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ABSTRACT 
 

Cloud computing is becoming an effective and efficient way of computing resources and computing service integration. Through 
centralized management of resources and services, cloud computing delivers hosted services over the internet, such that access to 
shared hardware, software, applications, information, and all resources is elastically provided to the consumer on-demand. The 
main enabling technology for cloud computing is virtualization. Virtualization software creates a temporarily simulated or extended 
version of computing and network resources. The objectives of virtualization are as follows: first, to fully utilize the shared resources 
by applying partitioning and time-sharing; second, to centralize resource management; third, to enhance cloud data center agility 
and provide the required scalability and elasticity for on-demand capabilities; fourth, to improve testing and running software 
diagnostics on different operating platforms; and fifth, to improve the portability of applications and workload migration capabilities. 
One of the key features of cloud computing is elasticity. It enables users to create and remove virtual computing resources 
dynamically according to the changing demand, but it is not easy to make a decision regarding the right amount of resources. Indeed, 
proper provisioning of the resources to applications is an important issue in IaaS cloud computing. Most web applications encounter 
large and fluctuating task requests. In predictable situations, the resources can be provisioned in advance through capacity planning 
techniques. But in case of unplanned and spike requests, it would be desirable to automatically scale the resources, called auto-
scaling, which adjusts the resources allocated to applications based on its need at any given time. This would free the user from the 
burden of deciding how many resources are necessary each time. In this work, we propose an analytical and efficient VM-level 
scaling scheme by modeling each VM in a data center as an M/M/1 processor sharing queue. Our proposed VM-level scaling scheme 
is validated via a numerical experiment. 
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1. INTRODUCTION 
 

The attention to user on-demand cloud services has 
spurred the migration of increasing numbers of applications to 
the cloud [1]. One of the attractive features of cloud services to 
application providers is the ability to access computing 
resources such as shared hardware, software, application, and 
information elastically according to dynamic resources 
demands. A cloud computing system provides a dynamic pool 
of virtualized computing resources and offers an elastic scheme 
matching the user demands, so that allocated computing 
resources can be scaled-up or scaled-down on a pay-as-you-go 
basis [2]. 

In an Infrastructure-as-a-Service (IaaS) cloud, users can 
launch their virtual machines (VMs) with required computing 
resources, and an IaaS cloud is able to control and maintain 
several VMs on physical machines (PMs) with remarkable 
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flexibility [3]-[5]. One of the main goals in IaaS cloud 
computing system is to allocate computing resources that are 
truly needed without violating service level agreements (SLAs). 
SLAs describe all aspects of cloud service usage and 
obligations between users and cloud service providers 
including the price for cloud services, Quality-of-Service levels 
required while the services are provisioned, and penalties with 
regard to SLA violations. To achieve such a goal, IaaS cloud 
providers and third party cloud services offer rule-based (or 
schedule-based) scaling policies to help users automatically 
scale-up and scale-down resources, called auto-scaling. 
Decisions of scaling-up or scaling-down are made according to 
the last values of monitored variables. Amazon AWS Auto-
Scaling [6] and some cloud service brokers such as Rightscale 
[7] and Dell Cloud Manager [8] offer rule-based auto-scaling 
schemes to allow users to add and remove resource at a given 
time. Most of the schemes are based on resource utilization, 
such as “Create 5 VMs if the average CPU utilization rate 
exceeds 70% over the past 10 minutes.” In this rule, by the way, 
users may wonder whether 5 VMs are enough or not. In other 
words, VMs under-provisioning will inevitably harm 
performance and cause SLAs violations, while VMs over-

https://doi.org/10.5392/IJoC.2017.13.2.029 
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provisioning will lead to resources idle and cost waste. 
Therefore, the main objective of an auto-scaling is to decide the 
proper number of VMs provisioned in a PM without user’s 
intervention while satisfying SLAs. 

