Farticle System Graphics Library for Generating Special Effects 1

Particle System Graphics Library for Generating Special Effects

Eung-Kon Kim"
Department of Computer Science
Sunchon National University, Suncheon, Korea

ABSTRACT

The modeling and animation of natural phenomena have received much attention from the computer graphics community. Synthetic
of natural phenomena are required for such diverse applications as flight simulators, special effects, video games and other virtual
realty. In special effects industry there is a high demand to convincingly mimic the appearance and behavior of natural phenomena
such as smoke, waterfall, rain, and five. Particle systems are methods adequate for modeling fuzzy objects of natural phenomena.

This paper presents particle system API(Application Program Interfaces) for generating special effects in virtual reality applications.
The API are a set of functions that allow C++ programs to simulate the dynamics of particles for special effects in interactive and

non-interactive graphics applications, not for scientific simulation.

Keywords: special effects, particle system, virtual reality, graphics library.

1. INTRODUCTION

The appearance of natural phenomena has always intrigued
humankind. This fascination is evident from the vast array of
depictions of natural phenomena created, ranging from early
cave painting to impressionistic masterworks. With the advent
of photography and film, many aspects of natural phenomena
can be depicted by a semi-automatic procedure. There are,
however many reasons why such depictions are not always
satisfying. Movies require special effects not commonly found
in nature. Also, even if the real phenomenon can be found,
controlling it can be a difficult and even dangerous task. It is
necessary, then, to artificially create phenomena such as
explosions for entertainment. In response to the need to evoke
and control nature, scientists have proposed many descriptive
physical models of natural phenomena.

The visual simulation of virtual environments has many
practical applications. In addition to art and entertainment these
include flight simulation and scientific visualization. Natural
phenomena such as smoke, clouds, grass, and hair, are
ubiquitous. It is therefore important to design convincing visual
simulation for them.

Particle systems are a method for modeling fuzzy objects
such as fire, clouds, water, smoke, and so on. Simulation of
dynamic particle systems has been used in computer animation
for several years and has more recently been used in real-time
simulation and games to enrich the visual appearance of the
virtual worlds. A particle system is composed of one or more
individual particles. Each of these particles has attributes that
directly or indirectly affect the behavior of the particle or how

Corresponding author. E-mail: kek@sunchon.ac.kr
Manuscript received Apr. 20, 2006 ; accepted Jun. 20, 2006

and .where the particle is rendered. The other common
characteristic of all particle systems is the introduction of some
type of random element. This random element can be used to
control the particle attributes such as position, velocity and
color[1-3].

The goal of this paper is to develop particle system graphics
library module for modeling special effects in virtual reality
applications. The library can be based on some existing code
such as particle system API[3]. The tasks would be then to
integrate such code into C++ especially with its rendering
module (the particles should be probably based on the shaders),
and further to define some higher-level way of controlling the
effects. Designer of the scene will be dealing with fuzzy object
primitives such as fire or smoke and their parameters such as
location, intensity, color etc., not directly with equations
describing underlying particle system.

The next chapter introduces particle system for special
effects, chapter 3 presents the particle system API for
generating special effects in virtual reality applications, and
finally chapter 4 concludes and discusses future works.

2. PARTICLE SYSTEM

The use of Particle systems is a way of modeling fuzzy
objects, such as fire, clouds, smoke, water, etc. These don't
have smooth well-defined surfaces and are non-rigid objects,

This work is financially supported by the Ministry of
Education and Human Resources Development(MOE), the
Ministry of Commerce, Industry and Energy(MOCIE) and the
Ministry of Labor(MOLAB) through the fostering project of the
Industrial-Academic Cooperation Centered University

i.e., they are dynamic and fluid. Particle systems differ in three
ways from "normal" representations for image synthesis:

a. An object is not represented by a set of primitive surface
elements, e.g., polygons or patches, but as clouds of primitive
particles that define its volume.

b. A particle system is not a static entity, its particles change
form and move. New particles are created and old particles are
destroyed.

c. An object represented by a particle system is not
deterministic, its shape and form is not completely specified.
Stochastic processes are used to create and change an object's
shape and appearance. Note that particle systems can be used in
a deterministic way to create certain objects, e.g., the human
head in the video "Particle Dreams" by Karl Sims[2].

