

Doo Ho Lee : An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory

Approach
29

International Journal of Contents, Vol.13, No.2, Jun. 2017

An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System:
A Queueing Theory Approach

Doo Ho Lee

Department of Industrial & Management Engineering
Kangwon National University, Samcheok 25913, Kangwon, Republic of Korea

ABSTRACT

Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through
centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to
shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The
main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended
version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources
by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility
and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software
diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities.
One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources
dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed,
proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter
large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning
techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-
scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the
burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level
scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme
is validated via a numerical experiment.

Key words: VM-level Scaling, IaaS Cloud Computing System, M/M/1 Queue, Processor-sharing.

1. INTRODUCTION

The attention to user on-demand cloud services has
spurred the migration of increasing numbers of applications to
the cloud [1]. One of the attractive features of cloud services to
application providers is the ability to access computing
resources such as shared hardware, software, application, and
information elastically according to dynamic resources
demands. A cloud computing system provides a dynamic pool
of virtualized computing resources and offers an elastic scheme
matching the user demands, so that allocated computing
resources can be scaled-up or scaled-down on a pay-as-you-go
basis [2].

In an Infrastructure-as-a-Service (IaaS) cloud, users can
launch their virtual machines (VMs) with required computing
resources, and an IaaS cloud is able to control and maintain
several VMs on physical machines (PMs) with remarkable

* Corresponding author, Email: enjdhlee@kangwon.ac.kr
Manuscript received Mar. 09, 2017; revised Apr. 25, 2017;
accepted Apr. 25, 2017

flexibility [3]-[5]. One of the main goals in IaaS cloud
computing system is to allocate computing resources that are
truly needed without violating service level agreements (SLAs).
SLAs describe all aspects of cloud service usage and
obligations between users and cloud service providers
including the price for cloud services, Quality-of-Service levels
required while the services are provisioned, and penalties with
regard to SLA violations. To achieve such a goal, IaaS cloud
providers and third party cloud services offer rule-based (or
schedule-based) scaling policies to help users automatically
scale-up and scale-down resources, called auto-scaling.
Decisions of scaling-up or scaling-down are made according to
the last values of monitored variables. Amazon AWS Auto-
Scaling [6] and some cloud service brokers such as Rightscale
[7] and Dell Cloud Manager [8] offer rule-based auto-scaling
schemes to allow users to add and remove resource at a given
time. Most of the schemes are based on resource utilization,
such as “Create 5 VMs if the average CPU utilization rate
exceeds 70% over the past 10 minutes.” In this rule, by the way,
users may wonder whether 5 VMs are enough or not. In other
words, VMs under-provisioning will inevitably harm
performance and cause SLAs violations, while VMs over-

https://doi.org/10.5392/IJoC.2017.13.2.029

30 Doo Ho Lee : An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory
Approach

International Journal of Contents, Vol.13, No.2, Jun. 2017

provisioning will lead to resources idle and cost waste.
Therefore, the main objective of an auto-scaling is to decide the
proper number of VMs provisioned in a PM without user’s
intervention while satisfying SLAs.

In this work, we propose a novel VM-level scaling scheme
by modeling a VM as a processor-sharing queue. Note that in
practical cloud computing system, not only task request arrivals
but also task executions are random, which means cloud
computing system should adapt to uncertainties such as
variations of both task arrivals and task executions. It is
obvious that these uncertainties should have a great impact on
resource performance. This motivates us to investigate
stochastic cloud computing system in order to develop an
efficient auto-scaling scheme. The proposed scheme decides
the proper number of VM instances in a PM while satisfying
the SLA related to the response time and VM utilization
thresholds.

2. QUEUEING MODEL

In this section, we model a VM as a processor sharing
(PS) queue. Tasks arrive at a PM following the Poisson process
at a rate  . While the number of potential clients is high, each

client typically submits a task at a time with low probability.
Therefore, the task arrival can be adequately modeled as a
Poisson process. We assume that the number c of identical

