
38 Jin-Hee Song : Machine Learning Frameworks for Automated Software Testing Tools : A Study

International Journal of Contents, Vol.13, No.1, Mar. 2017

Machine Learning Frameworks for Automated Software Testing Tools
 : A Study

Jungho Kim, Joung Woo Ryu

Analysis & Consulting Team, Big Data Business Division,
ONYCOM Inc., Seoul, 100-101, Republic of Korea

Hyun-Jeong Shin, Jin-Hee Song

School of IT Convergence Engineering/Computer Science & Engineering
Shinhan University, Dongducheon, 483-777, Republic of Korea

ABSTRACT

Increased use of software and complexity of software functions, as well as shortened software quality evaluation periods, have
increased the importance and necessity for automation of software testing. Automating software testing by using machine learning
not only minimizes errors in manual testing, but also allows a speedier evaluation. Research on machine learning in automated
software testing has so far focused on solving special problems with algorithms, leading to difficulties for the software developers
and testers, in applying machine learning to software testing automation. This paper, proposes a new machine learning framework
for software testing automation through related studies. To maximize the performance of software testing, we analyzed and
categorized the machine learning algorithms applicable to each software test phase, including the diverse data that can be used in
the algorithms. We believe that our framework allows software developers or testers to choose a machine learning algorithm
suitable for their purpose.

Key words: Software Testing, Machine Learning, Testing Automation, Software Testing Tool.

1. INTRODUCTION

 According to the survey on global smartphone supply rate
in 2015 by the Pew Research Center, Korea indicated the
highest smartphone supply rate of 88% among all the subject
nations included in the survey [1]. Currently, the mobile apps
have been popularizing the mobile devices through providing
diverse services that connect on/off-line markets for simple
information retrieval, entertainment, shopping, reservation,
education and others. The quality and reliability of mobile
application software is getting a hot potato as the e-commerce
and financial service sensitive to the personal information are
provided.

The most important step to developing reliable software is
the test. The software testing is labor-intensive, and, therefore,
a cost equivalent to half the development resources may be
required [1], [2]. The software testing automation is a very
effective method that can be used to save costs and decrease
manual test errors caused by human through efficiently
processing the repetitive and time-consuming test process. In

* Corresponding author, Email: jhsong@shinhan.ac.kr
Manuscript received Jan. 31, 2017; revised Feb. 06, 2017;
accepted Feb. 13, 2017

addition, such software testing automation provides the testers
with an opportunity to free themselves from the simple and
repetitive works to concentrate on more productive and creative
works. Since such software testing automation allows the
developers to receive feedbacks on their developed results
within a short period of time, it is capable of minimizing the
development errors.

Due to such reasons, the software testing automation is
acknowledged as rather a requirement than an option in the
field of software development.

In the software industry, a number of solutions have been
released to decrease the repetitive graphic user interface test
process [3]-[6]. As the software system became more
complicated and the demand for the software testing
automation expanded, diverse attempts were made to apply the
machine learning-based technologies to the software testing
automation. A research on the genetic algorithm-based test case
auto production was released [7], [8], and a research predicting
the effectiveness of the test case produced based on the
artificial neural network was released [9]. A research using the
C4.5 decision making tree algorithm to predict potential bugs
and locate actual bugs was introduced [10]. In the software test
constructed based on various processes, it is impossible to
automate all the test processes or to complete all the test
processes based on one machine learning algorithm.

https://doi.org/10.5392/IJoC.2017.13.1.038

 Jin-Hee Song : Machine Learning Frameworks for Automated Software Testing Tools : A Study 39

International Journal of Contents, Vol.13, No.1, Mar. 2017

In this paper, we suggest a guideline which can be used by the
software testers/beginners who wants to apply machine
learning to the software testing automation. The researches
relating to the machine learning-based software testing
automation are introduced in Chapter 2. We propose the
framework, machine learning algorithms and data type
categories for enhancing application of machine learning into
the software testing automation are proposed in Chapter 3, and
the results are covered in Chapter 4.