In this work, we propose a novel VM-level scaling scheme 
by modeling a VM as a processor-sharing queue. Note that in 
practical cloud computing system, not only task request arrivals 
but also task executions are random, which means cloud 
computing system should adapt to uncertainties such as 
variations of both task arrivals and task executions. It is 
obvious that these uncertainties should have a great impact on 
resource performance. This motivates us to investigate 
stochastic cloud computing system in order to develop an 
efficient auto-scaling scheme. The proposed scheme decides 
the proper number of VM instances in a PM while satisfying 
the SLA related to the response time and VM utilization 
thresholds. 
 
 

2. QUEUEING MODEL 
 

In this section, we model a VM as a processor sharing 
(PS) queue. Tasks arrive at a PM following the Poisson process 
at a rate  . While the number of potential clients is high, each 

client typically submits a task at a time with low probability. 
Therefore, the task arrival can be adequately modeled as a 
Poisson process. We assume that the number c  of identical 

VMs are currently provisioned in a PM and an arriving task is 
assigned to one of the VMs in a round-robin manner. Not only 
Amazon AWS [6] but also other IaaS cloud services practically 
adopt a round-robin task assignment policy for easy load 
balancing of PMs. Due to the decomposition property of a 
Poisson process, the task arrival process in a VM also follows a 
Poisson process at a rate / c  (see Fig. 1). The task service 
time is assumed to have the exponential distribution with a rate 
of  . Unfortunately, the assumption of exponential service 

time is not as general as the task arrival time distribution. But it 
could still be a reasonable assumption when no other data is 
available about service times. The task process duration define 
the service time for utilization of a VM. Let us see if the task 
process duration can be assumed to be exponentially distributed. 
A single VM takes a very small fraction of the resources of the 
IaaS cloud data center. Furthermore, decisions on how long to 
use a VM are independently made by each task. From these 
phenomena, it appears that exponential service times are a good 
fit. Intuitively, the probability of a task making a very long 
process duration is very small. There is a high probability that a 
task process duration will be short. This matches with the 
observation that service times of a VM can follows exponential 
distributions. Let   denote the utilization rate (or offered 

load) of a VM, i.e. 1( / )c   . Throughout this work, we 

assume 1   for each VM to be stable. 

 

 
Fig. 1. The architecture of IaaS cloud computing system 

 
Consider an M/M/1 queue where the queue discipline is 

processor-sharing (time-sharing). This discipline implies if 
there are already 1n   tasks in a VM, then an arriving task as 
well as the other (waiting) tasks in a VM all start receiving 
service immediately at the average rate of / n . There is no 

queue (waiting space) as such, and the service rate at which 
tasks receive service changes each time a new task joins a VM 
and each time a task whose service requirements is fully met 
departs from a VM. It is highly reasonable to model a VM as 
an M/M/1 processor sharing queue since VM instances are 
generally equipped with a multiple-core virtual central 
processing unit (CPU) and the hyper-threads technology. It 
should be noted that the probability distribution of the number 
of tasks in the M/M/1 processor sharing queue, namely M/M/1-
PS queue, is stochastically equivalent to that of the ordinary 
M/M/1 queue due to the memoryless property of the 
exponential task service time distribution. Let np  denote the 

probability that there exist n tasks in a VM. Then, np  is given 

by 
 

(1 ) n
np    , 0,  1,  n   .  (1) 

 
Next, we investigate the response time distribution. The 

response time is defined as the time length between a task 
arrival epoch and at task departure epoch. Among lots of 
previous works finding the response time distribution of 
various PS queues, we introduce Masuyama and Takine [9]’s 
result, which is relatively simple and gives the explicit form of 
the response time distribution. A randomly chosen task who 
finds n  tasks in a VM upon arrival is called nT . Let nW  

denote a random variable representing the response time of task 

nT . We define ( ) Pr{ }n nw x W x  , for 0x  , and 

0,  1,  n   . It is easy to see that (0) 1nw   and ( )nw x  

satisfies the following differential-difference equations: 
 

( ) ( )
d

x x
dx

 w P w ,       (2) 