Particle systems are an example of stochastic procedural
modeling, similar to fractals, and have some of advantages,
such as the following:

a. Complex systems can be created with little human effort.

b. The level of detail can be easily adjusted. For example, if
a particle system object is in the distance, then it can be
modeled in low detail (few particles), but if it is close to the
camera, then it can be modeled in high detail (many particles).

2.1 Basic Model of Particle Systems

A particle system is a collection of many minute particles
that model an object. For each frame of an animation sequence
the following steps are performed:

a. New particles are generated

b. Each new particle is assigned its own set of attributes

c. Any particles that have existed for a predetermined time
are destroyed

d. The remaining particles are transformed and moved
according to their dynamic attributes

€. An image of the remaining particles is rendered

2.2 Particle Attributes

Each new particle has the following attributes:

a. initial position

b. initial velocity(speed and direction)

c. initial size

d. initial color

e. initial transparency

f. shape

g. lifetime

A particle system has several parameters that control the
initial position of the particles:

a. X, Y, Z (the particle system origin)

b. Two angles of rotation that give its orientation

c. A generation shape which defines the region around the
origin in which new particles are placed, e.g., a sphere of radius
R. These shapes can be simple or quite complicated.

The generation shape describes the initial direction of new
particles, e.g., for a sphere the particles would move away from
the origin in all directions. For a planar shape, e.g. a circle in
the x-y plane, the particles would move up and away from the
plane (not necessarily straight up, this would be determined by
the rotation angles).

The Journal of the Korea Contents Association

The initial speed of a particle can be given by:
Initial Speed = MeanSpeed + Rand() * VarSpeed
The initial color can be:

InitialColor = Meancolor(R,G,B) + Rand() *
VarColor(R,G,B)

The initial opacity can be:

InitialOpacity = MeanOpacity(R,G,B) + Rand() *
VarOpacity(R,G,B)

The initial size can be:
InitialSize = MeanSize + Rand() * VarSize

There is also a parameter that specifies the shape of each
particle, e.g., spherical, rectangular, or streaked spherical (for
motion blur).

2.3 Particle Dynamics

A particle's position in each succeeding frame can be
computed by knowing its velocity (speed and direction of
movement). This can be modified by an acceleration force for
more complex movement, e.g., gravity simulation.

A particle's color can be modified by a rate-of-color-change
parameter, its opacity by a rate-of-opacity-change parameter,
and its size by a rate-of-size-change parameter. These rates of
change can be global, i.e. the same for all particles, or they can
be stochastic for each particle.

2.4 Particle Extinction

When a particle is created it can be given a lifetime in frames.
After each frame, this is decremented and when the Lifetime is
Zero, the particle is destroyed. Another mechanism might be
that when the color/opacity is below a certain threshold the
particle is invisible and is destroyed. When a particle has left
the region of interest, i.e., is a certain distance away from its
origin, it could be destroyed.

2.5 Particle Rendering

Particles can obscure other particles behind them, can be
transparent, and can cast shadows on other particles. They can
also interact with other, conventionally modeled primitives. In
this system the authors made two assumptions. The first was
that the particle systems do not intersect with other primitives
(so the rendering system only has to handle particles). The
other objects in a scene are rendered separately and then
compounded with the particle system images. If the particles do
interact with other objects, e.g., go behind them, then the
images are divided into sub-images which are compounded.

A second approximation is that the particles are light sources,
that additively combine according to their color and opacity
values. This eliminates the hidden surface problem since
particles do not obscure each other but just add more light to a
given pixel. It also eliminates shadows.

3. THE PARTICLE SYSTEM API FOR
GENERATING SPECIAL EFFECTS IN VIRTUAL
REALITY

Particle System Graphics Library for Generating Special Effects 3

3.1 The Particle System API

The particle system API consists of four sets of functions.
These are particle group functions that operate on and manage
particle groups, particle attribute functions that set the current
state of the API, particle action functions that act on particle
groups, and particle action list functions that create and operate
on action lists[3].

API function names take the form particleFunctionName.
Most calls are defined with default values for the lesser-used
arguments to simplify the application developer's coding in the
common case.