VMs are currently provisioned in a PM and an arriving task is
assigned to one of the VMs in a round-robin manner. Not only
Amazon AWS [6] but also other IaaS cloud services practically
adopt a round-robin task assignment policy for easy load
balancing of PMs. Due to the decomposition property of a
Poisson process, the task arrival process in a VM also follows a
Poisson process at a rate / c (see Fig. 1). The task service
time is assumed to have the exponential distribution with a rate
of  . Unfortunately, the assumption of exponential service

time is not as general as the task arrival time distribution. But it
could still be a reasonable assumption when no other data is
available about service times. The task process duration define
the service time for utilization of a VM. Let us see if the task
process duration can be assumed to be exponentially distributed.
A single VM takes a very small fraction of the resources of the
IaaS cloud data center. Furthermore, decisions on how long to
use a VM are independently made by each task. From these
phenomena, it appears that exponential service times are a good
fit. Intuitively, the probability of a task making a very long
process duration is very small. There is a high probability that a
task process duration will be short. This matches with the
observation that service times of a VM can follows exponential
distributions. Let  denote the utilization rate (or offered

load) of a VM, i.e. 1(/)c   . Throughout this work, we

assume 1  for each VM to be stable.

Fig. 1. The architecture of IaaS cloud computing system

Consider an M/M/1 queue where the queue discipline is

processor-sharing (time-sharing). This discipline implies if
there are already 1n  tasks in a VM, then an arriving task as
well as the other (waiting) tasks in a VM all start receiving
service immediately at the average rate of / n . There is no

queue (waiting space) as such, and the service rate at which
tasks receive service changes each time a new task joins a VM
and each time a task whose service requirements is fully met
departs from a VM. It is highly reasonable to model a VM as
an M/M/1 processor sharing queue since VM instances are
generally equipped with a multiple-core virtual central
processing unit (CPU) and the hyper-threads technology. It
should be noted that the probability distribution of the number
of tasks in the M/M/1 processor sharing queue, namely M/M/1-
PS queue, is stochastically equivalent to that of the ordinary
M/M/1 queue due to the memoryless property of the
exponential task service time distribution. Let np denote the

probability that there exist n tasks in a VM. Then, np is given

by

(1) n
np    , 0, 1, n   . (1)

Next, we investigate the response time distribution. The

response time is defined as the time length between a task
arrival epoch and at task departure epoch. Among lots of
previous works finding the response time distribution of
various PS queues, we introduce Masuyama and Takine [9]’s
result, which is relatively simple and gives the explicit form of
the response time distribution. A randomly chosen task who
finds n tasks in a VM upon arrival is called nT . Let nW

denote a random variable representing the response time of task

nT . We define () Pr{ }n nw x W x  , for 0x  , and

0, 1, n   . It is easy to see that (0) 1nw  and ()nw x

satisfies the following differential-difference equations:

() ()
d

x x
dx

 w P w , (2)

where  0 1 2() (), (), (), x w x w x w xw 
•

 and P is

defined as

Doo Ho Lee : An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory

Approach
31

International Journal of Contents, Vol.13, No.2, Jun. 2017

/ / 0 0

/ 2 / / 0

.0 2 /3 / /

0 0 3 / 4 /

c c

c c

c c

c

  
   

   
  

  
   
   
 

  
  

P









    

The solution of (2) is generally given by

 () expx xw P e , where  1, 1, 1, e 
• . By making use of

the uniformization technique [10], we obtain

(/)

,

0

(/)
()

!

k k c x

n n k

k

c x e
w x h

k

    




 . (3)

The quantities ,n kh in (3) satisfy the following

recurrence relations:

, 1 1, 1,
1

11 1n k n k n k
n

h h h
n


    

  
, (4)

where the boundary conditions are given by ,0 1nh  and

1, 0kh  . Let ()W x denote the probability that the response

time is longer than x. By the total probability theorem, ()W x

is expressed as

0

(/)

,

0 0

() Pr{response time } ()

(/)
 (1) .

!

n n

n

k k c x
n

n k

n k

W x x p w x

c x e
h

k

   




   

 

  


 



 
 (5)

It should be noted that recurrence equations in (4) can be

used to figure out the characteristics of the function ()W x in

(5). Since these expressions are, however, numerically unstable,
various approximation techniques for calculating the response
time probability have been developed. Among them, we
introduce Guillemin and Boyer [11]’s approximation technique.
By utilizing the spectral theory, Guillemin and Boyer [11]
presents the following asymptotic distribution function of

()W x for 0x  :

 
 2

21
2 1

1
() ()exp ,B K

D D
C

W x G x xC C
 

 
    
 
 

 (6)

where

  1 0.28 2.28A     ,

 1
1.42 0.28 0.14B


 




   ,

 20.28 1C   , 0.72 0.28D   ,

BC
K A

D
  ,

22 (1)
()

()
G x

H x

 



 ,

3 33 2
2 1 1 2 2
3 3

2 1

2 2
() 1 1

C x C C C C x
H x

C x CD D

   
          

   
,

 
1 2

1

AD BC
C

C 




 
 and  22 0.72 1C   .

