
60 Seokil Song :Concurrency Control Method to Provide Transactional Processing for Cloud Data Management System

International Journal of Contents, Vol.12, No.1, Mar. 2016

Concurrency Control Method to Provide Transactional Processing for Cloud
Data Management System

Dojin Choi

Department of Information and Communication Engineering
Chungbuk National University, Cheongju Chungbuk, 362-763, Republic of Korea

Seokil Song

Department of Computer Engineering
Korea National University of Transportation, Chungju, Chungbuk, 27469, Republic of Korea

ABSTRACT

As new applications of cloud data management system (CDMS) such as online games, cooperation edit, social network, and so on,
are increasing, transaction processing capabilities for CDMS are required. Several transaction processing methods for cloud data
management system (CDMS) have been proposed. However, existing transaction processing methods have some problems. Some of
them provide limited transaction processing capabilities. Some of them are hard to be integrated with existing CDMSs. In this paper,
we proposed a new concurrency control method to support transaction processing capability for CDMS to solve these problems. The
proposed method was designed and implemented based on Spark, an in-memory distributed processing framework. It uses RDD
(Resilient Distributed Dataset) model to provide fault tolerant to data in the main memory. In our proposed method, database stored
in CDMS is loaded to main memory managed by Spark. The loaded data set is then transformed to RDD. In addition, we proposed a
multi-version concurrency control method through immutable characteristics of RDD. Finally, we performed experiments to show
the feasibility of the proposed method.

Key words: Transaction, Cloud Data Management, Snapshot Isolation.

1. INTRODUCTION

 Cloud computing has become a prevalent infrastructure
for many application domains due to its several virtues such as
scalability, fault tolerance, high performance cost, pay-as-you-
go and so on. Data management system is one of the
applications of cloud computing [1]. Many cloud data
management systems have been proposed and widely used. To
our knowledge, representative cloud data management systems
are BigTable [2], Cassandra [3], HBase [4] and so on.

A CDMS (Cloud Data Management System) provides
transparent partitioning and replication with improvement
scalability, availability, fault-tolerant through automated load
balance and fault recovery. In spite of those features, [1] claims
that CDMSs will not replace the traditional RDBMS in the near
future. Rather than replaces RDBMS, CDMSs provide another
choice for the applications which are suitable to be deployed in
the cloud, i.e., large scale data analysis and data management in

* Corresponding author, Email: sisong@ut.ac.kr
Manuscript received Feb. 24, 2016; revised Mar. 07, 2016;
accepted Mar. 14, 2016

the web applications. According to [1], those applications do
not require transactional processing capabilities.

However, recently, some CDMS applications such as
online game, cooperation edit program, social network services,
and so on require transactional processing functions. For
example, in social network services, when a user A follows a
user B, two operations to add B to the following list of A and
add A to the followers list of B must be processed atomically.
We can find other examples requiring transactional processing
easily in online game and cooperation edit service area.

Recently, many methods to process transactions on CDMS
have been proposed [5]-[13]. In [5], S3 provides eventual
consistency and additional consistency requirements for some
applications should be implemented based on it. Some of them
provides limited transaction processing on some partition of
managed data set. This approach provides very high
consistency, but, most methods in this approach use OCC
(optimistic concurrency control) methods based on lock
techniques which may delay transaction processing time [7]-
[10].

Methods proposed in [6], [10], [12] decompose a database
kernel into TC (transaction component)s and DC (data
component)s. TCs provide concurrency control and fault
recovery functions, while DCs manages caches and access

http://dx.doi.org/10.5392/IJoC.2016.12.1.060

 Seokil Song :Concurrency Control Method to Provide Transactional Processing for Cloud Data Management System 61

International Journal of Contents, Vol.12, No.1, Mar. 2016

methods. TCs and DCs does not know each other’s internal
architecture. That is, TCs do not need to know physical storage
architecture of DCs, and, also, DCs do not know transaction
processing architecture of TCs. Consequently, TCs and DCs
can be distributed across nodes on a cluster so as to improve
the scalability and the transaction throughput of CDMSs. Even
though they show good scalability and transaction throughput,
it is very hard to implement them and apply them to CDMSs.
Therefore, it is not easy to integrate them to existing CDMSs.

