On the Hardness of Leader Election in Asynchronous Distributed Systems with Crash Failures 2]

On the Hardness of Leader Election
in Asynchronous Distributed Systems with Crash Failures

Sung Hoon Park
Dept. of Computer Science & Engineering
Chungbuk National University, Cheongju, Korea

Yoon Kim*
Dept. of Computer Security
Korea National College of Rehabilitation and welfare, Pyongtaik , Korea

ABSTRACT

This paper is about the hardness of Leader Election problem in asynchronous distributed systems in which processes can crash but
links are reliable. Recently, the hardness of a problem encountered in the systems is defined with respect to the difficulty to solve it
despite failures: a problem is easy if it can be solved in presence of failures, otherwise it is hard [9]. It is shown in [9] that problems
are classified as three classes: F (fault-tolerant), NF (Not fault-tolerant) and NFC (NF-completeness). Among those, the class NFC
is the hardest problem to solve. It is also shown in [9] that the construction of Perfect Failure Detector (problem P) belongs to NFC.
In this paper, we show that Leader Election is also one of NFC problems by using a general reduction protocol that reduces the
Leader Election Problem to P. We use a formulation of the Leader Election problem as a prototype to show that it belongs to NFC.

Keywords : Distributed Computing, Leader Election, Asynchronous Distributed Systems, Failure Detectors

1. INTRODUCTION

The Leader Election problem [1] requires that a unique

leader be elected from a given set of processes. The problem
has been widely studied in the research community [2,3,4,5,6].
One reason for this wide interest is that many distributed
protocols need an election protocol.
In spite of such a wide research, the problem is known to be
unsolvable in asynchronous distributed systems with crash
failures. It follows from so-called FLP results [7]. The proof of
the impossibility of Consensus in [7] assumes that it is
impossible for a process to determine whether another process
has crashed, or is just very slow. This assumption is widely
cited as the “reason” for the impossibility result.

There are other problems that cannot be solved in
asynchronous distributed systems with crash failures for the
same intuitive reason that Consensus cannot be solved. In
particular, the Leader Election problem cannot be solved if a
crashed process cannot be distinguished from a slow process.

Recently, the hardness of a problem encountered in the
systems was defined with respect to the difficulty to solve it
despite failures: a problem is easy if it can be solved in
presence of failures, otherwise it is hard [9]. According to the

* Corresponding author. E-mail: ykim@hanrw.ac.kr
Manuscript received Feb 9, 2005 ; accepted Mar 11, 2005

paper [9], problems are classified as three classes of problems,
ie. F, NF and NFC (NF-completeness). Among those
problems, the problems belonging to NFC are defined to be the
most difficult problems to solve in presence of failures. It is
shown in [6] that the Terminating reliable Broadcasting, the
Non-Blocking Atomic commitment and the construction of the
Perfect Failure Detector (problem P) are the problems that
belong to NFC, while the Consensus problem belongs to NF
but neither to F nor to NFC.

It is shown in [10] that the Leader Election problem is at
least as hard as the Consensus problem. An interesting question
is then whether the Leader Election problem belongs to NFC
or not. How much hard is the Leader Election problem to solve
in asynchronous distributed systems? This is the topic of this
paper, which focuses on the difficulty to solve this problem in
reliable asynchronous distributed systems.

Determining that a problem Pb, is harder than a problem Pb,
has a very important practical consequence, namely, the cost of
solving Pb; cannot be less than that of solving Pb,. To
determine the hardness of the Leader Election problem, we
used a reduction protocol. This means that if any algorithm A,
that solves a problem Pb; can be transformed into an algorithm
A, that solves a problem Pb,, the problem Pb is at least as hard
as the problem Pb, (Pb, = Pb,).

In this paper, we used a formulation of the Leader Election
problem as a prototype. We reduced the prototype algorithm to
solve the Leader Election problem into an algorithm to solve

22

the construction of the Perfect Failure Detector problem and
showed that the Leader Election problem belongs to NFC.

Actually, the main difficulty in solving a problem in
presence of process crashes lies in the detection of crashes. To
address this problem, Chandra, Hadzilacos and Toueg have
introduced and investigated the notation of Failure Detectors
[11]. Those are distributed oracles related to the detection of
failures. A failure detector of a given class is a device that gives
hints on set of processes that it suspects to have crashed. It is
shown in [7] that the Consensus problem can be solved in the
FLP model augmented with Failure Detectors satisfying some
completeness and accuracy properties. A Perfect Failure
Detector class (problem P) is central to decide whether certain
problem is in NFC or not. A Perfect Failure Detector
eventually suspects each crashed process in a permanent way
(Strong Completeness), and never suspects a process before it
crashes (Strong Accuracy).