Numerical simulations conducted in Guillemin and Boyer

[11] reveal that the approximation in (6) is very accurate for
high values of  and is less accurate when  decreases,

but even for  in range of [0.55, 0.7], it still yields a not so

bad estimate of ()W x . It is reasonable to use the above

approximation when computing the response time probability.

3. VM-LEVEL AUTO-SCALING

Our VM-level scaling scheme runs continuously to ensure
that scaling goals are met at all times. We establish the
following design goals for our VM-level scaling approach:

 Automation: All decisions related to scaling VMs should

be made automatically without human intervention.
 Adaptation: The IaaS cloud computing system should

adapt to uncertainties such as a variation in task arrivals
and task processes.
 SLA compliance: The cloud computing system should

comply with SLAs at any given time.
 VM utilization assurance: Utilizations of all VMs in a PM

should be within the control range, i.e. between the lower
utilization threshold (LUT) and the upper utilization
threshold (UUT).

The proposed VM-level scaling scheme assumes all VMs

have the same hardware and software configuration, thus they
deliver the same performance. It can be achieved in practice
with proper configuration and management of VMs either via a
hypervisor such as Xen [12] or via high-level virtual
environment managers such as OpenNebula [13] and
OpenStack [14]. VMs with heterogeneous specifications may
also be instantiated in the same PM. In such a case, we have to
decide when to scale VMs with different specifications, and
this topic is subject of future research.

Most operation control analyses in the cloud computing
system should be based on the task arrival pattern. From this
point of view, the scaling analysis should also begin with
identifying (updating) the task arrival rate. Due to the Poisson
task arrivals, the inter-arrival time of between two consecutive

tasks follows the exponential distribution with a mean 1 .

Let i denote the i th observation of the task inter-arrival

time. The log-likelihood function is given by

32 Doo Ho Lee : An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory
Approach

International Journal of Contents, Vol.13, No.2, Jun. 2017

1

1

(; , ,) ln
n

n i

i

l n     


   . (7)

From (7), the maximum likelihood estimator (MLE) of 

is given by
1

n
ii

n 
 . The strong law of large number

guarantees
1

n
ii

n 
 converges to  as the value of n

increases. When we finish updating the estimation of the task
arrival rate, we check whether the current pool of VMs
complies with SLAs or not. Only SLA considered in this work
is the response time, which means “ () %W d  ” is stated in

the SLA, for example. To make this SLA verification, we then
identify the current task service rate. The MLE of  is also

calculated as
1

m
jj

m 
 , where j is the j th

observation of the task service time. The estimated task service
rate is used to predict the response time of a task, the VM
utilization rate, and other performance measures.

We now introduce the VM-level auto scaling scheme
based on the M/M/1-PS queueing system in Algorithm 1.
Briefly summarizing Algorithm 1, the number of required VMs
c is updated relying on the SLA related to response time, VM
utilization, the MLEs of task arrival rate and task service rate,
and maximum and minimum values of c . If the SLA is

violated or VM utilization rate exceeds UUT, c is
recalculated according to lines 11-16. In addition, we keep
track of both maximum and minimum values of c in order to
get the number of VMs that either been tested before or whose
value is known to be insufficient depending on previous tested
values. It prevents loops in the process. If the VM utilization
rate is predicted to be below LUT, the number of VMs is
updating according to lines 17-23. The initial maximum
number of VMs possible in a PM is contingent on either the
policy made by users and their negotiation with IaaS providers.
On the other hand, the minimum number of VMs is initially set
as 1 and it is updated while Algorithm 1 is executed.

