
24 Do wan Kim : Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed
Information into OWL 2

International Journal of Contents, Vol.12, No.2, Jun. 2016

Semi-Automatic Ontology Construction from HTML Documents:
A conversion of Text-formed Information into OWL 2

Chan jong Im

Department of Information and Telecommunication
Pai Chai University, Deajeon, 155-40, Republic of Korea

Do wan Kim

Pai Chai University, Deajeon, 155-40, Republic of Korea

ABSTRACT

Ontology is known to be one of the most important technologies in achieving semantic web. It is critical as it represents the
knowledge in a machine readable state. World Wide Web Consortium (W3C) has been contributing to the development of ontology
for the last several years. However, the recommendation of W3C left out HTML despite the massive amount of information it
contains. Also, it is difficult and time consuming to keep up with all the technologies especially in the case of constructing ontology.
Thus, we propose a module and methods that reuse HTML documents, extract necessary information from HTML tags and mapping
it to OWL 2. We will be combining two kinds of approaches which will be the structural refinement for making an ontology skeleton
and linguistic approach for adding detailed information onto the skeleton.

Key words: Ontology, Semantic Web, HTML, Natural Language Processing.

1. INTRODUCTION

 The concept semantic web is to develop a web into an
intelligent space where all the information and knowledge is
machine readable and refineable. Among the technologies
recommended by the World Wide Web Consortium (W3C),
ontology is one of the most important technologies in
representing knowledge and sharing it [1].

There are several well established upper ontologies such
as [2], [3] which allows the domain information to be linked
and shared through the formal ontologies. However, process of
constructing domain ontology is difficult and time consuming
even working with an expert of the domain. Moreover, most of
the researches on automatic ontology construction are based on
fundamental technologies such as XML, RDF(s), and OWL
while HTML is left aside despite the abundant information it
contains [10]. Thus, researches for the better usage of
information which HTML documents contain is needed.

Development into HTML5 has made HTML documents to
have more semantic meanings. However, former version of
HTML, version 4.01, is still widely used. Its predominance
makes it more difficult to make web into an intelligent space.
Thus, we propose our method that mainly uses the sequences of

* Corresponding author, Email: dwkim@pcu.ac.kr
Manuscript received Apr. 28, 2016; revised May. 16, 2016;
accepted May. 23, 2016

list tags that are consist of , , tags, to build a
skeleton ontology containing information about the
relationships among the HTML documents in the domain. In
addition, more detailed information is extracted from the tags
containing contents and they are added to the skeleton through
English syntax analysis using natural language processing tools
provided by Stanford University.

2. RELATED WORK

There are several approaches in building ontology from
HTML tags. Firstly, the structural analysis approach which has
information on simple and direct structural mappings from
HTML to OWL. [4] showed the mappings for HTML table,
checkbox, radio, select tags into OWL. It proposed the
mapping rules for HTML tags and had no problem in OWL
Lite validation. [5] tried to classify newly established tags in
HTML5 and proposed schema level mapping rules based on the
semantic elements and instance mapping rules.

These works are helpful in making the draft of ontologies.
However, the established ontologies are mapped from HTML
tags without considering the concept of representing the
knowledge [1]. The fact that HTML was originally designed for
better presentation to humans and the fact that it is not
containing any semantic information make these structural
mapping methods unreasonable.

http://dx.doi.org/10.5392/IJoC.2016.12.2.024

Do wan Kim : Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed

Information into OWL 2
25

International Journal of Contents, Vol.12, No.2, Jun. 2016

Assigning semantic information to HTML is a significant
task for establishing semantic web. For this purpose, a second
approach for building an ontology, linguistic approach was
brought about which dealt with syntactical analysis as a part of
natural language processing (NLP). One of the most recent
methods in analyzing English sentences is done by Part-Of-
Speech Tagging [7]. Furthermore, with the return sets of POS
tagging elements, several attempts to systematically convert it
into triples has been conducted as a part of Open Information
Extraction (IOE) in works [8] and [9].