The rest of the paper is organized as follows. In Section 2,
we describe our system model and definitions. In Section 3,
this paper presents an algorithm to solve Leader Election and
specifies the properties of the Leader Election problem. In
Section 4, this paper studies the reduction protocol that
transforms an algorithm to solve the Leader Election problem
into the algorithm to solve the Perfect failure Detector problem
and shows that Leader Election is one of NF-complete
problems with respect to reliable asynchronous distributed
systems. Finally, Section 5 summarizes the main contributions
of this paper and discusses related and future works.

2. MODEL AND DEFINITIONS
2.1 Asynchronous Distributed Systems

Our model of asynchronous computation with crash failures
is the one described in [7]). We call FLP such a system model.
In the following, we only recall some informal definitions and
results that are needed in this paper. We consider a distributed
system composed of a finite set of n processes Q = {1,2,...,n}
completely connected through a set of channels.
Communication is by message passing, asynchronous and
reliable. A process fails by simply stopping the execution
(crashing), and the failed process does not recover. A correct
process is the one that does not crash. Byzantine failures are
not considered. At least one process is correct in the systems.

Asynchrony means that there is no bound on communication
delays or process relative speeds. It can not distinguish a slow
processor from a crashed node. Between any two processes
there exist two unidirectional channels. Processes communicate
by sending and receiving messages over these channels: there is
no shared memory. The channels are nonfaulty: they do not
lose, generate, or garble messages. The channels need not be to
FIFO. The state of a channel is the set of messages that have
been sent along the channel but not yet received. A reliable
channel ensures that a message, sent by a process i to a process
J. 1s eventually received by j if both are correct (i.e. do not
crash). To simplify the presentation of the model, it is
convenient to assume the existence of a discrete global clock.

Journal of Contents Volume 1, Number 1, April 2005

This is merely a fictional device inaccessible to processes. The
range of clock ticks is the set of natural numbers.

A process has a set of states, one of which is denoted the
initial state. The state of a process i consists of the values of all
internal variables of the process. A global state of the system is
a set of process and channel states. An initial global state is the
global state in which each process state is an initial state and
each channel state is the empty set.

An event e is an action that maps the global state of the
system from Y to 2 such that Y’ differs from Y. in the local
state of exactly one process i and the -state of at most one
channel incident on the process i. In this case, we say that e is
an event of process i. A history of a process i is a sequence of
events h; =e;...ef, where e/ denotes an event of process i
occurred at time k. Histories of correct processes are infinite. If
not infinite, the history of the process i terminates with the
event CRASH,-k (process i crashes at time k).

Definition 1 A run of the system is an infinite sequence of
global states of the system: r= (24, X1, 2, ...) where Yq is an
initial global state and there exists a sequence of events
(epep€y...) such that forall i >0, 2, = e; (Z).

We specify properties of systems using a predicate logic over
global states and a linear-time temporal logic over (infinite)
suffixes of runs ([16]).

We use the following as the meaning of the two temporal logic
modal operators {and F .

Definition 2 Ler s = (30,21, 25, ...) be a suffix of a run, let ¢
be a predicate, and let P be a temporal logic formula. Then,

(k) 1= 90 iff I I= o
o (s, k) |= <>P lff EIjZk:(s,j) |=P
o, k) |=FP iff Vizki (s j) |=P

Furthermore, we abbreviate (s,0) |=Pas s |=P.

We refer to the pair (s, k) as the prefix of the infinite sequence
of states s.
We use the following definition of a protocol:

Definition 3 A protocol is a many-to-many mapping from a
prefix of a run to a global state.

Thus, repeatedly applying a protocol to an initial global state
will generate a run. This represents the execution of a
(possibly non-deterministic) program over time. We apply this
procedure of executing a protocol A to extend a prefix (s, k) to
(s’, k" > k), meaning that (s, k) = (s’, k) and that for each state
Y pk<l SkTOCY & AT, - D).

One protocol A can be reduced into B to generate a single
run as follows: given a prefix of a run, one of the protocols is
chosen non-deterministically and fairly to generate the next
global state.

2.2 Failures and Failure detectors

On the Hardness of Leader Election in Asynchronous Distributed Systems with Crash Failures 23

We define the following events associated with crashing,
detecting failures, and ceasing to detect failures:

* CRASH,; denotes the event whereby process i crashes.