[13] proposed a modified single version OCC for CDMSs.
It modifies the verification phase and the validation phase of
OCC to decrease abort ratios of transactions. Particularly, the
validation phase is processed in distributed manner. This
approach, also, has the same problem to those of [11], [12]. We
have to redesign and implement of core engine of existing
CDMS.

In this paper, we propose a new concurrency control
method to support distributed transaction processing for
existing CDMSs. The proposed method can be easily integrated
with the existing CDMSs without any modification. The
proposed method is based on Spark [15], which is in-memory
distributed and parallel processing framework, to improve
transaction processing throughput.

In our proposed method, database stored in a CDMS is
loaded to main memory managed by Spark. The loaded data set
is transformed to a RDD (Resilient Distributed Data Set). RDD
is a data model for fast fault recovery to continue transaction
processing in main memory even though system failures are
occurred. RDD model has immutable characteristics so when a
part of RDD should be modified, a new version of RDD is
created. There are two types of operations for RDDs.

One is transformation operation to create new RDD from
an old RDD. For example, a filter operation filters an old RDD
with a condition and produces a new RDD that satisfies the
condition. Action operation return a value after running a
computation on the RDD. We use transformation operations to
produce the new version of a data and manage the versions of
the data to enable multi-version concurrency control.

This paper is organized as follows. In Section 2, we
summary existing transaction processing methods for CDMSs.
In Section 3, we propose a new transaction processing system
based on Spark. Then, we show experimental results in Section
4, and finally conclude in Section 5.

2. RELATED WORK

In this section, we describe the transaction processing
techniques of existing CDMSs and serializable snapshot
isolation (SSI) techniques. Actually, our proposed method is
based on Deuteronomy and SSI. Therefore, we describe the
existing transaction processing techniques in brief and
Deuteronomy and SSI in detail.

2.1 Existing Transaction Processing Methods for CDMSs

Simple Storage Service (S3) is Amazon’s highly available
cloud storage solution. S3 is used as the disk for database. It
uses key-value data model and keys are referred to as records.
In S3, updates are not necessarily applied in the same order as

they were initiated. The only guarantee that S3 gives is that
updates will eventually become visible to all clients and that
the changes persist. This property is called eventual consistency.
If an application has additional consistency requirements, then
such additional consistency guarantees must be implemented
on top of S3 as part of the application [5].

[5] presents various protocols in order to store, read, and
update objects and indexes using S3. It preserves the scalability
and availability of S3 and achieves the same level of
consistency as a database system. It follows the distributed
systems’ approach, thereby preserving scalability and
availability and maximizing the level of consistency that can be
achieved under this constraint.

ElasTraS [7] is a data store that is designed to be a light-
weight data store that supports only a subset of the operations
supported by traditional database systems. ElasTraS is
analogous to partitioned databases which are common in
enterprise systems, while adding features and components
critical towards elasticity of the data store. It uses proven
database techniques to process concurrency control, isolation,
and recovery, while using design principles of scalable systems
such as Bigtable to overcome the limitations of distributed
database systems.

Generally, existing key value stores only guarantee the
atomicity of a transaction on single keys since majority of
current web applications require that. Many other applications
such as online multi-player casino, collaborative applications
need multi-key accesses. The reduced consistency guarantees
and single key access granularity supported by the key-value
stores often places huge burden on the application
programmers.

G-Store [8] which is a scalable data management system
for cloud provides transactional multi key access guarantees. It
proposed key group abstraction that defines a granule of on-
demand transactional access over dynamic, non-overlapping
groups of keys using a key-value store as an underlying
substrate.

The key grouping protocol uses the key group abstraction
to transfer ownership for all keys in a group to a single node
which then efficiently executes the operations on the key group.
It is suitable for applications that require transactional access to
groups of keys that are transient in nature, but live long enough
to amortize the cost of group formation. The number of keys in
a group should be small enough to be stored in a single node.
Considering the size and capacity of present commodity
hardware, groups with thousands to hundreds of thousands of
keys can be efficiently supported.

In [10], storage requirements of today’s interactive online
applications are introduced as scalability, rapid development,
responsiveness (low latency), durability and consistency, and
fault tolerant. Megastore [10] is a storage system developed to
meet the storage requirements of today's interactive online
services. It blends the scalability of a NoSQL data store with a
traditional RDBMS (Relational Database Management System).
It uses synchronous replication to achieve high availability and
a consistent view of the data.