Hwangbo et al [10] used the structural mappings and some
NLP tools to make the ontology. It pointed out that fundamental
technologies of semantic web that has been recommended by
W3C were too much concentrated in XML and RDF(s) which
made HTML useless for semantic web. The recommendation of
Gleaning Resource Descriptions from Dialects of Languages
(GRDDL), a technology of HTML conversion, was noted to
have deficiency since it needed valid style sheets and had
limitations in making RDFS. Thus, the article proposed
procedural steps in making an ontology from HTML tags.
These steps contain extracting information from general HTML
documents, classifying the tags, rules for extracting data of
each tag group, transforming it into triples for both text-formed
information and mixed-formed information as a part of
structural mapping methods, and analyzing the triples with
WordNet [17] and To-and-To web application as a part of a
linguistic approach. Though these approaches seemed
promising and realizable, they only focused on the ways to map
the data contained in a single HTML document. In other words,
they were not able to construct an ontology with the
information of relationships among other pages in the same
domain.

Since HTML documents lack semantic information, the
process of refinement was needed in order to extract the data
from HTML documents. This is done by using the object
Document Object Model (DOM) [12]. The article [13] tried to
discover the semantic pattern referred to as ‘similarity’ in the
implicit fixed schema of template-driven HTML documents
and automatically generated a semantic partition tree. This was
done upon the observation of spatial locality of the contents in
template-driven HTML documents. Though their work seemed
well working in finding semantic structure of the document, it
was limited to the template-driven documents and modification
was needed for ontology construction.

Another way to assign semantic information from
relationship retrieval which specifically is related to extracting
key terms and forming them into a concept hierarchy. Article
[14] tried to extract hierarchical relationships based on
modified Formal Concept Analysis (FCA) theory [11].
Modified form of FCA theory allowed the attributes of a term
to have a certain level of unnecessary values. In other words, it
allowed to have some attributes of a term that are not perfectly
fitted to form a hierarchy relationship with a chosen threshold
value. With the keywords given by the domain experts,
attributes of the keywords were chosen with the window size
that ranged from one to five. These attributes were rearranged
into document-weight vector and were clustered with k-means
methods to put all the similar attributes together. The rules of

modified FCA theory were applied to the keyword with
attribute clusters to form a hierarchical concept.

The article shows a good performance in allocating the
words and terms into higher concept. However, it is insufficient
to build the ontology with only hierarchical relationships. Also,
the problem in choosing keyword and cluster size remained
unsolved.

3. PROCEDURES FOR ONTOLOGY CONSTRUCTION

In order to build a domain ontology using OWL 2 which is

more expressive than OWL 1 [15], we will be using the
combination of structure and linguistic approaches in this paper.
Using the combination of two approaches serves as
complementary one to the other in building an ontology. For
the problem of semantic information scarcity in the case of
using structural mapping method, for example, can be
supplemented by linguistic approach. On the other hand, the
problems in linguistic approach such as concept labeling or
limitation on document types, can be solved with
comprehensively defined structural rules.

Our goal is to make a basic ontology from general HTML
documents, specifically from all HTML documents in the
domain. The proposed module is composed of 3 phases which
are extracting nodes of trees, mapping onto the ontology, and
adding details onto the skeleton ontology. All tags that are used
in first phase of our module are shown in Table 1. We left out
all the unused tags from the tag classification mentioned in
article [10]. In the introduction, it was mentioned that we will
be using the tags that are used for easy navigation to make the
skeleton ontology for the specific domain. In the case of HTML
5, for example, all tags constructed for easy navigation are
grouped together under <nav> tag and it holds , ,
 tags which are classified in the formal HTML tag
classification as List in table 1. Specifically, , tags
does not hold any values but declares that it is either unordered
list or ordered list . The tags that actually hold some
values are tags. These tags hold <a> tags, classified as
Link category in table 1, which contain values of URL links.

Table 1. Tags used for forming skeleton ontology [10]

Category HTML Tag

Link A

List li, ol, ul

Paragraph P

We tried to extract hierarchical relationships based on the
way it is nested. For instance, tag might contain tags
but also might contain another set of lists declared by second
 or placed inside the first tag. In this case, the
 tags nested under first appeared tag are defined to
be as parent nodes, and the tags in second appeared
or are defined to be as child-nodes of the corresponding
parent node. We use these inclusion levels of tags to form a
hierarchical tree, which is later reformed into the ontology
syntax with some rules being implied.

26 Do wan Kim : Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed
Information into OWL 2

International Journal of Contents, Vol.12, No.2, Jun. 2016

In the third phase of our work, we tried to add detailed
information onto the skeleton by extracting content elements
from <p> tags in category Paragraph in table 1 and the
corresponding URL values located in <a> from the place
where <p> was being extracted.