* FAILED(j) denotes the event whereby process i detects the
failure of process j (or “suspects” j).

e stop(j) denotes the event whereby process i stops
suspecting process j (“‘stops” the suspicion of j). This

event is executed when process i receives a message from

process j while i suspects j.

We define the Boolean predicates CRASH; and FAILED; (j) as
follows:

e Vij: CRASH;and FAILED,(j) are false in an initial global
state.

e CRASH,; is true in the global state resulting from CRASH;
and in every global state thereafter.

o FAILEDj) is true in the global state resulting from
FAILED;(j) and in every global state until stop,(j) is executed.

CRASH,; is stable by definition but FAILED,(j) is not.

We assume that crashes can occur spontaneously, and that
there is no restriction on the set of processes that may crash at
any time in any run. Hence, if (r, k) |= —CRASH,; then the
prefix (r, k) can be extended to (r] k+1) such that (r] k+1) |=
CRASH;

We define a failure detector as a set of runs satisfying
properties that relate crash events to failed events. A failure
detection protocol is a protocol that generates those runs in a
failure detector.

Failure detectors are abstractly characterized by
completeness and accuracy properties [11]. These problems
have been defined previously in [7,12,13]. Completeness
characterizes the degree to which crashed processes are
permanently suspected by correct processes. Accuracy restricts
the false suspicions that a process can make. In [5], Chandra
and Toueg define the Perfect Failure Detector as follows.

Perfect Failure Detector (P) The problem of building a
perfect failure detector (problem P) consists in designing a
protocol that provides processes with a list of suspects with
such that the following two properties are satisfied [5]:

e Strong Completeness: Vr : r |= Vi : F (CRASH;
=Vj : O(CRASH,V b FAILED(i))) (Eventually every
process that crashes is permanently suspected by every
correct process).

r |= Vi, j :F (FAILED))
=CRASH;)) (No process is suspected before it crashes).

A process i queries the perfect failure detector by invoking
P-QUERY which returns a list of suspects.

Failure detectors characterized by Strong Accuracy are
reliable: no false suspicions are made. Otherwise, they are
unreliable. For example, failure detectors of P are reliable,
whereas failure detectors of § are unreliable.

e Strong Accuracy: Vr :

2.3 Reducibility and Transformation

The notation of problem reduction first has been introduced
in the problem complexity theory [15], and in the formal
language theory [14]. It has been also used in the distributed
computing [9,12,13]. We consider the following definition of
problem reduction.

An algorithm A solves a problem Pb, if every run of it
satisfies the specification of the problem Pb;. A problem Pb, is
said to be solvable with the algorithm A if there is an algorithm
that solves Pb; with the algorithm A. A problem Pb, is said to
be reducible to a problem Pb, (denoted Pb; = Pb,), if the
protocol A that solves the problem Pb, can be transformed into
any protocol to solve Pb,. If Pb; is not reducible to Pb,, we say
that Pb, is harder than Pb, (denoted Pb, > Pb,).

The problem of transforming Pb; into Pb, belongs to F. This
ensures the closure of F and NF with respect to problem
reductions. As we mentioned in the introduction, Pb; = Pb,
means that the problem Pb, is at least as hard as the problem
Pb, in presence of process failures. If the Pb, is not solvable or
requires some additional assumptions to solve it, then the Pb, is
also unsolvable under the same assumptions of Pb, or requires
at least as many assumptions as those of Pb, to be solved.

If Pb; 2 Pb, and Pb, = Pb,, then Pb, and Pb, are said to be
equivalent (i.e. denoted by Pb,=Pb,). As an example, let us
consider the FIFO Broadcast Problem (FB) and the Casual
Broadcast Problem (CB): it is shown in [18] that these
problems are equivalent, FB=CB. It is also shown in [9] that
the Non-Blocking Atom Commitment problem (NBAC), the
construction of the Perfect Failure Detector problem (P) and the
Terminating Reliable Broadcast problem (TRB) are equivalent
problems, NBAC = P =TRB.

2.4 Problem Classes

We are interested in the set of problems that can be solved
in asynchronous systems. A problem is specified by a set of
properties. A protocol A solves a problem Pb in a system M, if
each run of A in M satisfies the properties that specifies the
problem Pb.