The VM utilization rate in line 9 is predicted as the MLE
of a task arrival rate divided by MLE of a task service rate,
which interpreted as the average percent of time or the
probability that a VM undertakes a task. In the literature, time-
series techniques have been applied to VM or resource usage
prediction. For example, Huang et al. [15] present a good
resource prediction model (for CPU and memory utilization).
One may replace our VM utilization prediction method in line
9 with the result in Huang et al. [15] or others; thus, it can
enhance the accuracy of the proposed scaling scheme. Finally,
Algorithm 1 ends if the calculated value of c does not violate
the SLA and the VM utilization rate exists between UUT and
LUT. Computation time of Algorithm 1 is governed by the
repeat loop between lines 6-24. The number of iterations in the
loop depends on finding the proper value of c which satisfies
the SLA compliance and VM utilization rate assurance.

Algorithm 1. VM-level scaling

Input: task arrival time i , 0, , i n 

Input: task service time j , 0, , j m 

Input: SLA constraint d and 
Input: VM utilization thresholds UUT and LUT
Output: Number of VMs c

1:
1

ˆ n
ii

n 


  ;

2:
1

ˆ
m

jj
m 


  ;

3: c  number of current VMs;

4: MAX_VM maximum number of VMs possible in a

PM;
5: MIN_VM 1;

6: repeat
7: newc c ;

8: VM
ˆ ˆ / c  ;

9: VM_utilization_rate VM
ˆ ˆ/  ;

10: SLA_violation_prob ()W d ; // ()W x in (6)

11: if (SLA_violation_prob  || VM_utilization_rate

 UUT) then
12: 0.05c c c   ;

13: MIN_VM 0.1c  ;

14: if (c  MAX_VM) then

15: c  MAX_VM;
16: end if
17: else if (VM_utilization_rate  LUT) then
18: MAX_VM c ;

19: c  MIN_VM + (MAX_VM – MIN_VM) 0.5 ;

20: if (c  MIN_VM) then

21: c  MIN_VM;

22: end if
23: end if
24: until (c newc)

25: return (c  ) //    denotes a ceiling function

4. EXPERIMETAL RESULTS

In this section, we present numerical experiments to
validate the proposed VM-level auto-scaling algorithm. We
now consider following experiment assumptions: i) 50 VMs are
currently provisioned in a PM; ii) A PM can provision at most
200 VMs due to the limited physical resources; iii) The task
response time should be less than 20 seconds with probability
99.5% (i.e., the SLA violation probability should be lower than
0.5%); iv) A VM utilization rate should exist between 50%
(LUT) and 60% (UUT). With the simulated task inter-arrival
time data whose size is 950,237 and the service time data
whose size is 886,471, a task arrival rate and a service rate are

respectively estimated as ̂  47.616 tasks/sec and ̂  1.032

tasks/sec. Under these input values, the SLA violation
probability and the VM utilization rate are respectively
calculated as 16.74% and 92.29% (see the first row in Table 1).

Doo Ho Lee : An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory

Approach
33

International Journal of Contents, Vol.13, No.2, Jun. 2017

Applying Algorithm 1 to the scale-up case, it gives the
desired value 77.57 of c in 9th iteration; therefore, we are
recommended to provision more 28 VM instances in a PM. In
case of 78 VMs being provisioned in a PM, the SLA violation
probability is expected to be 0.37% which complies with the
response time SLA and the VM utilization rate is expected to
be 59.16%, which assures the VM utilization rate constraint.

Table 1. Experiment result: Scaling-up case

Iteration
SLA violation
probability (%)

VM Utilization
rate (%)

Number of VMs

0 16.74357 92.29201 50

1 9.71879 87.89715 52.5

2 6.04034 83.71157 55.125

   

8 0.56372 62.46686 73.87277

9 0.38966 59.49225 77.56641

Next, in the scaling-down case, we use the same

assumptions as the scaling-up case except for the first
assumption: 120 VMs are currently being provisioned in a PM.
In our scaling-down case, although the SLA violation
probability is lower than 0.05%, the VM utilization rate is
lower than LUT (see the first row in Table 2). Applying
Algorithm 1, we finally obtain the proper number 77.26 of c ;

thus, if we remove 42 VM instances, the SLA violation
probability is expected to be 0.37% which complies with the
response time SLA and the VM utilization rate is expected to
be 59.16%, which assures the VM utilization rate constraint.
Note that both in the scaling-up case and in the scaling-down
case, it is recommended to provision 78 VMs in a PM under the

same values of ̂ and ̂ .