Particle attribute functions are used to set attributes of
particles to be created. The followings are principle particle
attribute functions.

void particleColor(...) //set the color of new particles

void particleSize(...) //set size of new particles

void particlelnitial Age(...) //set initial age of new particles
void particleTimeStep(...) //set time step length

void particleVelocity(...) //set initial velocity of new particles

A particle group is a system of particles that are acted on
together. The following particle group functions create and deal
with particle group.

int particleCreateGroups(...) //create particle groups

void particleChangeGroup(...) //change a particle group

void particleDeleteGroups(...) //delete particle groups

void particleDrawGroup(...) //draw a particle group

int particleGetNumberParticles() //get the number of
particles in the current group

int particleChangetMaxParticles(...)

//change the maximum number of particles

Action functions directly manipulate particles in particle
groups. They perform effects such as gravity, explosions,
bouncing, etc. to all particles in the current particle group. A
program typically creates and initializes one or more particle
groups, then at run time it calls particle action functions to
animate the particles and finally draws the group of particles on
the screen.

void particleAccelerate(...)

/laccelerate each particle toward each other particle
void particleAccelerationy...)

//accelerate particles in the specific direction
void particleAcceleratePoint(...)

//accelerate particles toward the specific point

void particleAccelerateRandom(...)

//accelerate particles in random directions
void particleAdd(...) //add particles in the specific domain
void particleBounce(...)
//bounce particles off a domain of space
void particleChangeColor(...)
//change color of all particles into the specific color
void particleChangeSize(...)
//change size of all particles into the specific size
void particleChangeVelocity(...)

//change velocity of all particles into the specific velocity
void particleDampen(...) //dampen particle velocities
void particleExplode(...) //explode

void particleJet(...)

//accelerate particles near the center of the jet

void particleMove()
//move particle positions based on velocity
void particleRemove(...) . //remove old particles

void particleRemoveOff{...)
//remove particles with positions off the specific domain
void particleSwirl(...) //swirl particles around a vortex

Action lists are blocks of actions that are applied together to
a particle group. They are conceptually similar to scripts or
procedures. They can be also be thought of as similar to display
lists in OpenGL. An action list abstracts the specifics of a
particular effect and allows complex effects to be treated as
primitives like actions. The followings are principle particle
action list functions.

void particleApplyActionListt(...) -
//apply the action list to the particle group
void particleCreateActionList(...)

/lcreate the specific action list

void particleEndActionList()

//end the creation of a new action list
void particleGenerateActionLists(...)
//generate empty action lists

void particleRemoveActionLists(...)
//remove consecutive action lists

3.2 Applications of the Particle System API

Library functions are called to generate special effects.
Programmer of the scene will be dealing with fuzzy object
primitives such as explosion or waterfall and their parameters
such as location, intensity, color etc., not directly with
equations describing underlying particle system. Figure 1
represents pseudo code for calls of particle system API[3].

for each particle group i
particleChangeGroup(i) //change particle group
for each time step per frame

particleAdd(...)
//add particles in the specific domain
other actions.... //perform other actions
particleMove() //move particle positions
end for
particleDrawGroup(...) //draw particles
end for
other drawing... /ldraw others

Fig. 1. Pseudo code for calls of particle system API

The following figure 2 and figure 3 represent the part of C
code and the execution screen to generate a Fountain effect
respectively.

The Journal of the Korea Contents Association

void Fountain(bool do_list = true)

{ pVelocityD(PDCylinder,

0.0, -0.01, 0.35, 0.0, -0.01, 0.37, 0.021, 0.019);
pColorD(1.0, PDLine, 0.8, 0.9, 1.0, 1.0, 1.0, 1.0);
pSize(1.5);
static int al = -1;
if(al=-1)

{ al=pGenActionLists(1);
pNewActionList(al);
pSource (150,PDLine, 0.0,0.0,0.401,0.0,0.0,0.405);
pEndActionList(); }
if(do_list && action_handle<0)
action_handle = pGenActionLists(1);
if(do_list)
pNewActionList(action_handle);
pCopyVertexB(false, true);
pCallActionList(al);
pGravity(0.0, 0.0, -0.01);
pSinkVelocity(true, PDSphere, 0, 0, 0, 0.01);
pBounce(-0.05, 0.35, 0, PDDisc, 0, 0,0, 0,0,1, 5);
pSink(false, PDPlane, 0,0,-3, 0,0,1);
pMove();
if(do_list)
pEndActionList(); }