In the area of Information Extraction (IE), importance of
recognizing the name entities had been highlighted at the Sixth
Message Understanding Conference (MUC-6) [20]. Thus, we
search for the sentences that contain the name entities which
are recognized by the tool Named Entity Recognizer (NER)
[21] by Stanford University.

These sentences are analyzed based on English syntax and
are transformed into triples which is consist of Subject,
Predicate, Object, by the tool Open Information Extractor [22]
from Stanford. These triples are then mapped onto skeleton
ontology. In the following subsection 3.1 and 3.2, the steps
required for ontology construction are explained in more detail.

3.1 Extracting tree from list tags

In order to make a skeleton ontology, we first extract the
necessary tags and form a tree structure before the process of
mapping onto the ontology. The depth of the tree is
distinguished by the tag and the end tag . Leaf-
nodes of a tree are assigned by the tag for its
corresponding tree depth. In the following subsections, there
will be an explanation of the values held in each leaf-node of
extracted tree in section 3.1.1 and details of the procedures for
extracting nested tags with the depth of tree in 3.1.2.

3.1.1 Node values: The values which each node contains are
presented in Fig. 1. Each node is linked with either parent
nodes or children nodes which is decided by the sequence of
nested tags in HTML documents. Each of the node hold values
of <a href> tags and pure text values which are used for
assigning the text labels when it is being transformed to
ontology.

Fig. 1. Values held in each node

For instance, the root node of the tree will contain child-

nodes which are the values of tags within the first
boundary of tag. Each node will contain its URL value as
well as its pure text value. URL value will be saved in ‘href’
variable and pure text values will be saved in the ‘text’ variable.

3.1.2 Procedures: We use Jsoup [6], Java API, which is known
to have a good control over the HTML tags to refine HTML
document and to generate a hierarchical tree. Our aim is to
extract the relationship from nested tags with the
maximum depth of three (assigning root as depth of zero).
Though this API is useful in extracting nested tags, the use is
limited to the depth of two. For instance, if there are sequences
of lists like ---- and --

----, Jsoup is capable of extracting
 tag in the first sequence of lists whereas it needs
additional algorithms for extracting tag in the second
sequence of lists. Thus, we use Jsoup as our base with
additional method added on top of it.

The following procedural steps will show how the nodes
are extracted and formulate a hierarchical tree.

 Using Jsoup, we filter out the unused tags which are out of
the boundary of tags and get only tags and all
the tags which are located within the boundary of .
We do this by firstly assigning main-page of the website as
a root of the tree. We then select the first tag and get
the first element which returns the pure sequence of
and tags without any other tags.

 With the pure sequence of List tags, we extract the child-

nodes of the root. These are the tags within the
boundary of the first . To extract these nodes, we
select all the tags that have the tree depth of one and
contain tags.

 Having a list of child-nodes of the root node, we then tried

to get the child-nodes of the nodes that we got in the
previous step. For simplicity, we will refer the nodes we
got in the previous step as parent-nodes and the nodes that
we are trying to get as child-nodes. The child-nodes are the
 tags within the boundary of the second tags, in
other words, tags in tree depth of two. Additional
step is required before getting child-nodes which is to
recognize whether the parent-node contains child-nodes or
not. This is recognized by the sequence of List tags. If
there are any tags appearing after the parent-node, it
is known to have a child-nodes and vice versa. For
instance, if there is a sequence of List tags like --
----, first parent-node does
not have another set of lists nested by tag, whereas
the second parent-node has the following tag.
Thus, first parent-node does not contain any child-nodes
and the second parent-node contain child-node of
nested in the second tag.

 The same rule applies when getting the last child-nodes in

the tree depth of three. First it is being recognized whether
the parent-node contains any child-nodes, and if there is
any nested after the parent-node, all the within
the corresponding are linked as child-nodes of that
parent-node.

3.2 Mapping tags on skeleton ontology and adding detailed
information

In the previous section, all List tags were linked forming a
hierarchical tree. In this section, nodes from the established
hierarchical tree are mapped onto basic skeleton ontology with
few mapping rules applied to it. Also, more information is
extracted from the HTML documents and is added on to the
established skeleton ontology. In the following subsections,
there will be explanations of implementation of the mapping

Do wan Kim : Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed

Information into OWL 2
27

International Journal of Contents, Vol.12, No.2, Jun. 2016

rules and the tools used for mapping in subsection 3.2.1, and
how the detailed information are added to the skeleton ontology
will be explained in section 3.2.2, 3.2.3, and 3.2.4.