 

where  0 1 2( ) ( ),  ( ),  ( ),  x w x w x w xw 
•

 and P  is 

defined as 
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The solution of (2) is generally given by 

 ( ) expx xw P e , where  1,  1,  1,  e 
• . By making use of 

the uniformization technique [10], we obtain 
 

( / )

,

0

( / )
( )

!

k k c x

n n k

k

c x e
w x h

k

    




 .     (3) 

 
The quantities ,n kh  in (3) satisfy the following 

recurrence relations: 
 

, 1 1, 1,
1

11 1n k n k n k
n

h h h
n


    

  
,    (4) 

 
where the boundary conditions are given by ,0 1nh   and 

1, 0kh  . Let ( )W x  denote the probability that the response 

time is longer than x. By the total probability theorem, ( )W x  

is expressed as 
 

0

( / )

,

0 0

( ) Pr{response time } ( )

( / )
        (1 ) .

!

n n

n

k k c x
n

n k

n k

W x x p w x

c x e
h

k

   




   

 

  


 



 
 (5) 

 
It should be noted that recurrence equations in (4) can be 

used to figure out the characteristics of the function ( )W x  in 

(5). Since these expressions are, however, numerically unstable, 
various approximation techniques for calculating the response 
time probability have been developed. Among them, we 
introduce Guillemin and Boyer [11]’s approximation technique. 
By utilizing the spectral theory, Guillemin and Boyer [11] 
presents the following asymptotic distribution function of 

( )W x  for 0x  : 

 

 
 2

21
2 1

1
( ) ( )exp ,B K

D D
C

W x G x xC C
 

 
    
 
 

 (6) 

 
where  

 

  1 0.28 2.28A     , 

 1
1.42 0.28 0.14B


 




   , 

 20.28 1C   , 0.72 0.28D   , 

BC
K A

D
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22 (1 )
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( )
G x

H x

 



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3 33 2
2 1 1 2 2
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2 1

2 2
( ) 1 1

C x C C C C x
H x

C x CD D

   
          

   
, 

 
1 2

1

AD BC
C

C 




 
 and  22 0.72 1C   . 

 
Numerical simulations conducted in Guillemin and Boyer 

[11] reveal that the approximation in (6) is very accurate for 
high values of   and is less accurate when   decreases, 

but even for   in range of [0.55, 0.7], it still yields a not so 

bad estimate of ( )W x . It is reasonable to use the above 

approximation when computing the response time probability. 
 
 

3. VM-LEVEL AUTO-SCALING 
 

Our VM-level scaling scheme runs continuously to ensure 
that scaling goals are met at all times. We establish the 
following design goals for our VM-level scaling approach: 

 
 Automation: All decisions related to scaling VMs should 

be made automatically without human intervention. 
 Adaptation: The IaaS cloud computing system should 

adapt to uncertainties such as a variation in task arrivals 
and task processes. 
 SLA compliance: The cloud computing system should 

comply with SLAs at any given time. 
 VM utilization assurance: Utilizations of all VMs in a PM 

should be within the control range, i.e. between the lower 
utilization threshold (LUT) and the upper utilization 
threshold (UUT). 

 
The proposed VM-level scaling scheme assumes all VMs 

have the same hardware and software configuration, thus they 
deliver the same performance. It can be achieved in practice 
with proper configuration and management of VMs either via a 
hypervisor such as Xen [12] or via high-level virtual 
environment managers such as OpenNebula [13] and 
OpenStack [14]. VMs with heterogeneous specifications may 
also be instantiated in the same PM. In such a case, we have to 
decide when to scale VMs with different specifications, and 
this topic is subject of future research. 

Most operation control analyses in the cloud computing 
system should be based on the task arrival pattern. From this 
point of view, the scaling analysis should also begin with 
identifying (updating) the task arrival rate. Due to the Poisson 
task arrivals, the inter-arrival time of between two consecutive 

tasks follows the exponential distribution with a mean 1 . 