Recently, like a NP-completeness theory in sequential
computing, it was shown in [9] that the hardness of problems
encountered in a distributed computing was defined with
respect to the difficulty to solve it despite of failures. A
problem is easy if it can be solved in presence of failures,
otherwise it is hard. According to the paper [9], those problems
are defined following three sets of problems:

- F : the set of problems that can be solved despite
arbitrarily many number of process crashes in the FLP
model (F stand for Fault-tolerant)

- NF : the set of problems that can be solved when there
is no process crash in the FLP model (NF stand for Not
Fault tolerant).

- NF-Complete: A distributed computing problem Pb,
belongs to the class NFC (the class of NF-complete
problems) (1) if it belongs to NF and (2) if it is at least

as hard as any problems belonging to NF problems, i.e.,
if the following property is satisfied: VPb, € NF (Pb,
> Pb,).

Reliable Broadcast (RB) and Casual Broadcast (CB) are the
classical distributed problems belonging to F. Terminating
Reliable Broadcast (TRB) and Consensus (CONS) are the
typical problems that belong to NF but do not belong to F. It
is also shown in [9] that the Terminating reliable Broadcasting
problem, the Non-Blocking Atomic commitment problem
(NBAC) and the construction of perfect failure detector
problem (P) belong to NFC, while CONS belongs to NF but
neither to F nor to NFC. This is illustrated on Figure 1. More
generally, this figure depicts the structure of the class NF.
Among those problems, the ones belonging to NFC are defined
to be the most difficult problems to solve in presence of failures.

TRB =P =NBAC

N

Fig. 1: A Hierarchy of Problems in the FLP Model.

3. THE LEADER ELECTION PROBLEM

Leader Election is an important problem to solve for the
construction of fault tolerant systems. It is closely related to the
primary-backup approach (since choosing a primary replica is
like electing a leader), an efficient form of passive replication.
It is also closely related to group communication [18], which
(among other uses) provides a powerful basis for implementing
active replication.

3.1 Specification

Leader Election is described as follows. At any time, there is
at most one process that considers itself the leader and all other
processes consider it as to be their only leader. If there is no
leader, a leader is eventually elected.

More formally, let Leader; be a predicate that indicates that
process i considers itself the leader. The Leader Election
Problem is specified by the following two properties. One is for
safety and the other is for liveness.

The safety requirement asserts that all the nodes connected
to the system never disagree on the leader when the nodes are
in the state of a normal operation.

Safety : Vr:r |= | (3i: Leader; = Vj:j#i:— Leader;)

The liveness requirement asserts that all the processes should

Journal of Contents Volume 1, Number 1, April 2005

eventually progress to be in the state of normal operation in
which all processes connected to the system agree to the only
one leader.

Liveness : Vr: 1 |= F (- Leader; = <{3i: Leader,)

An election protocol is a protocol that generates runs that
satisfy the Leader Election specification.

3.2 Leader Election protocol

We use a formulation of the Leader Election problem as a
prototype to verify that it belongs to NFC.

Theorem 3 The following LE-ELT algorithm solves the leader
election problem.

LE-ELT algorithm:
- Each process has a unique ID number that is known by
all processes.

- The leader is initially the process with the lowest ID
number, i.e. process /. The role of a leader is rotated
one by one in ascending order with ID whenever a
current leader crashes. For example, in the case of a
leader process k crash, the first candidate for new
leader is process k+I and the second candidate is
process k+2 and so on. If the leader process n crashes,
then process / is the first candidate for the new leader.
Therefore, the priori of a process is changed at every
election and decided relatively depending on the ID of
the crashed leader.

- If process i detects that the leader k crashes, it
broadcasts this information to all processes by using
the primitive LE-ELT-BROADCAST(kx). Upon
receiving such a message, every receiver detects the
failure of all processes between the ex-leader and itself.

- When process j detects the failure of all processes that
are in between those processes, it becomes the leader
and notifies to all other processes that he is the new
leader. All processes in the set receive this notification
by using the primitive LE-ELT-DELIVERGj).

Proof. The LE-ELT algorithm satisfies the two conditions.

Safety : Proof by contradiction

Consider a run r in which two leaders are to be elected. That
means that Vr:r |=F (3 : Leader; = Vj : j # i : — Leader;)
is false.