Table 2. Experiment result: Scaling-down case

Iteration
SLA violation
probability (%)

VM Utilization
rate (%)

Number of VMs

0 0.01361 38.45500 120

1 2.68980 76.27439 60.5

2 1.81132 72.64227 63.525

   

5 0.583491 62.75113 73.87277

6 0.403263 59.76298 77.21503

5. CONCLUSION

Although the scaling operation of the cloud computing
system has several benefits, there are still complexities
deciding the proper number of VM instances being provisioned
in a PM due to the fluctuation and of task request arrivals. To
counter those complexities, this work presented an efficient and
simple VM-level scaling scheme using an analytical
performance of an M/M/1-PS queueing model. The goal of the
proposed scaling scheme is to decide the proper number of VM
instances satisfying the SLA target related to the response time

and the utilization rate of available VMs. Experimental results
show that our VM-level scaling algorithm works well to fine
the proper number of VM instances complying with SLAs.

One of the future research topics is to model a VM as a
finite buffer system. In other words, we should investigate the
task dropping (or blocking) phenomena due to the limited
capacity of a VM. It may be more realistic to model a VM as a
finite buffer processor sharing queue.

ACKNOWLEDGEMENT

This study was supported by 2016 Research Grant from
Kangwon National University.

REFERENCES

[1] M. K. Kim and J. Y. Choi, “An efficient two-phase
heuristic policy for acceptance control in IaaS cloud
service,” Journal of the Society of Korea Industrial and
Systems Engineering, vol. 38, no. 2, 2015, pp. 91-100.

[2] T. W. Um, H. Lee, R. Woo, and J. K. Choi, “Dynamic
resource allocation and scheduling for cloud-based virtual
content delivery networks,” ETRI Journal, vol. 36, no. 2,
2014, pp. 197-205.

[3] Z. Zhuang and C. Guo, “Building cloud-ready video
transcoding system for content delivery networks
(CDNs),” Proc. IEEE GCC, 2012, pp. 2048-2053.

[4] J. He, Y. Wen, J. Huang, and D. Wu, “On the cost-QoE trade-
off for cloud-based video streaming under Amazon EC2’s
pricing models,” IEEE Transactions on Circuits and Systems
for Video Technology, vol. 24, no. 4, 2013, pp. 669-680.

[5] S. P. Ponnusamy and E. Karthikeyan, “Cache optimization
on hot-point proxy caching using weighted-Rank cache
replacement policy,” ETRI Journal, vol. 35, no. 4, 2013,
pp. 687-696.

[6] R. S. Huckman, G. P. Pisano, and L. Kind, Amazon web
service, Harvard Business School Case (609-048), 2008.

[7] http://www.rightscale.com.
[8] http://software.dell.com/products/cloud-manager.
[9] H. Masuyama and T. Takine, “Sojourn time distribution in

a MAP/M/1 processor-sharing queue,” Operations
Research Letters, vol. 31, no. 5, 2003, pp. 406-412.

[10] H. C. Tijms, Stochastic models: an algorithmic approach,
John Wiley & Sons, Inc, 1994.

[11] F. Guillemin and J. Boyer, “Analysis of the M/M/1 queue
with processor sharing via spectral theory,” Queueing
Systems, vol. 39, no. 4, 2001, pp. 377-397.

[12] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the
art of virtualization,” Proc. ACM SOSP, 2003, pp. 164-177.

[13] B. Sotomayor, R. S. Montero, I. M. Llorente, and I. Foster,
“Virtual infrastructure management in private and hybrid
clouds,” IEEE Internet Computing, vol. 34, no. 5, 2009,
pp. 14-22.

[14] O. Litvinski and A. Gherbi, “Openstack scheduler
evaluation using design of experiment,” Proc. IEEE
ISORC, 2013, pp. 1-7.

34 Doo Ho Lee : An Efficient VM-Level Scaling Scheme in an IaaS Cloud Computing System: A Queueing Theory
Approach

International Journal of Contents, Vol.13, No.2, Jun. 2017

[15] J. Huang, C. Li, and J. Yu, “Resource prediction based on
double exponential smoothing in cloud computing,” Proc.
IEEE CECNet, 2012, pp. 2056-2060.

Doo Ho Lee
He is an assistant professor in the
department of Industrial and
management engineering at Kangwon
National University in Republic of
Korea. He obtained his Ph.D. in
Industrial Engineering from Korea
Advanced Institute of Science and

Technology (KAIST), Republic of Korea. The focus of his
research is on theory and application of queueing systems.