3.2.1 Mapping tag nodes on skeleton ontology: Given that all
the List tags are formulating the hierarchical tree, to transform
it into ontology, decision has to be made for each node whether
it is an entity, class or individual before the actual mapping is
conducted. We tried to set rules to sort these by using a tool
called Named Entity Recognizer (NER) made by Stanford
University [16] and WordNet [17]. When the sentences or the
phrases are passed on to NER, it gives in return all the
recognized named entities appeared in input texts. WordNet is
a lexical database for English, where all words are interlinked
to each other in a conceptual semantic ways. By using these
tools, we will transform nodes into ontology objects.

 Text values in each node are processed through Named

Entity Recognizer.

 If the text value in a node is recognized by NER, then it
is considered as individuals and is separated from the
hierarchical tree but if it is not recognized by NER, it is
considered as class and stays in the tree.

 When the same text values are found in other nodes, then

it is considered as entities or classes. These named nodes
maintain the hierarchical relationships with other tags
linked by <rdfs:subClassOf>.

 Nodes separated from the tree need to be classified into

higher-concept. Thus, we use WordNet hypernyms to
recognize the common parent concept. The
conceptualized terms are considered as classes. The
separated nodes are considered as individuals and are
mapped to the conceptualized class node by <rdf:type>.

The conversion of the HTML List tags into skeleton

ontology is done through the procedures above. The methods
we used up to this point are the HTML refinement approach
mentioned in section 2. However, with only using this single
approach, the information extracted is limited to the small
amount of texts that is only used for navigation. More
information can be extracted from HTML documents which we
try to get through sentence analysis with some rules applied to
it. The detailed procedures will be followed in the next
subsections.

3.2.2 Extracting sentences from <p> tags: To add more
details onto the skeleton, we extract texts from <p> tags
categorized as Paragraph in Table 1, which generally contain
main text of HTML document. However, it is unrealistic to go
through all the texts within the tags and classify them into
categories and recognize their relationships. To reduce the
excessiveness of the information, we tried to narrow our dataset
by picking the sentences that contain named entities recognized
by NER. We tried to recognize all the named entities and
extract the sentences that contain these nouns. The following

illustrates the procedures:

 Use Jsoup API to discard unnecessary elements and
extract only the texts located inside <p> tags.

 Each sentence is distinguished by period ‘.’.

 All the sentences are processed through NER. If there is a

named entity in the sentence recognized by the tool, then
this sentence is added to our dataset. Also, the origin of the
sentences is extracted from title tag to keep track of where
it is from.

3.2.3 Retrieving triples: With the set of extracted sentences, it
is essential to define subject, predicate and object based on the
English syntax to map it on to the skeleton ontology. Thus, we
used Open Information Extractor (OIE) to get the triples for
each sentence. It is a tool made by Stanford Natural Language
Processing group that analyzes English sentences and in return
gives back all possible sets of triples for each sentence [16]. All
the sentences extracted from the previous stage are processed
through OIE. When the sentence is passed on to the tool, it
splits sentences into clauses for it to be able to analyze the
sentences. In return we get a set of all possible triples for each
sentence.

For the returned set of triples, we check if the title value of
the document where the triples were extracted from is equal to
the text value located in previously extracted nodes. If there is a
match, we map subject and object as individuals and predicate
as an object properties by <owl:ObjectProperty> onto OWL 2.
Extracted subject and object are linked to the extracted origin
values by <rdf:type>. In the case where there are more than
one triple set returned, various object candidates possible for
one subject, then all the triples are treated as the same
individuals which are grouped with <owl:sameAs>.

3.2.4 Manipulation through ontology editor: Basic ontology
is established by going through previous procedures. However,
the accuracy of the modules proposed is heavily dependent on
the quality of the tools used which in return might give the
wrong or missing triples. For example, some of the information
could be left out due to named entities unrecognizable by NER.
Therefore, more configuration of the established ontology is
needed to make the full ontology based on the purpose of its
own use. We used Protégé [23], OWL 2 editor made by
Stanford.