2. MACHINE LEARNING-BASED SOFTWARE TEST
TECHNOLOGY

Researchers [11] introduced the software tests using

machine learning techniques, such as C4.5, SVM (Support
Vector Machine) and genetic algorithm. Some of the researches
on application of C4.5 to test suite evaluation and defective
sentence rank assignment are introduced, and some of the
SVM-related researches for detecting errors, predicting
potentially defective modules, predicting development efforts
and optimizing compilers are introduced. Some of the genetic
algorithm-related researches for producing test suites with high
code coverage, producing test data and removing regression
test suites are introduced.

In [12], researchers introduced the software testing for
predicting software defects, and they also found that software
defects are examined based on the types of machine learning
such as classification techniques, grouping techniques,
associating rules and hybrid methods.

In [13], the analysis standards are proposed as the
framework for analyzing the machine learning-based software
testing automation technology. Figure 1 shows the related
analysis framework. In [13], six classification methods are
proposed as follows.

(1) Classification Based on Test Approach Method

It is a test standard reflecting the level of understanding on
the software structure. The test can be classified into black box
test, white box test and gray box test [14]. The black box test is
used to test externally displayed performances/functions based
on the details such as specification. The white box test is
conducted based on the source code-level understanding on the
internal software structure. The gray test is a complex test
conducted through considering both the internal/external
system conditions.

(2) Classification Based on Test Activity

The life cycle of the test is classified into test plan, test
case management and debugging. For each activity, the
sections that can be automated based on machine learning are
as follows. For the test plan, the test cost can be predicted
through machine learning. For the test case management, the
test case priority can be set, the test case can be designed, and
the test case can be evaluated through machine leaning. For the
debugging, the error location can be detected, the bug priority
can be set according to criticality, and the error occurrence can
be predicted through machine learning.

(3) Classification Based on Testing Level
The software development process includes diverse

development phases ranging from requirements analysis to
actualization [15]. The development process must cover
software maintenance which is a process after actualization.
Accordingly, the testing level can be classified into acceptance
test, system test, integration test, module test and regression
test.

(4) Classification Based on Learning Technique

In the field of machine learning, diverse learning
techniques exist and various characteristics exist as well.
According to the machine learning classification by Tom
Mitchel [16], machine learning is classified into decision
making tree, artificial neural network, genetic algorithm,
Bayesian learning, instance-based learning, clustering and
hybrid method.

(5) Classification Based on Learning Attribute

Machine learning can be classified according to training
data attribute, supervised learning status, time generalization
and automation level. The training data can be classified
according to data amounts and whether or no noise exists. And
the supervised learning status can be classified into supervised
and unsupervised. The time generalization consists of
online/offline learning statuses which serve as the cumulative
learning standards, and can be classified into eager learning
mode and lazy learning mode according to the learning time.
The level of automation can be classified into partial
automation and entire automation.

(6) Classification Based on Learning Factor

Within the software development life cycle or in diverse
test phases, the data applicable to the machine learning-based
test automation will be generated diversely. The types of data
applicable to the software testing automation are software
matrix, software specification, control flow graph, call graph,
test case, execution data and failure report.

Fig. 1. The Analyzing of Machine Learning-based Software

Testing Automation Technology

40 Jin-Hee Song : Machine Learning Frameworks for Automated Software Testing Tools : A Study

International Journal of Contents, Vol.13, No.1, Mar. 2017

3. ANALYSIS OF SOFTWARE TESTING
TECHNOLOGY FOR APPLICATION OF MACHINE

LEARNING

The preexisting analysis report was applicable to several
machine-learning algorithms and particular software testing
fields. Accordingly, its scope was very limited. It is not easy
for the developers and testers unfamiliar with machine learning
to apply machine learning algorithms to the software test.
Therefore, it is necessary to conduct a research that is capable
of providing the developers and testers unfamiliar with
machine learning with the baseline data for applying diverse
machine learning algorithms to the similar/identical problem
solving.

In this thesis, a new machine learning-based framework is
proposed as a key to solving this problem. As shown in Table 1,

our suggested framework proposes the six standards of test
phases, related activities, problem-solving strategies, machine
learning-based functions, applicable machine learning
algorithms and learning types. The software test phase and
related activity define the problems indicated in the software
test to which a machine learning algorithm is applied, and the
problem-solving strategy signifies the basic approach to the
problem solving. Machine learning algorithms and machine
learning-based function signify the name/use of the algorithm
used for actualizing the basic approach. In addition, the
learning type signifies the method used for learning the applied
algorithm. Based on such standards, the machine learning-
based software testing automation technologies can be
systematized as shown in Table 1.

