On Some Distributions Generated by Riff-Shuffle Sampling 17

On Some Distributions Generated by Riff-Shuffle Sampling

M. S. Son”
Department of Math/Stat
University of Vermont, Vermont, USA

H. I. Hamdy
Department of Business & Information System
Kuwait University, Kuwait

ABSTRACT

The work presented in this paper is divided into two parts. The first part presents finite urn problems which generate truncated
negative binomial random variables. Some combinatorial identities that arose from the negative binomial sampling and truncated
negative binomial sampling are established. These identities are constructed and serve important roles when we deal with these
distributions and their characteristics. Other important results including cumulants and moments of the distributions are given in
somewhat simple forms. Second, the distributions of the maximum of two chi-square variables and the distributions of the maximum
correlated F-variables are then derived within the negative binomial sampling scheme. Although multinomial theory applied to order
statistics and standard transformation techniques can be used to derive these distributions, the negative binomial sampling approach
provides more information and deeper insight regarding the nature of the relationship between the sampling vehicle and the
probability distributions of these functions of chi-square variables. We also provide an algorithm to compute the percentage points of
these distributions. We supplement our findings with exact simple computational methods where no interpolations are involved.
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Random walk with absorbed barriers, Truncated Negative Binomial distribution, Poisson Distribution.

1. INTRODUCTION

There are many practical problems which give rise to the
negative binomial probability model. The distribution is used to
represent the waiting time to reach a predetermined number of
successes with fixed probability of success at any trial. The
probability mass function is the general term in the expansion
of pmg-m, where p, 4 4 =1 . The distribution is also

known as Pascal distribution, Pascal (1679). Kemp (1967)
listed most of commonly used types of negative binomial and
geometric distributions (see Johnson, Kotz, and Kemp (1992)).
The negative binomial arises also from some stochastic models,
for example the time-homogenous-birth and immigration
process with zero initial population was first studied by
McKendrick (1914), Kendall (1949). For detailéd historical
remarks one refers to Johnson, Kotz, and Kemp (1992), pp 203.
Regarding the truncated negative binomial distribution,
Boswell and Patil (1970) modeled the sizes of groups by zero-
truncated negative binomial where the zeroes are not recorded.
Hamdan (1975) has considered the truncated negative binomial
to model the data of Reed and Reed (1965). Ahuja (1971) has
investigated the n-fold convolution of zero-truncated negative
binomial distribution. The concept of truncation in this study,
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however, is used in the sense that the probability mass function
of the regular negative binomial is truncated from right, or
truncated from left. This can be achieved through a finite urn
model experiment or by utilizing the theory of random walk
with absorbed barriers. However, the details concerning these
random experiments will be given in subsequent sections.

In the following subsections, we view the negative binomial
sampling through a sequence of independent trials generated by
either flipping a coin or by urn models. Section 2 presents the
right-truncated negative binomial probability mass function, its
cumulants, and some useful identities. While section 3 treats
the left-truncated negative binomial, its cumulants and some
useful identities. Section 4 discusses the distribution of the
maximum of two ;4. chi—square random variables through
the left truncated negative binomial sampling scheme. The
distribution of the maximum correlated F-variable and its
characteristics is also presented in Section 5 as a distribution
that arises by a left-truncated negative binomial sampling
procedure. Computational algorithms accompanied with critical
values are given for both the distribution of the maximum chi-
square and the distribution of the maximum correlated F-
variable in Section 5.



18

2. NEGATIVE BINOMIAL SAMPLING

Consider a random experiment where an unbalanced coin is
flipped for a sequence of independent trials until the head
appears m times, where m is a specific positive integer
predetermined beforehand. We also assume that at any trial the
probability of observing a head equals p and the probability
of observing a tail equals g , where p + 4 =1 . Upon

observing the m " head, the experiment is terminated. Let
K denotes the number of observed tails preceding the
m ™ head. It is known that the random variable K follows the
negative binomial distribution with the following probability
mass function,

m+ k-1

P(K=k)=( .

J g* p7, k=0,1,2,..