4. BUILDING ONTOLOGY ON GLOMIS DOMAIN

In this section, we will demonstrate how our modules are

implemented in the domain website. As an example, we chose
the domain GLOMIS [19], which contains the information
regarding European and Korean joint-degree program. In the
subsection 4.1, there will be an explanation of the domain
GLOMIS. In the subsections 4.2 and 4.3, the procedures
described in the sections from 3.1 to 3.2 will be explained.

28 Do wan Kim : Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed
Information into OWL 2

International Journal of Contents, Vol.12, No.2, Jun. 2016

4.1 Domain GLOMIS
Website GLOMIS is not built in HTML5 but in the formal

version of template-driven HTML. It contains the ‘Site-Map’
which is formed with the sequences of List (,) tags
that act exactly as same as the tags contained in <nav> in
HTML5. We used these sequences of List tags to build the
skeleton ontology which contains information of the
relationships among HTML documents in the domain.

Fig. 2. Visualized sample of tree built from GLOMIS domain

Assigning the main-page of the GLOMIS website as root
node, it has a total of 74 nodes, also meaning 74 different
URLs within the domain. Some of the nodes are represented in
Fig. 2. Every node placed underneath other nodes which are
connected with lines represents the hierarchical relationship
between the nodes. For instance, node named Useful
Information placed underneath Root is a child-node of Root and
it contains three child-nodes which are Korea, Austria, and
Germany.

Fig. 3. Portion of List tags in ‘site map’

4.2 Building hierarchical tree
The HTML document for the main page of domain

GLOMIS is passed onto the parser made with Jsoup API and
additional method to make the hierarchical tree with the values

located in the nested tags. With Jsoup, we selected tags
and all the tags that are placed within the boundary of the first
 tag. In return, we get the pure lists of and tags
that constitutes the whole architecture of the domain. Fig. 3
shows the sample of the pure sequences of List tags.

We then extracted the child-nodes of the root. These nodes
are the values in tags within the boundary of the first
 tags and the tree depth of one. In return we get GLOMIS
News, Useful Information, GLOMIS Curriculum and Student
Life. Note that each node contains its own values as defined in
3.1.1. For example, node Useful Information contains URL:
“page_Oaes18”, its own text: “Useful Information” and
parent-node of root.

The next step for tree construction is to get all the child-
nodes of each node GLOMIS News, Useful Information,
GLOMIS Curriculum and Student Life. These nodes are the
 tags placed within the boundary of second tags and
at the tree depth of two. However, we first needed to find out
whether each of them contains child-nodes or not. To do so, we
checked the sequence of List tags. For instance, GLOMIS News
is followed by the tag and Useful Information is followed
by the tag in the sequence of List tags. GLOMIS News is
interpreted as not having any set of List tags, therefore no
existence of child-nodes. However, for Useful Information, it is
interpreted as having a set of List tags, so all the placed
within the boundary of which are placed at the tree depth
of two becomes a child-node of node Useful Information. These
are the nodes with text value of Korea, Austria and Germany.

The same rule applies in order to get the last child-nodes
placed at the tree depth of three. For instance, the child-nodes
of Korea are Cost of Living and Open a Bank Account.

4.3 Mapping onto ontology and adding details

All the text values of the nodes are processed through the
tool NER to transform them into OWL syntax. If the text value
is recognized by this tool, it is separated from the hierarchical
tree and it is processed through the tool WordNet to find a
common concept. For instance, the names of countries, Korea,
Austria, and Germany are noticed by the NER so it is separated
from the hierarchical tree. These are then processed through
WordNet to find the common concept which in this case is
Country. The concept Country is mapped as an entity and each
nation, Korea, Austria, Germany is mapped as individuals
linked to the Country by <rdf:type>.

When the same text values are found in other nodes then it
is considered as entities and maintains the hierarchical
relationships with the parent or the grandparent nodes. In the
case of Cost of Living and Open a Bank Account which is
placed under each nation nodes, it is occurring more than once
within the tree. Thus, it is mapped as entities and keeps the
hierarchical relationship with Useful Information which is the
grandparent node because the parent node Korea, Austria,
Germany was separated in the previous step. The example of
skeleton of an ontology extracted from the tags constituting
web architecture is shown in Fig. 4.