Table 1. A New Machine Learning-based Framework into Software Testing Automation

Test
Automation

Research
Test Phase Related Activity Problem-solving Strategy

Machine
Learning-based

Function

Machine
Learning

Algorithm

Learning
Type

[17]

Test Planning

Test Cost Estimation Estimating new test case cost through
applying cost for test case group

Test Case
Grouping COBWEB Unsupervised

[18] Test Cost Estimation
Estimating new test case cost through
applying estimation learning algorithm to test
case cost

Value Estimation
Artificial
Neural

Network
Supervised

[7]

Test Case
Management

Test Case Design Designing highly suitable test case group
through test case group evolution process

Test Case
Optimization

Genetic
Algorithm Supervised

[19] Test Case Refinement

Learning/Analyzing expected results per each
test case as distribution rule, and, thereby,
guiding to detect and refine redundancy of test
case

Classification
Rule

Establishment
C4.5 Supervised

[9] Test Case Evaluation
Basing test case defect criticality phase on
estimation learning algorithm to predict new
test case defect criticality phase

Classification
Prediction

Artificial
Neural

Network
Supervised

[20]

Debugging

Fault Localization Learning code coverage and execution result
of test case to predict suspicious code sections

Classification
Prediction

Artificial
Neural

Network
Supervised

[20] Bug Prioritization
Learning code coverage and execution result
of test case to predict and prioritize errors in
suspicious code sections

Classification
Prediction Result

& Related
Priority

Provision

Artificial
Neural

Network
Supervised

[21] Fault Prediction

Learning SW matrix and error number priority
per component to predict error number
priority based on SW matrix of new
component

Classification
Prediction

Artificial
Neural

Network
Supervised

[22] Fault Prediction
Learning SW update characteristics and bug
status to predict update bug status of new
software

Classification
Prediction

Deep Belief
Network Supervised

 Jin-Hee Song : Machine Learning Frameworks for Automated Software Testing Tools : A Study 41

International Journal of Contents, Vol.13, No.1, Mar. 2017

Even on solving a similar problem in which the test phase
and related activities are relevant, a different algorithm can be
used for the software testing automation. The machine learning
algorithms and machine learning-based function may vary
depending on the problem-solving purpose and strategy. For
[17] and [18], the test phase and related activities are identical,
but the problem-solving strategy is different. Accordingly, the
machine learning algorithms and machine learning-based
function required for actualizing the strategy vary. The purpose
of [17] is to calculate the cost for testing a new test case based
on the cost for testing similar test cases, and the grouping
algorithm for detecting similar test cases is used.

[18] is a research on the software matrix of the test case.
The machine learning algorithms are used to analyze the
numerical relationship between software evaluation indexes
and test cost to be used for calculating the cost for testing a new
test case. The paper [17] is suitable for estimating the test cost
under circumstances where there is not enough machine
learning training data, and it proposes similar test cases as the
basis for calculating the test cost. The paper [18] provide the
complicated correlation between software matrixes and test
cost of the test case based on the accuracy of the machine
learning algorithm output, so that the stable estimation result
can be derived. The paper [7] used the optimization function of
a genetic algorithm as a method for decreasing the high test
redundancy and increasing the low code coverage which may
occur in the test case suite. The paper [19] show a research on
the machine learning function used for producing the
classification rule according to the simple and implicative
attribute value comparison conditions, and it helps the testers
prepare a test case which indicates low test redundancy and
high code coverage. For [9] and [21], although the test phase

and related activities are different, the problem-solving purpose
is similar. Accordingly, the identical problem-solving strategy
and machine learning-based function are applied. This research
compares the similarity between the analyzed characteristics of
the test problems and the preexisting research, and, thereby,
makes it possible to apply the verified similar problem-solving
techniques. In [20], the classification algorithm is used to
classify the types of error that may occur in the modules
sensitive to risk and cost from the machine learning algorithms.
In particular, it contributes to preparation for diverse types of
error through rather proposing the likelihood of the all the types
of error that may occur than proposing one classified type of
error per each module. [22] applies the classification function
of the deep belief network included in the deep learning to
predict whether or not an error would occur while updating the
software version.