2.1
The special case of p = g =1/2 provides the following

probability mass function of the negative binomial distribution

k-1
PK = k)z(”’ +k J(1/2)'"(1/2)", k=012, ..

2.2)
It follows from (2.2) that
§(m+k-—1j (I/Z)k _gm
k=0 k
2.3)

In the following sections we present different forms of
truncated negative binomial distributions, some characteristics
of negative the binomial sampling vehicle.

2.1 Right-Truncated Negative Binomial Distribution (Riff-
Shuffle Distribution)

Consider two ums A and B each containing m balls. A
sequence of independent trials is performed to select umn
A with probability p and urn B with probability ¢4 , where
p and g are fixed during the sampling course and
p + g = 1 .Atany trial, upon selecting an urn, a ball is drawn

out from the selected urn. Sequentially, the experiment is
continued until one of the two uns is completely exhausted.
Let K be arandom variable representing the number of balls
drawn out from the non-exhausted urn when the other um is
completely exhausted. Clearly, when the experiment is
terminated the non-exhausted urn still contains m — k balls.
Uppuluri and Bolt (1970), Lingappaiah (1987) (see also
Johnson, Kotz, and Kemp (1992), pp 234 equation 5.92, with
the correction x = 0,1 m—1 instead x = 0,1,..., m ,

30es
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for details) proposed the following probability mass function
for the random variable K .

m+k-1

P(sz):( .

J(pmqk +q"p"), k=01,...m-1.
.4)

The probability mass function in (2.4) is a proper probability
mass function, since

"lm+k-1Y kg
p"q" =1,(mm)>
k=0 k

where | » (m,m) is an incomplete beta integral, and

I,(m,m)+I,(m,m)=1" Johnson, Kotz, and Kemp

(1990), page 235, indicated that the distribution can be thought
of as a mixture of a two tailed-truncated negative binomial
distribution.

The problem can also be viewed within the context of the
theory of random walks with absorbed barriers. That is where a
particle moves along the real line one step per unit length at a
time, where moves are independent. Starting at zero, the
particle makes random move to the right with probability p

and to the left with probability g . Moreover, the particle will

be absorbed if it reaches the m " steps in either direction. In
this case the random variable K represents the number of
steps the particle has made in one direction before its
absorption (final state) in the other direction. The probability
mass function of K is given by (2.4).

Assume further the special case where the particle is equally
likely to have a step to the right or a step to the left (where the
probability equals Y% in either direction). Then (2.4) leads to the
following right-truncated negative binomial distribution of the
form

+k-1
P(K=k)= [”’ . J (1/2)"11/2)%, k=01,..,m—1.
(2.5)
Since (2.5) is a proper probability mass function, it follows that

m-1 (m-i—k—l]z_k =2m_1.
k=0 k

(2.6)

This result will be used in subsequent development to simplify
results.
To see that the right-truncated negative binomial model
presented in (2.5) can be obtained by truncating (2.2) from the
right. We recall (2.2) and make use of (2.6). The result is
m—1 _
P(Ksm-1)= Z (m +kk 1](1/2)"(1/2)”’ =1/2"
k=0
Therefore, the probability mass function in (2.5) is obtained by
dividing (2.2) by %. Other characteristics of the distribution in
(2.5), including cumulants, the expected sample size, and the
variance are given in Hamdy et. al. (2003). However, in the
following subsections we focus our investigation on the left-
truncated negative binomial to study some related distributions.
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2.2 Riff-Shuffle Sampling and the Left-Truncated Negative
Binomial Distribution