Do wan Kim : Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed

Information into OWL 2
29

International Journal of Contents, Vol.12, No.2, Jun. 2016

Fig. 4. Sample of skeleton in OWL/XML syntax

Fig. 5. Triple samples by OIE

In order to add more details onto the skeleton of ontology,

sentences containing named entities are extracted from <p>
tags and are converted into triples. These triples are mapped to
the skeleton ontology based on the English syntax analyzed by
OIE. For example, sentence ‘GLOMIS is a European-Korean
Joint Degree Program’ is extracted from the main page, since
the word GLOMIS is noticed by NER. Now by using the OIE,
we were able to get three possible sets of triples for one subject
GLOMIS as shown in Fig. 5.

All three triples are mapped to an already established
entity GLOMIS on the skeleton ontology by <rdf:type>. Three
objects in the returned set, European-Korean, European-
Korean Joint Degree Program, Joint Degree Program, are
considered as same individuals by <owl:sameAs> and are
mapped to GLOMIS by <rdf:type> as shown in Fig. 6.

Fig. 6. Mapping triples to OWL 2

Going through the procedures, basic ontology is
constructed. From this point, we loaded the established
ontology onto Protégé to fix wrong relations and to add more
information that was left out throughout the process onto the
ontology. For example, all the names of courses and modules
which is placed under children node GLOMIS Curriculum in
Fig. 2 were not recognized by NER. This led to a
misconstruction of ontology without any information regarding
curriculum of GLOMIS.

5. CONCLUSION

Despite the fact that HTML documents contain lots of
information, most of the works on ontology construction was
based on the fundamental technologies recommended by W3C.
To go through all the semantic layers depicted by W3C, the
process of construction is time consuming and difficult even for
an expert of the domain. Thus, we have proposed a module that
reuses information in HTML documents to construct a basic
ontology in a semi-automatic way. To do so, we have
implemented a mixture of structure refinement and linguistic
approaches. For the structural refinement approach, we have
extracted elements contained in sequences of List tags, made
them into a tree hierarchical structure based on the specified
rules, and mapped onto the ontology skeleton. These were the
tasks done mainly to put relationship information among the
HTML documents in the same domain into an ontology which
were not tried in the prior works. As for the linguistic approach,
we have extracted all the sentences placed within the <p> tags
filtered by the NER, processed through IOE to get triples, and
mapped triples onto the established ontology skeleton. These
were the tasks done mainly to overcome the problems
happening when using only the structural approaches.

Our work will help the people who do not know much
about ontology construction. Though our work has achieved its
own goal of reusing HTML documents and simplifying the
process of ontology construction, to make it as a fully
automated system and to improve the quality there are more
researches to be conducted in the future. The biggest problem
in our approach is that some of the information that should
have been included on the ontology was left out mainly due to
the unrecognized named entities by NER. This might be solved
using machine learning technologies or improving the quality
of NER. However, as it is well known in the natural language
processing field, it is difficult to include all the comprehensive
number of cases for the recognition of named entities. Thus,
more study on the linguistic approach as well as the alternatives
should be conducted in the future for general HTML to OWL 2
conversions. Another problem with the method introduced in
this paper is that it is tested only on the domain GLOMIS.
Method which is applicable in a general HTML document is
therefore needed.

30 Do wan Kim : Semi-Automatic Ontology Construction from HTML Documents: A conversion of Text-formed
Information into OWL 2

International Journal of Contents, Vol.12, No.2, Jun. 2016

REFERENCES

[1] Thomas R. GRUBER, “Toward principles for the design

of ontologies used for knowledge sharing?,” International
journal of human-computer studies, vol. 43, issue. 5, 1995,
pp. 907-928.

[2] Basic Formal Ontology, Overview, 2014. Online,
http://infomis.uni-saarland.de/bfo/overview - [Last
accessed Jul. 14, 2015]

[3] Suggested Upper Merged Ontology, Home, 2015. Online,
http://www.adampease.org/OP/index.html - [Last accessed
Jul. 14, 2015]

[4] Hyoun-Soo KWAK, Su-Kayoung Kim, Yeong-Geun
Kim, and Kee-Hong Ann, “A Conversion System of
HTML Document into OWL Ontology Language,
Korean journal Information Processing Society, vol. 11,
no. 2, 2004, pp. 539-542.