The machine learning-based software test research
proposed in Table 1 is not the machine learning algorithm that
best solves the involved problem. It is possible that other
algorithms capable of better solving the involved problem may
exist, and the machine learning algorithm is capable of
displaying a better performance depending on what input data
attribute is selected and how the parameter value is set.

In Table 2, the machine learning algorithms are classified
and proposed based on the machine learning-applied standards
proposed in this thesis. It is expected that the testers will be
able to use Table 2 to apply other machine learning algorithms
in order to improve the preexisting research results. In addition,
a replaceable candidate for the machine learning algorithm is
proposed in preparation for the case where the machine
learning algorithm from the preexisting research does not
support the type of data relating to the involved problem.

Table 2. Classification of Machine Learning Algorithms Based on Data Types and Functions

Input Data Type
Function Numeric Type Nominal Type Mixed Type (Numeric and

Nominal)

Grouping

k-means,
ISODATA(Iterative Self-Organizing Data

Analysis Technique),
DBSCAN(Density-Based Spatial Clustering

of Applications with Noise),
OPTICS (Ordering Points To Identify the

Clustering Structure)
SOM(Self-Organizing Map)

COBWEB,
ROCK(Robust Clustering
Algorithm for Categorical

Attributes),
CLASSIT,

COBWEB/3,
EM(Expectation
Maximization),

Classification Prediction
(Provision of Possibility per

Classification Category)

Logistic regression,
k-Nearest-neighborhood classifier

ID3(Iterative Dichotomizer 3),
Naive Bayesian Classification,

Bayesian Belief Network

C4.5,
Neural network,

Support Vector Machine,
Deep Belief Network

Value Prediction Linear regression,
Support vector regression -

Neural network,
CART(Classification and

Regression Tree)

Production of
Classification Rules - ID3(Iterative Dichotomizer 3),

Association Rule

C4.5,
CART(Classification and

Regression Tree)

Optimization - - Genetic Algorithm,
Ant colony optimization

42 Jin-Hee Song : Machine Learning Frameworks for Automated Software Testing Tools : A Study

International Journal of Contents, Vol.13, No.1, Mar. 2017

The performance of the machine learning algorithm is
sensitive to the type/number of learning data, and a better
prediction model can be produced through using more types of
data. In the software testing, diverse evaluation data are
produced per phases, and it is important to select the data and
machine learning algorithm suitable for the involved problem.

Table 3 is a list of data and types of data which can be
produced during the software test process.

The enhanced software testing automation system can be
constructed by choosing an appropriate data selection and a
machine learning algorithm which can process the data.

Table 3. Classification of Data Applicable to Test Automation Process

Evaluated and Analyzed Data
on Software Testing Description Type of Data

Error Count per Code Line Error count per program source code line Numeric

Code Coverage Source code quantity used for running test Numeric

Cohesion Cohesion level among functional/temporal/procedural similarities Numeric

Density of Comment Ratio between code line count and comment line count Numeric

Cyclomatic Complexity Complexity of codes within one unit(method or function) of software Numeric

Function Points Points quantified into software function units Numeric

Halstead Complexity Software complexity calculated based on operator/operand count within source code
 (program length/vocabulary count/size/difficulty level/actualized effort count) Numeric

Instruction Path Length Machine instruction count required for execution Numeric

Class/Interface Count Source code class/interface count Numeric

Code Line Count Source code command line count Numeric

Program Execution Time How long program has been executed for Numeric

Program Loading Time Preparation time required for executing program Numeric

Program Size Size of program execution file size Numeric

Weighted Micro Function Points Points for evaluating size of software to be actualized Numeric

Control Flow Graph

 Graph consisting of nodes displaying basic code blocks and edges displaying flow of code
blocks

 Used to understand software execution structure such as infinite loop and unattainable code
 Example of applied data: node ID/type, edge count per node, cycle count, and path type/count

between nodes

Numeric,
Nominal

Call Graph

 Graph consisting of nodes displaying unit program(function/procedure/etc.) and edges
displaying call relationship between programs