Let i  denote the i th observation of the task inter-arrival 

time. The log-likelihood function is given by 
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1

1

( ; , , ) ln
n

n i

i

l n     


   .  (7) 

 
From (7), the maximum likelihood estimator (MLE) of   

is given by 
1

n
ii

n 
 . The strong law of large number 

guarantees 
1

n
ii

n 
  converges to   as the value of n  

increases. When we finish updating the estimation of the task 
arrival rate, we check whether the current pool of VMs 
complies with SLAs or not. Only SLA considered in this work 
is the response time, which means “ ( ) %W d  ” is stated in 

the SLA, for example. To make this SLA verification, we then 
identify the current task service rate. The MLE of   is also 

calculated as 
1

m
jj

m 
 , where j  is the j th 

observation of the task service time. The estimated task service 
rate is used to predict the response time of a task, the VM 
utilization rate, and other performance measures. 

We now introduce the VM-level auto scaling scheme 
based on the M/M/1-PS queueing system in Algorithm 1. 
Briefly summarizing Algorithm 1, the number of required VMs 
c is updated relying on the SLA related to response time, VM 
utilization, the MLEs of task arrival rate and task service rate, 
and maximum and minimum values of c . If the SLA is 

violated or VM utilization rate exceeds UUT, c  is 
recalculated according to lines 11-16. In addition, we keep 
track of both maximum and minimum values of c  in order to 
get the number of VMs that either been tested before or whose 
value is known to be insufficient depending on previous tested 
values. It prevents loops in the process. If the VM utilization 
rate is predicted to be below LUT, the number of VMs is 
updating according to lines 17-23. The initial maximum 
number of VMs possible in a PM is contingent on either the 
policy made by users and their negotiation with IaaS providers. 
On the other hand, the minimum number of VMs is initially set 
as 1 and it is updated while Algorithm 1 is executed. 

The VM utilization rate in line 9 is predicted as the MLE 
of a task arrival rate divided by MLE of a task service rate, 
which interpreted as the average percent of time or the 
probability that a VM undertakes a task. In the literature, time-
series techniques have been applied to VM or resource usage 
prediction. For example, Huang et al. [15] present a good 
resource prediction model (for CPU and memory utilization). 
One may replace our VM utilization prediction method in line 
9 with the result in Huang et al. [15] or others; thus, it can 
enhance the accuracy of the proposed scaling scheme. Finally, 
Algorithm 1 ends if the calculated value of c  does not violate 
the SLA and the VM utilization rate exists between UUT and 
LUT. Computation time of Algorithm 1 is governed by the 
repeat loop between lines 6-24. The number of iterations in the 
loop depends on finding the proper value of c  which satisfies 
the SLA compliance and VM utilization rate assurance. 

 
 
 

Algorithm 1. VM-level scaling 

Input: task arrival time i , 0,  ,  i n   

Input: task service time j , 0,  ,  j m   

Input: SLA constraint d  and   
Input: VM utilization thresholds UUT and LUT 
Output: Number of VMs c  

1:   
1

ˆ n
ii

n 


  ; 

2:   
1

ˆ
m

jj
m 


  ; 

3:   c  number of current VMs; 

4:   MAX_VM maximum number of VMs possible in a 

PM; 
5:   MIN_VM 1; 

6:   repeat 
7:      newc c ; 

8:      VM
ˆ ˆ / c  ; 

9:      VM_utilization_rate VM
ˆ ˆ/  ; 

10:     SLA_violation_prob ( )W d ; // ( )W x  in (6) 

11:     if (SLA_violation_prob   || VM_utilization_rate 

  UUT) then 
12:        0.05c c c   ; 

13:        MIN_VM 0.1c  ; 

14:        if ( c   MAX_VM) then 

15:           c  MAX_VM; 
16:        end if 
17:     else if (VM_utilization_rate   LUT) then 
18:        MAX_VM c ; 

19:        c  MIN_VM + (MAX_VM – MIN_VM) 0.5 ; 