Assume that after one of the urns is completely exhausted we
continue to observe the remaining m — k balls in the non-
exhausted umn in a random fashion. An unbalanced coin is
flipped for a sequence of independent trials where, the rule of
the game is as follows. If um A4 was exhausted first, then the
game is continued exhausting urn B in a random fashion. If
urn B was exhausted first, then the game is continued
exhausting urn A4 in a random fashion. Assume that urn 4 is
to be exhausted. An unbalanced coin is flipped. If the outcome
is heads we select a ball from um A with probability p , and

if the outcome is tails we do nothing with probability ¢ . On

the other hand, if um B is to be exhausted a ball is drawn
from urn B with probability g if the coin’s outcome is heads,

and if the coin’s outcome is tails we do nothing with
probability p . LetK be a random variable representing the

number of times we were not able to select a ball from the urn
under exhaustion. Then the probability mass function of the
random variable K can be written as

m+k—=1\ v omok
P(K=k)= (p"q" +q"p" ), k=mm+1,..:

k

2.7
which is the left-truncated Negative binomial probability mass
function. Moreover, in the context of random walk theory we
discussed earlier in section 2.1, assume that after the particle
has been absorbed in one direction (we have made m-steps in
that direction), we want to continue to achieve the remaining
m — k steps in the other direction starting from the last state.
In this case the particle has two choices either to move forward
to a new state with probability p or g (depends on which
direction the particle moves) or to stay at the current state with
probability ¢ or p . Eventually, the random variable K
obeys the probability mass function in (2.7). To show that (2.7)
is a proper probability mass function, we need to prove that the
infinite sum of the right hand side of (2.7) is one. This is
straight forward if we write

o (m+k-=1 © (m+k-1
B} [ . j(pmqk+qm pk)=k§0[ . J(pmqk +q"pF)
=m
mA(m+k—-1
_kgo( . J(pmqk+qmpk)'
And since

2z [”'f’]a" =(-a) ' lak1’
i=0 :
it is not hard to show that

® m+ k-1

> ( )(p"’q"+q’”p")=2
k=0 k
On the other hand the finite sum
m—1(m+ k-1

( ](pmqk+qmpk)=l

k=0 k
using Riff-Shuffle distribution in (2.4). This completes the
assertion. Considering the special case of p = 4 =1/2

in (2.7), leads to the following Left-truncated negative bin

omial distribution of the form

k-1
P(K = k) =[’" +k J /)" Ak, k=mm+1,..

(2.8)
It follows from (2.8) that
& + k-1
S (m Jz_k _ut
k=m k
2.9)

which will be used in simplifying results in subsequent sections.

221 The 7" Cumulant of Left-truncated Negative
Binomial Distribution

In this context the r” cumulant of the random variable
m + K , whenever it exists, is given by the factorial moments

: m+K+r—1)!
Hery = Eg ( r—l ’
(m+K—-1)!

For the random variable K , which is distributed according to
the left-truncated negative binomial probability mass function

th

givenin (2.7), the r"” cumulant has the form

' (m+r=-Dl, == i [ MR AT =1
UL L P D)
Moo = o~ ! z 12 k

(2.10)
The special cases of r =/ and r = 2 in (2.10) provides
the following first two factorial moments from which we obtain
the mean and the variance of the random variable %

' [ 2m
/lm=E(m+K)=2m[1+(1/2)2m1( i ):’

It follows that the mean of the random variable - K is given
by
2m-2 2 m
E(K)=m|1+ (1/2)
m

i =Elom+ K-+1)om+ ) = 4»<m+’{f+<1/2>2”(2"§ |

Hence, the variance of the left- truncated negative binomial
random variable K can be written as

Var(K) = Zm{l + (1/2)2'"(2”’)[1 - 2m(1/2)2'"(2mn}’
m m

where we have used (2.10) to obtain the above results.

In Section 3 we modify the random experiment which
generates the left-truncated negative binomial distribution
discussed in Section 2. First, we proceed to give the
distribution of the maximum of two chi-square variables, then
we proceed to give the distribution of the maximum of two
correlated F-variable in Section 4