It partitions the data store and replicate each partition
separately, providing full ACID (Atomicity, Consistency,
Isolation, Durability) semantics within partitions, but only

62 Seokil Song :Concurrency Control Method to Provide Transactional Processing for Cloud Data Management System

International Journal of Contents, Vol.12, No.1, Mar. 2016

limited consistency guarantees across them. It provides
traditional database features, such as secondary indexes, but
only those features that can scale within user-tolerable latency
limits, and only with the semantics that its partitioning scheme
can support. In [10], Megastore only guarantees serializability
among transactions accessing the same partitioned group by
allowing update operations on a group serially, while aborting
and restarting other concurrent updates.

Generally, traditional DBMS consists of query processing
component and DB kernel. DB kernel provides tightly
integrated code such as access methods, data caching and
persistence, concurrency control and recovery. [6] splits the DB
kernel into transaction component (TC) and data component
(DC). Transaction component (TC) performs concurrency
control and recovery functions, and has a logical level
knowledge about keys and records. It does not know physical
structures such as pages, buffers and so on, physical structure.
Data component (TC) have access methods and cache
management functions. It provides atomic logical operations
and does not know how they are grouped in user transactions.

Unbundling transaction approach has some advantages as
follows. In the multi-core architectures, unbundled transaction
approach may run TC and DC on separate cores. It easy to
extend DBMS functions. For example, to provide new access
method, it only needs to change DC. Also, it is suitable for
cloud data management system with transactional support. TC
coordinates transactions across distributed collection of DCs
without 2PC. It is possible to add TC to data management
system that already supports atomic operations on data.

[6] proposed a partition lock method that have the range as
resource like keys, pages, and tables. The TC can request a lock
on a range resource from the DC, and each table is partitioned
to a set of range resources. The boundary of the range resource
may be not keys in the table. It means that the TC can know
these boundaries without the need to lock at the data. The TC
maps the range in where clause into the set of partition
resources on which the TC can request locks. The TC requests
a lock on each partition before accessing its records. This lock
acts as a cover lock in which the TC can talk safely with the
DC to discover the records inside the locked range resource.
When multiple partitions are required to cover the range, the
partitions are locked one at a time, as records are accessed
sequentially within the range. The basic idea of Deuteronomy
[11] system is from unbundling transaction approach [6]. It
seems that Deuteronomy system is a complete system including

upgraded unbundling transaction approach. In [12], a dynamic
range lock method for [6] is proposed.

MaaT [13] introduces the new design of OCC (Optimistic
Concurrency Control) for transactions in CDMSs. It provides
unlimited transactional processing capabilities. It re-designs the
existing OCC to eliminate locks during two phase commit for
distributed transactions. Without using locks in executing
distributed transactions, it also can reduce the abort rate of
OCC incurred by deadlock avoidance mechanisms.

2.2 Serializable Snapshot Isolation (SSI)

Snapshot isolation (SI) based transaction execution model
is a multi-version based approach utilizing the optimistic
concurrency control concepts [16]. A transaction T1 executing
with SI takes snapshot of committed data at start of T1 called
start timestamp, always reads/modifies data in its own snapshot
and updates of concurrent transactions are not visible to T1. T1
is allowed to commit only when another Ti running
concurrently has not already written the data item that T1
intends to write. Generally, this commit protocol is called as
first committer wins (FCW). SI has many benefits so it is
widely used in many systems.

Reads of transactions with SI are never blocked even
though concurrent transactions that update same data item. The
concurrency of SI is similar to that of read committed isolation
level. However, SI has critical drawback. It is vulnerable to
anomalies such as write skew anomaly and read-only
transactional anomaly. That is, SI breaks serializability in some
cases. In [17] proposed serializable snapshot isolation (SSI)
that solve the write skew anomaly. It uses lock techniques to
automatically detect and prevent snapshot isolation anomalies
at runtime for arbitrary applications.