20:        if ( c   MIN_VM) then 

21:           c  MIN_VM; 

22:        end if 
23:     end if 
24:   until ( c newc ) 

25:   return ( c   ) //     denotes a ceiling function 

 
 

4. EXPERIMETAL RESULTS 
 

In this section, we present numerical experiments to 
validate the proposed VM-level auto-scaling algorithm. We 
now consider following experiment assumptions: i) 50 VMs are 
currently provisioned in a PM; ii) A PM can provision at most 
200 VMs due to the limited physical resources; iii) The task 
response time should be less than 20 seconds with probability 
99.5% (i.e., the SLA violation probability should be lower than 
0.5%); iv) A VM utilization rate should exist between 50% 
(LUT) and 60% (UUT). With the simulated task inter-arrival 
time data whose size is 950,237 and the service time data 
whose size is 886,471, a task arrival rate and a service rate are 

respectively estimated as ̂  47.616 tasks/sec and ̂  1.032 

tasks/sec. Under these input values, the SLA violation 
probability and the VM utilization rate are respectively 
calculated as 16.74% and 92.29% (see the first row in Table 1).  
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Applying Algorithm 1 to the scale-up case, it gives the 
desired value 77.57 of c in 9th iteration; therefore, we are 
recommended to provision more 28 VM instances in a PM. In 
case of 78 VMs being provisioned in a PM, the SLA violation 
probability is expected to be 0.37% which complies with the 
response time SLA and the VM utilization rate is expected to 
be 59.16%, which assures the VM utilization rate constraint. 

 
Table 1. Experiment result: Scaling-up case 

Iteration 
SLA violation 
probability (%) 

VM Utilization 
rate (%) 

Number of VMs

0 16.74357 92.29201 50 

1 9.71879 87.89715 52.5 

2 6.04034 83.71157 55.125 

      

8 0.56372 62.46686 73.87277 

9 0.38966 59.49225 77.56641 

 
Next, in the scaling-down case, we use the same 

assumptions as the scaling-up case except for the first 
assumption: 120 VMs are currently being provisioned in a PM. 
In our scaling-down case, although the SLA violation 
probability is lower than 0.05%, the VM utilization rate is 
lower than LUT (see the first row in Table 2). Applying 
Algorithm 1, we finally obtain the proper number 77.26 of c ; 

thus, if we remove 42 VM instances, the SLA violation 
probability is expected to be 0.37% which complies with the 
response time SLA and the VM utilization rate is expected to 
be 59.16%, which assures the VM utilization rate constraint. 
Note that both in the scaling-up case and in the scaling-down 
case, it is recommended to provision 78 VMs in a PM under the 

same values of ̂  and ̂ . 

 
Table 2. Experiment result: Scaling-down case 

Iteration 
SLA violation 
probability (%) 

VM Utilization 
rate (%) 

Number of VMs

0 0.01361 38.45500 120 

1 2.68980 76.27439 60.5 

2 1.81132 72.64227 63.525 

      

5 0.583491 62.75113 73.87277 

6 0.403263 59.76298 77.21503 

 
 

5. CONCLUSION 
 

Although the scaling operation of the cloud computing 
system has several benefits, there are still complexities 
deciding the proper number of VM instances being provisioned 
in a PM due to the fluctuation and of task request arrivals. To 
counter those complexities, this work presented an efficient and 
simple VM-level scaling scheme using an analytical 
performance of an M/M/1-PS queueing model. The goal of the 
proposed scaling scheme is to decide the proper number of VM 
instances satisfying the SLA target related to the response time 

and the utilization rate of available VMs. Experimental results 
show that our VM-level scaling algorithm works well to fine 
the proper number of VM instances complying with SLAs. 

One of the future research topics is to model a VM as a 
finite buffer system. In other words, we should investigate the 
task dropping (or blocking) phenomena due to the limited 
capacity of a VM. It may be more realistic to model a VM as a 
finite buffer processor sharing queue. 
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