3. NEGATIVE BINOMIAL SAMPLING AND THE
DISTRIBUTION OF THE MAXIMUM
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Let x,Yy be independent and identically distributed

random variables each chi-square with 2m degrees of
freedom. Denote the maximum of two chi-square random
variables by I/ =max( X,Y)- The distribution of U
or some function of it Z = (n/m)U / X, where X, is
a random variable distributed as y (22n) independent of both
X and Y, is known as studentized maximum chi-square
variables or the maximum of two correlated F-variables. These
distributions arise in applied statistical problems when parent
distributions are gamma, exponential, Pareto, Weibull, or
Rayleigh. For example, in reliability analysis of parallel
systems, a statement of the form P(U < C;) for some
known constant (, is encountered. Testing the equality of
the scale parameters of three exponential population

f(,0)=6"e"" ,0,i=123, >0,

give rise to statements similar to P(Z > C,) for some
constant ¢, . The fundamental work of Gupta and Sobel
(1962 a), (1962, b), Hartely (1983), Finney(1941), Nair(1984),
Ramachandran(1958), David(1956), Krishna and
Armitage(1964) focused on the distributions of forms of chi-
squares, and Hamdy et al. (1987). Most of the work done in
these papers, the standard transformation techniques and
inverse probabilities, were central to the analysis. In this
section, we intend to focus on the role of left-truncated negative
binomial sampling techniques to determine the distribution of
the random variables U and Z and their relation to the
sampling procedure. The distribution of the maximum of the
correlated F- variables is also relevant to analysis of variance,
(see Johnson, Kotz and Balakrishnan, 1995, pp 352-355, for
details)

Recall the random experiment given in Section 2.2 with equal
probability of selecting either urn. Assume further that selecting
a ball from um A is associated with taking a realization
Xy;, i=1,2,..,m on the random variable x , and
selecting a ball from urn B is associated with taking a
realization y 1= 1,2,..., m on the random variables
Y,- X, and y  are independent and identically distributed
each Z(Zz) . A sequence of independent trials is performed until
one of the umns is completely exhausted and consequently the
minimum is identified. Obviously, if the random variables x|
and Y, have been observed § and F times respectively,

s v o .
then X = ’Z:l X, Y = JZ::l ", are distributed according
to ¥ (223) and (22r> in that order. We stress the point that
the urn which is exhausted first provides the minimum of two
chi-square variates. In the sense that the random variable which
has been completely observed is the minimum. Of course the
urn which will be completely observed second will identified as
the maximum of two chi-square variables. Naturally observing
the maximum of two random variables is conditioned on
determining the minimum of the two random variables in
advance. Since it takes m + k samples to identify the
minimum, we can assume the maximum value £ is m - 1.
Let us now continue the process with flipping a fair coin. A ball
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is drawn from the remaining » — k4 balls in the non-
exhausted urn, upon cbtaining a head, and at the same time we
take a realization on the yet completely unobserved random
variable. While if the coin turns up tail no further action is
taken. Sequence of independent flipping are conducted until all
balls in the yet non-exhausted urn are drawn out. Logically by
then, the random variable {7 = max( X,Y ) Iis completely
observed in a random fashion. Hence the entire experiment is
terminated. The random variable K in this case represents
the number of times we were not able to draw a ball from the
non-exhausted urn. Therefore, the random variable K
assumes k = m,m + 1,... and has the probability mass
function given by (2.8). Moreover, since the random variable
K counts the number of times we were not able to select a ball
from the non-exhausted urn with average realization (y /2),
the conditional probability mass function of the random
variable K given U is given by the following Poisson
probability mass function

(u/z)k e—u/2

P(K =k|U)= -

, k=0,1,2,..

3.1

Consequently, the joint probability density function of K and
U is given by

P(ku)=2f(u)P(K =k|U),
(3.2)

where, f(y ) isthe 47 probability density function of
the random variable U . While, p(K = k |U) is the
conditional probability of K given U as defined in (3.1) for
the event “no further action is taken”. Therefore (3.2) yields

mk=1 _-u

+k-1
P(k,u):(m j(l/?.)””"’lu, k=mm+1,....and u>0.
k T(m+k)

(3.3)

The marginal probability mass function of the random variable
K is then obtained from (3.3) as

@ m+k—-1 _—u

L (mrk-1 mek-l [ U e
P(K—k)_[ . ](1/2) J——F(m+k)du

>

+k—-1
=[”’ ‘ j(1/2)"'+"-1 k=mm+1,..

which is the probability mass function of the left-truncated
negative binomial given in (2.8). Similarly the conditional