Then, we can state it formally as follows.
Vi:r |= F (3i: Leader; = Vj:j#i: - Leader,)
is false
implies r v |= @i o j o+ i
Leader; A Leader)) m

On the Hardness of Leader Election in Asynchronous Distributed Systems with Crash Failures 25

Let s = (24.2.1, 2.0, ---) be a suffix of such a run r.
s |=< (3ij:j#i: Leader; A Leader))
2)

(1y implies

To be a leader, each of them should have detected the
failures of all the processes between the ex-leader 4 and itself
before declaring itself to be a leader. Let £, ={ k+1, ... ,i-1}
be the set of processes that are in between process k and
process i. Then,

(2) implies S
—~CRASH;ACRASH, YA

= & @iy 2 (IYm mey

(Vn: n€£2; : ~CRASH;ANCRASH,)) 3)

But the prior of i is higher than that of j or the converse is
true. That means that the process j belongs to £2;; or the process
i belongs to £2;. Thus,

(3) implies s |=< (3ij: (Vmn: mey, nefy
(—-CRASH; A CRASH,, A

—CRASH, A CRASHn) A (je8,V i€,)
implies s 1=< (3ij : Ymn: mefy;, nesdy;
(~CRASH;ACRASH,, A\ ie ;) V

(—CRASH; A CRASH, Aj€&2;) @

But the predicate i€ £2,; implies that the process i crashed.
@) implies s |= < (3ij: (-CRASH;ACRASH,) V
(—=CRASH; ACRASH),))
implies 3k 20 : (s, k) |= (Fij:
(-CRASH; ACRASH,)) V (=CRASH;ACRASH))).
This is a contradiction.

Liveness : Proof by Contradiction

When a leader process j crashes, some processes that have
detected it eventually broadcast the message to inform all
processes of the failure of the leader. All the processes that
received the message instantly start an election protocol.
Consider a run r in which there is no leader elected after
terminating the election protocol, i.e. Vr: 1 [= F (= Leader;
=<3i : Leader;)) is false.

We can state it more formally as follows.
3r:t |= =} (Leader;v 3i: Leader;)
implies 3r: r |= {(—Leader; A F Vi : —Leader,))
&)

Let s = (2.2.1,22....) be the suffix of such a run r, then
s |= C(—Leader;A F Vi: —Leader,))
(6)
To be a leader, each process in the system should detect the
crash of the processes that are in between the ex-leader and

(5) implies

itself. The predicate (F Vi:—lLeader;) implies that there has

been no process that detected the crash of all processes in the
sct 2 ie. F (Vim:me;: = (—CRASH;ACRASH,,).

So, (6) implies s |= {(—Leader A F Vim : megdy; : —
(=CRASH, A CRASH,))
implies s |= OF (mLeader; AVim: mesy; :
CRASH; vV —CRASH,,)

implies s |= CF (—Leader; AVi : CRASH,)
or
s |= OF (—Leader; AVim: megl; -
—CRASH,,)
implies k20, VK 2 k . (s, k) |I=

(—Leader;A Vi : CRASH;) or
I 20, VK 2> k(s k) =
(—Leader; A Vi,m : me£2; - ~CRASH,,) @)

But 3k20, VA’ > k: (s, k") |=(—Leader; A\ Vi : CRASH;)
is false by the initial condition that at least one process is

correct in the system. We can prove inductively that 3k 20, V&’
2 k: (s, k) |=(-Leader;AYim : me£2; : -CRASH,,) is
also false. Therefore (7) is false. This is a contradiction.

The process with high prior eventually wins the election and
declares that it is the new leader. This means that there is at
least one process that detected the failures of all the processes
between the ex-leader and itself.

4. LEADER ELECTION BELONGS TO NFC

This section shows that Leader Election is one of NF-
completeness problems. It is shown on [9] that the construction
of Perfect Failure Detector (problem P) that is one of the NF
problems belongs to NFC. To show that Leader Election is also
one of NF-complete problems, we should verify that the Leader
Election problem is as hard as or harder than the construction
of Perfect Failure Detector problem, i.e. LE-ELT 2 P. To
attain this goal, we design a protocol that assuming LE-ELT,
solves P. Such a protocol is called a reduction protocol.

4.1 From Leader Election to P

Protocol | shows a reduction protocol that transforms the
protocol solving the Leader Election problem into a protocol
solving the construction of Perfect Failure Detector problem P.

A process i is composed of two tasks T, and T,. Task T, is
used to answer the queries of the upper layer when this layer
invokes P-query. T, returns it the current value of suspected,.
The process i manages a local variable suspected; that is
initialized &J.

In rask T,, each process executes an infinite sequence of
rounds, each round simulating and synchronizing executions of
a Leader Election protocol solving instances of Leader Election.

26

During a round, process i considers all processes belonging to
the set regardless of its failure. So, the process i solves an
instance of | n | on the LE-ELT algorithm in every round.

