposed the polar-natural distance that is based on the polar 

coordinates. The totally ordered set generated by the polar-

natural distance is more natural than that by the natural distance. 

By connecting these ordered points, we can obtain desired or 

meaningful curves. Also the polar-natural point ordering 

method can be used in the reconstruction of smooth curves, 

even though the data set contains noise points. The several 

experimental results show the superiority of our point ordering 

algorithm based on the polar-natural distance. 
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