On Some Distributions Generated by Riff-Shuffle Sampling 21

probability density function of U given K = k is

um+k—le—u

h(ulek):W

, u>0.>

34

which is a gamma probability density function with m + &
degrees of freedom. Finally, the marginal density function of
U is given by

© (k-1 um+k—1 eY
- 1/2 m+k—1 > 0. >
g(u) ;ﬂ( . ]( ) Tomiiy X

(3.5)

which is an infinite sum of weighted gamma probability density
functions. The identity in (2.6) can be used to check that
g (u) is a proper probability density function. We give the
following theorem to summarize the above results.

Theorem

Let X and Y be iid Z(sz) random variables. Further, let
K be a random variable generated by a negative binomial
sampling process to determine the distribution of the random
variable [J = max( X,Y) . Thefollowing results hold

1. The random variable K follows a left -truncated

negative binomial distribution as in (2.8).

2. The conditional probability density function of the
random variable U given K is gamma with

m + k degrees of freedom as in (3.4).

3. The marginal probability density function of U is
weighted gamma as in (3.5).

4.  Foravreal integer y > 1, whenever one exists,
, - (m+K+r—1)!
E(U")=E.E, (U |K=k)=Eyx| ————=
(U")=ExEy(U" |K=k) K[ o KT

as given in (2.10).

In Section 4, the distribution of the maximum of two correlated
F-variables is given; its moments are also given in a somewhat
simple form.

4. NEGATIVE BINOMIAL SAMPLING AND THE
DISTRIBUTION OF MAXIMUM OF CORRELATED-F

Let X, be ay (22n) random variable independent of both
X and Y which were defined previously. The random

vatiable Z = (n/m)U / X 0 is known as a studentized
maximum chi-square variable or the maximum of two
correlated F-variables. The distribution of Z arises in many
statistical applications including ranking and selection of
exponential distributions and reliability estimation of parallel
systems. In this section we proceed to relate the distributions of
Z to negative binomial sampling discussed in Section 3. The
distributions of the maximum correlated F-variables is obtained
by utilizing the representation of the joint probability function
in (3.3) and the probability density function of the random
variable X, . Hence, the joint probability function of
K =k and Z is givenby

+h=1) 2 (i
k) Bm+k, i)+ Qml nyz)™™*

m
Hk,z)z( , k=mm+],...,2>0.
4.1
Therefore, the marginal probability density function of Z is
> (m+k-1
fla)=% [ ' )
k=m

) (m /”)m+k Zm+k~1

Blm+ k)1 + (2m ) m)z)"* "

z2>0.

4.2)
The conditional probability density function of Z given K
is also written as

2m+k (m/n)m+kzm+k—1

B(m+k,n)1+ (2m/n)z)"* "%’

f(z|K =k)= z20

4.3)

th

and finally the »” moment of the random variable Z ,

whenever exists, is given by

1 .
82 )~w'm ),[[n—Jﬂ (mr—llh Zf(w +,_,[m+k+r—1j}
r r o k

from which we obtain the first two moments which are given as

EZ)=n/n-D\1n(1/2"™) n>1
BZ )= (m+1)/mn—1) (h-2) jl+(1/2)2'*2(2n+1) (3m+1)), n>2

5. COMPUTATIONAL ALGORITHMS AND THE
CONSTRUCTION OF TABLES

In the present section we designed computational algorithms
to provide critical values of the random variable U given in
Section 3 and the random variable Z given in Section 4. First
recall the probability mass function of the random variable
U given in (3.5) and let C be the solution of the following
integral equation for some given values of m and & such
that