3. PROPOSED MULTI-VERSION CONCURRENCY
CONTROL METHOD FOR CDMS

The multi-version concurrency control method proposed

in this paper is based on the RDD model of Spark. A RDD is
immutable so when it is modified the new version of the RDD
is created. The proposed concurrency control supports the SI
(Snapshot Isolation) [16] when processing transactions by
using this characteristic. The SI, which is one of transaction
isolation level, update, allows a transaction to read committed
data items always, by updating data items after creating the

Fig. 1 Example of Version Management

 Seokil Song :Concurrency Control Method to Provide Transactional Processing for Cloud Data Management System 63

International Journal of Contents, Vol.12, No.1, Mar. 2016

snapshot of data items so as to improve the concurrency of read
consistency.

In our proposed concurrency control method, a database in
a CDMS is loaded into distributed main memory as a RDD
managed by Spark. Then all transactions read and write data
items of the RDD in distributed main memory. Writes
operations of transactions create new versions of the RDD and
the RDD versions are managed by our concurrency control
method. We logically split a RDD to a number of partitions.
Each partition contains the same number of data items. When a
transaction write data items, we apply the map transformation
operation to create a new version of the RDD which contains
the partitions including the data items. Fig. 1 shows the
versioning method of the proposed concurrency control method.
In the figure, the key range of database is from 1 to N and the
size of partition is p. Therefore, the key range of the ith
partition is from N/p*(i-1) + 1 to N/p*i. When a data item
whose key is 5 is to be updated, the first partition is containing
5 is filtered and mapped to the new version RDD of the
partition. When a transaction updates data items whose keys
are 20, 30, 31, 32, two partitions including those keys are
filtered and mapped to the new version RDDs.

We maintain Update_table and Transaction_table to
manage multiple version RDDs as shown in the Fig. 2. PKEY
is for partition identifiers and update transaction is for
transaction identifiers which most recently updates partition 1.
Transaction_table stores transactions that creates new RDDs
for partitions. TID is for transaction identifiers and RDD_ID is
for RDD identifiers. In the figure, Tr1 transaction create a new
RDD (Tr1RDD) to update a data item whose key is 5. Then,
other transactions can access the Tr1RDD by referencing
Update_table and Transaction_Table quickly.

Fig. 2 Example of Transaction Processing

4. PERFORMANCE EVALUATION

We perform experiments to show the scalability of the
proposed concurrency control method. Server cluster used in
our experiments consists of 4 nodes, and each node is equipped
with Intel Xeon E5-2620 CPU (2 Ghz, 4 cores) and 8GB DDR3
main memory. The number of transactions used in the
experiments are varied from 3,000 to 30,000. Transactions are
generated by a number of threads, and each thread runs 100
transactions. The number of threads are varied from 300 to
3,000.

We implement the proposed method based on Spark by
using RDD to maintain multi-versions of data items. To
perform experiments, we also implement a transaction
generator. The transaction generator consists of a number of

threads which execute two kinds of transactions repeatedly.
One kind of transaction performs only read operations, while
the other includes read and write operations. Keys of each
transaction is selected randomly.

Table 1 Experimental parameters

Parameters Values
Number of nodes 8

OS Ubuntu 14.04
CPU Xeon 2Ghz x 4 core
RAM 8GB

Number of transactions 3,000 ~ 30,000

In this experiment, we show the scalability of the proposed
concurrency control method based on Spark. Therefore, we
measure the number of transactions committed per a second.
Fig. 3 shows the transaction throughput with varying the
number of transactions. As shown in the figure, transaction
throughput increases as the number of transactions increases.
However, when the number of threads are more than 100 (1000
transactions), the throughput slightly decreases.

Fig. 3 Transaction throughput

5. CONCLUSION

In this paper, we designed and implemented the existing
OCC based on Spark by using the immutable characteristics of
RDD. The main contribution of the proposed method is that it
can be easily integrated with the existing CDMSs without any
modification. All transactions are processed on main memory
managed by Spark. We performed experiments on 8 nodes
cluster to show that the proposed method is scalable to the
number of transactions.