 Example of applied data: node ID/type, edge count per node, cycle count, and path
route/count between nodes

Numeric,
Nominal

GUI Input Event-based Test Case Script recording user’s mouse/key board event
 Example of data: GUI component type, component-related event/input value, and cycle count

Nominal ,
Numeric

Keyword-based Test Case
 Script saving GUI identifier(keyword)-related event/input value
 Example of applied data: GUI component identifier, component-related event/input value,

and cycle count

Nominal,
Numeric

Image Recognition-based Test
Case

 Script saving GUI image and related event/input value
 Example of applied data: GUI component identifier, component-related event/input value,

and cycle count

Image,
Nominal,
Numeric

4. CONCLUSION

Testing software is a complex and repetitive task that is
time-consuming and costly. In particular, the life cycle of
mobile applications is getting shorter and the number of
applications using the big data is increasing. All software must
be tested with various data to ensure stable use before they are

released. Ensuring the reliability of the software is to test all the
functionality of the software during the testing process. It is
very difficult to test all the functionality of the software in
manual. Therefore, the necessity and importance of research on
automated software testing are increasing.

The combination of machine Learning and software
testing automation enhances the perfection of the software
testing and reduces the cost in testing. However, beginners in
this field are facing the difficulties on applying machine

 Jin-Hee Song : Machine Learning Frameworks for Automated Software Testing Tools : A Study 43

International Journal of Contents, Vol.13, No.1, Mar. 2017

learning to the software test automation. Most studies at this
moment have been confined their work into a certain phase or a
certain algorithm of machine learning. Due to these difficulties,
it is required to have more various and flexible studies to apply
machine learning to the software test automation.

The purpose of our paper is to provide guidelines for
novice researchers or testers who want to develop an automated
software testing tool using machine learning algorithms. In this
paper, the first, we analyzed the case studies of related
researches and suggested a new machine learning-capable
framework which will help software researchers or testers to
more easily apply machine learning to the software test
automation. The second, we classified machine learning
algorithms according to the data types such as numeric,
nominal, and a mixed type. Our contribution will maximize the
performance of the machine learning algorithms in software
test automation. In specific, our categorization will help
software testers to choose the best machine learning algorithm
among the usable algorithms. The performance of machine
learning algorithms depends on the types and the number of
data. In evaluating software quality, it is important to choose
the relevant algorithm and the data that is appropriate for the
algorithm. Thereby, we analyzed and categorized the types of
data that can be used when testing software.

By using our machine learning framework for software
testing automation, it is expected that researchers or tester can
apply machine learning algorithms in a very flexible manner
when they need to solve similar problems given in the software
test automation.

ACKNOWLEDGEMENT

This work was supported by the Korea Evaluation
Institute of Industrial Technology grant funded by Korea
government (Ministry of Trade, Industry and Energy) (NO.
ATC 10062957)

REFERENCES

[1] http://www.pewglobal.org/2016/02/22/smartphone-owners
hip-and-internet-usage-continues-to-climb-in-emerging-
economies/

[2] Boris Beizer, Software testing techniques (2nd ed.), Van
Nostrand Reinhold Co., 1990.

[3] http://testyd.co
[4] http://www.atam.kr
[5] http://www-03.ibm.com/software/products/en/rtw
[6] http://gareddy.blogspot.kr/2013/01/hp-unified-functional-

testing-software.html
[7] Moataz A. Ahmed and Irman Hermadi, “GA-based

multiple paths test data generator,” Computer & Operations
Research, vol. 35, issue 10, 2008, pp. 3107-3124.

[8] Joachim Wegener, Andre Baresel, and Harmen Sthamer,
“Evolutionary test environment for automatic structural
testing,” Information and Software Technology, vol. 43,
no. 14, 2001, pp. 841-854.

[9] A. von Mayrhauser, C. Anderson, and R. Mraz, “Using a
neural network to predict test case effectiveness,” In
Aerospace Applications Conference Proceedings, vol. 2,
no. 0, 1995, pp. 77-91.

[10] Lionel C. Briand, Yvan Labiche, and Xuetao Liu, “Using
machine learning to support debugging with tarantula,”
In Proceedings of the 18th IEEE International
Symposium on Software Reliability, Washington DC,
USA, 2007, pp. 137-146.