22

+icl Cc m+j-1 —u
['" J J () S SR
J

c Y
o= [gu) u—jzzm e

0
6.1

We evaluate each term in the above infinite sum to determine
the degrees of freedom for which the term is less than or equal
10 ~23 . Once we determine the degrees of freedom we need to
include in our search, we use the bisection method to find C

which satisfies (5.1) for the given . Denoted by C, and
C 2, the inverse gamma function at 77 and the already
determined degrees of freedom of the last term, call this , 77y,
it follows by the monotonicity property of the gamma function
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that ¢, < ¢ < C, .. Hence, an iterative method of root
finding and the bisection method can be used to locate the
value of ( accurate to 12 decimal places for given values of
m and « . A Fortran program with the aid of the well
known IMSL library routines are used to generate tables for the
maximum chi-square random variable U for ,, - 1(1)30
and 35(5)250 and values of & = 0.005, 0.001, 0.025,
0.10, 0.90, 0.975, 0.99, and 0.995. We report some selected
values of C with only three decimal places in Table 1. for
illustration purpose. Other critical values are available by
request.

Table 1.
m Values of &
0.005 | 0.001 0.025 | 0.10 0.90 0.95 0.97 0.975 0.99 0.995

1 0.147 0.211 0.344 | 0.506 | 0.760 5.939 7.352 8.751 10.592 11.980
2| 0.867 1.064 1.413 1.779 | 2.284 9.425 11.113 12.747 14.855 16.421
3 1.893 2204 | 2730 | 3254 | 3948 12.520 14.416 16.228 18.541 20.246
4| 3079 3490 4.166 | 4822 | 5.673 15.429 17.498 19.461 21.948 | 23.771
5] 4367 | 4.865 5.674 | 6447 | 7.436 18.223 20.444 | 22.540 | 25.181 27.109
6| 5725 6.304 | 7.232 8.111 9.223 20.937 | 23.295 25.511 28.292 | 30.315
71 7137 7790 | 8.828 | 9.804 | 11.029 | 23.590 | 26.076 | 28.401 31.312 33.422
8 8.591 9312 | 10454 | 11.519 | 12.849 | 26.197 | 28800 § 31.229 | 34259 | 36452
9 1 10.079 | 10.865 | 12.103 | 13.252 | 14.681 28766 | 31.479 | 34.005 37.148 39418
10 | 11.596 | 12.443 | 13.772 | 15.000 | 16.522 | 31.303 34121 36.738 | 39.988 | 42.332
11 | 13.136 | 14.041 | 15457 | 16.761 | 18.371 33.813 36.730 | 39.434 | 42787 | 45.200
12 | 14.698 | 15.659 | 17.157 | 18.533 | 20.227 | 36300 | 39312 | 42.099 | 45.549 | 48.029
13 | 16.278 | 17.292 | 18.870 | 20.315 | 22.090 | 38.766 | 41.869 | 44736 | 48.281 50.825
14 | 17.874 | 18.939 | 20.593 | 22.105 | 23.958 | 41.215 | 44.405 47.349 50.984 | 53.590
15 | 19.484 | 20.599 | 22.327 | 23.903 | 25.830 | 43.647 | 46.922 | 49.941 53.662 56.328
16 | 21.107 | 22.271 | 24.070 | 25.708 | 27.707 | 46.066 | 49.422 | 52.512 56.318 59.042
17 | 22.742 | 23,952 | 25.820 | 27.518 | 29.588 | 48.471 51.907 | 55.066 | 58.954 | 61.733
18 | 24.388 | 25.643 | 27.578 | 29.335 | 31.472 50.864 | 54377 1 57.604 | 61.571 64.405
19 | 26.044 | 27.343 | 29.343 | 31.156 | 33360 | 53.246 | 56.833 60.126 | 64.171 67.058
201 27.709 | 29.051 | 31.114 | 32982 | 35250 [ 55.618 | 59.278 | 62.636 | 66.755 69.694
21 | 29.382 | 30.765 | 32.891 | 34.813 | 37.143 57.981 61.712 | 65.132 | 69.325 72.314
22 |} 31.063 | 32.487 | 34.673 | 36.648 | 39.039 | 60.335 64.136 | 67.616 | 71.881 74.920
23 1 32,751 | 34215 | 36.460 | 38.486 | 40938 | 62.681 66.550 | 70.090 | 74.425 77.512
24 | 34.446 | 35.949 | 38.252 | 40.328 | 42.838 65.019 68.955 72.553 76.957 80.091
25| 36.147 | 37.689 | 40.048 | 42.173 | 44.741 67.351 71.351 75.007 | 79.478 82.658
26 | 37.855 | 39.433 | 41.848 | 44.022 | 46.645 69.676 | 73.740 | 77.452 81.989 85.214
27 ] 39.568 | 41.183 | 43.652 | 45.873 | 48.551 71.994 | 76.121 79.888 84.490 | 87.760
28 | 41.286 | 42937 | 45.460 | 47.727 | 50.460 | 74.307 | 78.495 82.316 | 86.981 90.295
29 | 43.009 | 44.696 | 47.271 | 49.584 | 52369 | 76.614 | 80.862 84736 | 89.464 | 92.821
30 | 44.737 | 46.459 | 49.085 | 51.443 | 54.281 78.916 83.223 87.150 | 91.939 | 95.338
35 | 53.441 | 55.329 | 58.201 | 60.772 | 63.858 90.354 | 94.944 99.119 | 104.202 | 107.802
40 | 62.236 | 64278 | 67.379 | 70.148 | 73.465 | 101.692 | 106.545 | 110.952 | 116.307 | 120.095
45 | 71.104 | 73.291 | 76.607 | 79.562 | 83.097 | 112.948 | 118.048 | 122.673 | 128.284 | 132.249
50 | 80.034 | 82.358 | 85.877 | 89.008 | 92.748 | 124.136 | 129.470 | 134.300 | 140.154 | 144.286
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Second, to find the critical points 0 < C < oo recall the