6. ACKNOWLEDGEMENT

This was supported by Korea National University of
Transportation in 2015, and also, this research was supported
by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry of
Education (NRF-2014R1A1A2059342)

64 Seokil Song :Concurrency Control Method to Provide Transactional Processing for Cloud Data Management System

International Journal of Contents, Vol.12, No.1, Mar. 2016

REFERENCES

[1] Y. Shi, X. Meng, J. Zhao, X. Hu, B. Liu, and H. Wang,

“Benchmarking Cloud-based Data Management Systems,”
Proc. CloudDB '10, 2010, pp. 47-54.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E.
Gruber, “Bigtable: A Distributed Storage System for
Structured Data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, 2008, p. 4.

[3] A. Lakshman and P. Malik, “Cassandra: A Decentralized
Structured Storage System,” ACM SIGOPS Operating
Systems Review, vol. 44, no. 2, 2010, pp. 35-40.

[4] A. Khetrapal and V. Ganesh, HBase and Hypertable for
Large Scale Distributed Storage Systems, Dept. of
Computer Science, Purdue University, 2006.

[5] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T.
Kraska, “Building a Database on S3,” Proc. ACM
SIGMOD ’08, 2008, pp. 251-264.

[6] D. Lomet and M. F. Mokbel, “Locking Key Ranges with
Unbundled Transaction Services,” Proc. VLDB Endowment,
2009, pp. 265-276.

[7] S. Das, D. Agrawal, and A. E. Abbadi, “ElasTraS: An Elastic
Transactional Data Store in the Cloud,” Proc. USENIX
HotCloud Workshop, San Diego, 2009, pp. 131-142.

[8] S. Das, D. Agrawal, and A. E. Abbadi, “G-store: A Scalable
Data Store for Transactional Multi Key Access in the
Cloud,” Proc. 1st ACM Symposium on Cloud Computing,
2010, pp. 163-174.

[9] Z. Wei, G. Pierre, and C. H. Chi, “Scalable Transactions for
Web Applications in the Cloud,” Proc. Euro-Par 2009
Parallel Processing, 2009, pp. 442-453.

[10] J. Baker, C. Bond, J. C. Corbett, J. J. Furman, A. Khorlin, J.
Larson, and V. Yushprakh, “Megastore: Providing
Scalable, Highly Available Storage for Interactive
Services,” Proc. CIDR, 2011, pp. 223-234.

[11] J. J. Levandoski, D. B. Lomet, M. F. Mokbel, and K. Zhao,
“Deuteronomy: Transaction Support for Cloud Data,”
Proc. CIDR, 2011, pp. 123-133.

[12] T. Kim and S. Song, “Dynamic Partition Lock Method to
Reduce Transaction Abort Rates in Cloud Data
Management Systems,” Cluster Computing Journal, vol.
18, no. 1, 2014, pp. 233-242.

[13] H. A. Mahmoud, V. Arora, F. Nawab, D. Agrawal, and A.
E. Abbadi, “MaaT: Effective and Scalable Coordination of
Distributed Transactions in the Cloud,” Proc. VLDB
Endowment, vol. 7, no. 5, 2014, pp. 329-340.

[14] A. Dey, A. Fekete, and U. Röhm, “Scalable Distributed
Transactions across Heterogeneous Store,” Proc. ICDE,
2014, pp. 125-136.

[15] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica, “Spark: Cluster Computing with Working
Sets,” Proc. the 2nd USENIX Conference on Hot Topics
in Cloud Computing, 2010, p. 10.

[16] A. Adya, B. Liskov, and P. O. Neil, “Generalized Isolation
Level Definitions,” Proc. IEEE Conference on Data
Engineering, 2000, pp. 67-78.

[17] M. J. Cahill, U. Rohm, and A. D. Fekete, “Serializable
Isolation for Snapshot Databases”, TODS, vol. 34, no. 4,
2009, pp. 729-738.

Dojin Choi
He received the BS and MS degrees in
Computer Engineering Department from
Korea National University of Korea,
Republic of Korea in 2014 and 2016
respectively. He is in the doctoral course
in Chungbuk National University,
Republic of Korea. His research interests

are database systems, transaction processing systems, big data
and so on.

Seokil Song
He received the BS, MS and PhD degrees
in Computer and Communication
Department from Chungbuk National
University of South Korea in 1998, 2000
and 2003, respectively. He is an
Associate Professor of the Computer
Engineering Department, Korea National

University of Transportation, Republic of Korea. His research
interests are database systems, index structures, concurrency
control, storage systems, sensor network and XML database.