[11] B. Uma Maheswari and S. Vali, “Survey on Graphical
User Interface and Machine Learning Based Testing
Techniques,” Journal of Artificial Intelligence, vol. 7, no.
3, 2014, pp. 1994-5750.

[12] Pooja Paramshetti and D.A. Phalke, “Survey on Software
Defect Prediction Using Machine Learning Techniques,”
International Journal of Science and Research, 2012, ISSN
(Online) pp. 2319-7064.

[13] M. Noorian, E. Bagheri, and W. Du, “Machine learning-
based software testing : Towards a classification
framework,” Proceedings of the International Conference
on Software Engineering and Knowledge Engineering,
Boston, USA, 2011, pp. 225-229.

[14] Paul Ammann and Jeff Offutt, Introduction to software
testing, Cambridge University Press, 2008.

[15] Glenford J. Myers and Corey Sandler, The Art of Software
Testing, John Wiley & Sons, 2004.

[16] Tom M. Mitchell, Machine learning, McGraw Hill series
in computer science, McGraw-Hill, 1997.

[17] Thomas J. Cheatham, Jungsoon P. Yoo, and Nancy J.
Wahl, “Software testing: a machine learning experiment,”
Proceedings of 23rd annual conference on Computer
Science, Tennessee, USA, 1995, pp. 135-141.

[18] Daniel G. e Silva, Mario Jino, and Bruno T. de Abreu,
“Machine Learning Methods and Asymmetric Cost
Function to Estimate Execution Effort of Software,”
Proceeding of 2010 Third International Conference on
Software Testing, Verification and Validation, Paris,
France, 2010, pp. 257-284.

[19] Lionel C. Briand, Yvan Labiche, and Zaheer Bawar,
“Using machine learning to refine black-box test
specifications and test suites,” In Proceedings of the 2008
Eighth International Conference on Quality Software
Washington DC, USA, 2008, pp. 135-144.

[20] W. Eric Wong and Yu Qi, “BP neural network-based
effective fault localization,” International Journal of
Software Engineering and Knowledge Engineering, vol.
19, issue 04, 2009, pp. 573-597.

[21] Susan A. Sherer, “Software fault prediction,” Journal of
Systems and Software, vol. 29, no. 2, 1995, pp. 97-105.

[22] Xinli Yang, David Lo, Xin Xia, Yun Zhang, and Jianling
Sun, “Deep Learning for Just-In-Time Defect Prediction,”
In Proceedings of IEEE International Conference on
Software Quality, Reliability and Security, Vancouver,
Canada, 2015, pp. 17-26.

44 Jin-Hee Song : Machine Learning Frameworks for Automated Software Testing Tools : A Study

International Journal of Contents, Vol.13, No.1, Mar. 2017

Jungho Kim
He received the B.S in computer
engineering from Catholic University,
South Korea in 2002 and M.S. in
computer science from Soongsil
University, South Korea in 2005.
Currently he is a senior research engineer
at the analysis & consulting team, big

data business division in ONYCOM Inc. His main research
interests include machine learning and distributed computing.

Joung Woo Ryu
He received B.S., M.S., and Ph.D.
degrees in computer science from
Soongsil University, South Korea.
Currently he is a principal research
engineer at the analysis & consulting
team, big data division in ONYCOM Inc.,
South Korea. His main research interests

include data mining & knowledge discovery, machine learning,
soft computing, pattern recognition, and robotics.

Hyun-Jeong Shin
He received the B.S. degree in computer
science from Inha University, South
Korea, M.S., and Ph.D. degrees in
computer science from Soongsil
University, South Korea. Currently, He is
a professor at School of IT Convergence
Engineering, Shinhan University, South

Korea. His main research interests include database, system
engineering, data mining

Jin-Hee Song
She received B.S. degree in computer
science from Seoul National University
of Science & Technology, South Korea,
M.S. degree in computer science from
Hankuk University of Foreign Studies,
South Korea, and Ph.D. degree in
computer science from Soongsil

University, South Korea. Currently, she is a professor at School
of IT Convergence Engineering, Shinhan University, South
Korea. Her main research interests include parallel algorithms,
machine learning, mobile application, and data mining.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