probability density function of the random variable Z in
(4.2). They are found by solving the following integral equation
for some given valuesof n, m and « .

I
J -
0B(m+ j,n)(1+Qm/mz)" T

(5.2)
We then make use of the transformation w = (1+ 2m /nz )—1

—1)0 2 (mimymt M1 .

C @ .
a=[f@)de= ¥ [’"V
0

J=m J

to restrict our search for C in the interval (0,1) . Therefore,

m+j-1
dw b

P oy n=1_
(@)= ozo [m+{ lj(l/z)mﬂ—lJr w (1 .W)
JEmJ 0 B+ j,n)

5.4
where C = n(1 - h)/2mh . Where we used (2.9) to reach

the above result.

Similar algorithms lead to solutions of using (5.1) iterative
methods of root finding and the bisection method to locate h
for given values of & = 0.005, 0.001, 0.025, 0.10, 0.90, 0.95,
0.97, 0.975, 0.99, 0.995, m = 1(1)30 and 35(5)250
and n = 1(1)30 and 35(5)250 . We report some critical

| el points of Z in the following Table 2. Other values are
g i[f(z) o iiw ] _l](l/Z)m+ j-1 } w! (1—.14) 7 dw available by request.
h ] J h ﬂm"']:n)
(5.3)
It follows that
Table 2.
m n
1 2 3 4 5 6 7 8 9 10