[5] Taimao SUN, Yiyeon YOON, Wooju KIM, “A
Conversion from HTML5 to OWL Ontology,” Journal of
Society for e-Business Studies, vol. 18, no. 3, 2013.

[6] Jsoup: Java HTML Parser, 2015. Online, http://jsoup.org/
- [Last accessed Aug. 25, 2015]

[7] TOUTANOVA, Kristina, et al., “Feature-rich part-of-
speech tagging with a cyclic dependency network,” In:
Proceedings of the 2003 Conference of the North American
Chapter of the Association for Computational Linguistics on
Human Language Technology-Volume 1, Association for
Computational Linguistics, 2003, pp. 173-180.

[8] Luciano DEL CORRO and Rainer GEMULLA, “Clausie:
clause-based open information extraction,” In:
Proceedings of the 22nd international conference on World
Wide Web, International World Wide Web Conferences
Steering Committee, 2013, pp. 355-366.

[9] Gabor ANGELI, Melvin Johnson PREMKUMAR, and
Christopher D. MANNING, “Leveraging Linguistic
Structure for Open Domain Information Extraction,” In:
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language
Processing of the Asian Federation of Natural Language
Processing, ACL, 2015, pp. 26-31.

[10] Hoon HWANGBO and Hongchul LEE, “Reusing of
information constructed in HTML documents: A
conversion of HTML into OWL,” In: Control, Automation
and Systems, ICCAS 2008, International Conference on.
IEEE, 2008, pp. 871-875.

[11] Uta PRISS, “Formal concept analysis in information
science,” Arist, vol. 40, no. 1, 2006, pp. 521-543.

[12] Lauren WOOD, et al. Document Object Model (DOM)
Level 3 Core Specification, 2000.

[13] Saikat MUKHERJEE, et al., “Automatic discovery of
semantic structures in html documents,” In: Proceedings
of the Seventh International Conference on Document
Analysis and Recognition-Volume 1, IEEE Computer
Society, 2003, p. 245.

[14] Min-Gu Kim, “An Intelligent Taxonomy Relation
Extraction System for Automatic Ontology Construction,”

Ph.D. Thesis, Ajou University, Suwon, Republic of Korea,
p. 105.

[15] Bernardo Cuenca GRAU, et al, “OWL 2: The next step for
OWL,” Web Semantics: science, services and agents on
the World Wide Web, vol. 6, no. 4, 2008, pp. 309-322.

[16] The Stanford Natural Language Processing Group:
Software, 2014. Online,
http://nlp.stanford.edu/software/index.shtml - [Last
accessed Jul. 22, 2015].

[17] George A. MILLER, “WordNet: a lexical database for
English,” Communications of the ACM, vol. 38, no. 11,
1995, pp. 39-41.

[18] Universal Dependencies, Universal dependency relations,
2014. Online,
http://universaldependencies.github.io/docs/#language-u -
[Last accessed Aug. 5, 2015].

[19] GLOMIS, What is GLOMIS?, 2014. Online,
http://glomis.pcu.ac.kr/ - [Last accessed August 18, 2015].

[20] David NADEAU and Satoshi SEKINE, “A survey of
named entity recognition and classification,” Lingvisticae
Investigationes, vol. 30, no. 1, 2007, pp. 3-26.

[21] The Stanford Natural Language Processing Group,
Stanford Named Entity Recognizer, 2015. Online,
http://nlp.stanford.edu/software/CRF-NER.html - [Last
accessed Feb. 15, 2016].

[22] The Stanford Natural Language Processing Group,
Stanford Open Information Extraction, 2015. Online,
http://nlp.stanford.edu/software/openie.html - [Last
accessed Feb. 15, 2016].

[23] Protégé, Products, 2015. Online,
http://protege.stanford.edu/support.php - [Last accessed
Feb. 15, 2016].

Chan jong Im
He received the B.S. in International
Business from PaiChai University, Korea
in 2014. He is currently in Hildesheim-
University, Germany, as a master’s
student. His main research interests
include information retrieval, data
mining, and machine learning.

Do wan Kim
He received the B.A., M.A. and Ph.D. in
Informatics from the University of
Regensburg, Germany. He was senior
researcher in ETRI. Since 1997 he is
professor at PaiChai University. He has
interested in semantic web technologies,
artificial intelligence, software quality

evaluation and software ergonomics.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