Fig. 2. The part of C code to generate a fountain effect

z ~! ', 5

Fig. 3. Execution screen of a fountain effect using fig. 2

The following figure 4 and figure 5 represent the part of C
code and the execution screen to generate a Explosion effect
respectively.

void Explosion(bool do_list = true)
{ if(do_list && action_handle<0)
action_handle = pGenActionLists(1);
pVelocityD(PDSphere, 0,0,0,0.01,0.01);
pColorD(1.0, PDSphere, 0.5, 0.7, 0.5, .3);
pSize(1.0);
if(do_list)
pNewActionList(action_handle);
pCopyVertexB(false, true);
pDamping(0.999, 0.999, 0.999);

static float i=0;
if(do_list)
i=0;
pOrbitPoint(0, 0, 0, .02, 0.1);
pExplosion(0, 0, 0, 1, 2, 3, 0.1, i+—= (1.0f
float(numSteps)));
pSink(false, PDSphere, 0, 0, 0, 30);
pMove();
if(do_list)
pEndActionList();

}

Fig. 4. The part of C code to generate an explosion effect

Fig. 5. Execution screen of an explosion effect using fig. 4

3.3 Performance

To measure numerical performance of the API, 30,000
points were simulated. Particles were rendered using
GL_POINTS in a 640x480 window. The 2.8 GHz Pentium IV
processor with RADEON 9600 achieved 461fps.

application results in virtual reality

Explosion

|
|
|
l
I
|
|
|

Rain e
O Frame/Second 30,000
Particles textured quad
Chaos © 800+600
O Framme/Second 30,000
M Particles textured quad
3 F © 640~480
2 Fountain =)
@ B Frame/Second 20,000
Particles GL_POINTS
* 800+600
Alom B Frame/Second 20,000 |
Particles GLLPOINTS
. © 640+480 |
Moving ST e
Light
Water Fall
0 20 40 60 80
frames

Fig. 6. Application results

Particle System Graphics Library for Generating Special Effects 5

4. CONCLUSIONS

This paper presents particle system graphics APIs for
generating special effects in virtual reality applications. The
APISs are a set of functions that allow C++ programs to simulate
the dynamics of particles for special effects in interactive and
non-interactive virtual reality applications, not for scientific
simulation.

It is clear which parameter of which action in a particular
effect should be modified for a particular visual result. The
numerical accuracy of the simulation must be scalable and
modifiable by the application. The API is usable for offline
animation and for real-time special effects in virtual reality.
The application programmer is able to specify different
accuracy needs for different effects.

Programmer of the scene will be dealing with fuzzy object
primitives such as fire or smoke and their parameters such as
location, intensity, color etc., not directly with equations
describing underlying particle system.

Future work is to add API functions to generate diverse
effects and to apply them to games and other entertainment
applications.

REFERENCES

{11 Reeves, W. T. Particle Systems - A Technique for
Modeling A Class of Fuzzy Objects, Proc. of
SIGGRAPH ’83, Detroit, Michigan, July, 1983.

[2] Rick Parent, Computer Animation, Algorithms and
Techniques, Morgan Kaufimann Publihers, 2002.

[3] McAllister, D. K. The Design of an API for Particle
Systems, http://cs.unc.edu/~davemc/Particle, 1999.

[4] Leech, J. P. and R. M. Taylor. Interactive Modeling
Using Particle Systems,. Proc. of the 2nd Conference on
Discrete Element Methods, MIT, 1993.

[5] Allen, M. B. Flow - a particle animation application,
http://www.dnai.com/~mba/sortware/flow/, 1999.

[6] William T. Reeves, Particle Systems - A Technique for
Modeling a Class of Fuzzy Objects, Computer Graphics
17:3 pp. 359-376, 1983

Eung-Kon Kim

He received the B.S. degree in electionic
engineering from Chosun University,
Gwangju, Korea, in 1980, the M.S.
degree in electronic engineering from
Hanyang University, Seoul, Korea in
1987 and the Ph.D. degree in computer
engineering from Chosun University in 1992.

He is currently a professor of Department of Computer Science,
Sunchon National University.

He is interested in Computer graphics and its applications.