110206 0.224 | 0.232 | 0.236 | 0.239 | 0.241 | 0.243 | 0.244 [ 0.245 | 0.246

210296 | 0.343 | 0.366 | 0.381 | 0.391 | 0.398 | 0.404 | 0.408 | 0.412 | 0.414

310326 0387 | 0420 | 0.441 | 0.456 | 0.467 | 0475 | 0.482 | 0.487 | 0.492

410340 | 0.409 | 0.448 | 0.473 | 0.491 | 0.504 | 0.514 | 0.523 | 0.530 | 0.536

510348 | 0422 | 0464 | 0.492 | 0.512 | 0.527 | 0.539 | 0.549 | 0.557 | 0.563

6 | 0352 | 0.430 | 0.474 | 0.504 | 0.526 | 0.542 | 0.556 | 0.566 | 0.575 | 0.583

710355 | 0435 | 0481 | 0.513 | 0.536 | 0.553 | 0.567 | 0.579 | 0.588 | 0.597

8 [ 0.356 | 0438 | 0.486 | 0.519 | 0.543 | 0.561 | 0.576 | 0.588 | 0.598 | 0.607

910357 | 0441 | 0490 | 0.524 | 0.548 | 0.568 | 0.583 | 0.596 | 0.606 | 0.615
10 | 0.358 | 0.443 | 0.493 | 0.527 | 0.553 | 0.572 | 0.588 | 0.601 | 0.612 | 0.622
11 | 0.359 | 0.444 | 0.495 | 0.530 | 0.556 | 0.576 | 0.592 | 0.606 | 0.617 | 0.627
12 [ 0.359 [ 0.445 | 0.496 | 0.532 | 0.558 [ 0.579 | 0.596 | 0.610 | 0.621 | 0.631
13 [ 0.359 [ 0.446 | 0.498 | 0.534 | 0.561 | 0.582 | 0.599 | 0.613 | 0.625 | 0.635
14 | 0.359 | 0.446 | 0.499 | 0.535 | 0.562 | 0.584 | 0.601 | 0.615 [ 0.627 | 0.638
15 [ 0.359 | 0.447 | 0.500 | 0.536 | 0.564 | 0.585 | 0.603 | 0.617 | 0.630 | 0.640
16 | 0.359 | 0.447 | 0.500 | 0.537 | 0.565 | 0.587 | 0.605 | 0.619 | 0.632 | 0.643
17 |1 0.359 | 0.447 | 0.501 | 0.538 | 0.566 | 0.588 | 0.606 | 0.621 | 0.634 | 0.645
18 | 0.359 [ 0.447 | 0.501 | 0.539 | 0.567 [ 0.589 | 0.607 | 0.622 | 0.635 | 0.646
19 [ 0.359 [ 0.447 | 0.501 | 0.539 | 0.568 | 0.590 | 0.608 | 0.623 | 0.636 | 0.648
20 | 0.358 [ 0.447 [ 0.502 | 0.540 | 0.568 | 0.591 | 0.609 | 0.624 | 0.638 | 0.649
21 | 0.358 | 0.447 | 0.502 | 0.540 | 0.569 | 0.591 | 0.610 | 0.625 | 0.639 | 0.650
22 | 0358 | 0447 | 0.502 | 0.540 | 0.569 | 0.592 | 0.611 | 0.626 | 0.639 | 0.651
23 | 0358 | 0447 | 0.502 | 0.540 | 0.569 | 0.592 | 0.611 | 0.627 | 0.640 | 0.652
24 | 0.358 | 0.447 | 0.502 | 0.541 | 0.570 | 0.593 | 0.612 | 0.627 | 0.641 | 0.653
25 1 0.357 | 0447 | 0.502 | 0.541 | 0.570 | 0.593 | 0.612 | 0.628 | 0.642 | 0.653
26 | 0357 | 0.447 | 0.502 | 0.541 | 0.570 | 0.593 | 0.613 | 0.628 | 0.642 | 0.654
27 1 0.357 | 0447 | 0.502 | 0.541 | 0.570 | 0.594 | 0.613 | 0.629 | 0.643 | 0.655
28 | 0.357 | 0447 | 0.502 | 0.541 | 0.571 | 0.594 | 0.613 | 0.629 | 0.643 | 0.655
29 1 0357 | 0447 | 0.502 | 0.541 | 0.571 | 0.594 [ 0.613 | 0.630 | 0.643 | 0.655
30 | 0.357 | 0.447 | 0.502 | 0.541 | 0.571 | 0.594 | 0.614 | 0.630 | 0.644 | 0.656
3510356 | 0446 | 0.502 | 0.541 | 0.571 1 0.595 | 0.615 | 0.631 | 0.645 | 0.657
40 | 0.355 | 0.446 [ 0.501 | 0.541 | 0.571 | 0.595 | 0.615 | 0.632 | 0.646 | 0.658
45 1 0.354 [ 0445 [ 0.501 | 0.54]1 | 0.571 | 0.595 | 0.615 | 0.632 | 0.646 | 0.659
50 | 0.353 | 0.444 | 0.500 | 0.540 | 0.571 | 0.595 | 0.615 | 0.632 | 0.646 | 0.659
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