At every instance of a round, the process i sends the message
of leader failure to all processes and waits for the termination
of the Leader Election protocol. Upon receipt of the result
informing the new leader, process i compares it to the first
candidate that is decided on the rotating leader policy. If the ID
of newly elected leader is not equal to the ID of the first
candidate, then process i concludes that the first candidate
process has crashed. For example, when the leader process j-/
crashes, the process j is the first candidate for a leader. If it is
not crashed, the process j might have been elected as the next
new leader.

Due to the liveness property of LE-ELT algorithm, the result
of election is notified to process i. In this case, the result of this
LE-ELT instance is necessarily the ID of process j. The
primitives corresponding to this instance of the LE-ELT
algorithm invoked by process i are denoted LE-ELT-
BROADCAST(p) and LE-ELT-DELIVER().

% A process i execute %
suspected; «— &, r; < 0;
cobegin
task T, : while true do % (Infinite) sequence of
synchronized rounds %
pelinen+l;
while p++ <n do
LE-ELT-BROADCAST(p);
% leader_candidate is the first candidate
for new leader %
leader_candidate := (p + 1) mod n;
LE-ELT-DELIVER |(new_leader);
If new_leader # leader_candidate then
suspected; < suspected;
U { leader_candidate }
end-if
end-while
end-while
task T, : when P-Query do return(suspected,);
coend

Protocol 1: LE-ELT 2 P
Theorem 4.1 Protocol 1 builds a perfect failure detector.

Proof. The algorithm in Protocol | satisfies the two
conditions.

Strong Completeness: Proof by contradiction

Consider a run r in which some processes that crash are
permanently not suspected by some correct process. This
means that the property of strong completeness is false, i.e. Vr:
r |=Vi: F (CRASH;=Vj :O(=CRASH;= F FAILED(i)))
is false.

We can state it more formally as follows.

—(Vr : 1 |= Vi : [k (CRASH;=V, : {O(—CRASH,

Journal of Contents Volume I, Number 1, April 2005

=} FAILED,(1))))

implies 3r:r |=3i: O(— (-CRASH; V V!
{>(CRASH; V F FAILED(1))))

implies 3r : r |= 3i : O(CRASH, AT
F (-CRASH; A O—FAILED((i))) ®

Let s = (20,21, 22, -..) be the suffix of such a run r. Then,
@) implies s |= 3i :O(CRASH,AJ;
F (-CRASH; A O—FAILED(())))

The predicate <>—|FAILED,(i) implies that j never has
suspected the failure of i, i.e., (i € suspecr) is true.
) implies s |=
3i :O(CRASH; AT :F (-CRASH;A (i € suspect)))
(10)

The predicate (i € suspect;) implies that j has delivered i as a
new leader at every round.

(10) implies s I= 3i:O(CRASH; AT

F (-CRASH;A O(LE-ELT-Del iver (new-leader)=1Y)) (11)

The fact that process j has delivered process i as a new leader
implies that process i is not crashed.
(11) implies s |= 3i :O(CRASH;AT
F (-CRASH;A —CRASH))
implies $
(~CRASH,; A =CRASH),))
implies s |=3ij: &(CRASH; A— CRASH;)
implies 3k20 : (s, k) |= 3ij : (CRASH;A—
CRASH;). This is a contradiction.

|[= 3i :OF (CRASH,AT)

Strong Accuracy: Proof by contradiction

Consider a run r in which some processes are suspected
before crash by some correct processes. That means that the
property of strong accuracy, ie. Vr : 1 |= Vi
F (FAILED,(j) =CRASH)) is false.

We can state it more formally as follows.
Jr:r |= 3ij: O(FAILED(j) A —~CRASH,)
(12)

Let s = (X9, 2.1, 2.0, .-.) be the suffix of such a run r, then
(12) implies s |= 3ij:
{>(FAILED,(j) A ~CRASH))
(13)
The fact that the predicate FAILED(j) is true means that the
process j belongs to the suspect; .
So, (13) implies s }= 3ij: O j € suspect;)
A—CRASH)) (14)

The fact that (j € suspect;) is true implies that the predicate
—(LE-ELT-Deliver;(new-leader)=J) is true, that means
that the process i has never delivered the process j as a new
leader.

On the Hardness of Leader Election in Asynchronous Distributed Systems with Crash Failures 27

So, (14) implies s |= 3ij: O(—CO(LE-ELT-
Deliver;(new-leader)=7) N —CRASH))
implies s = 3ij:
Deliver(new-leader)# ;) N—CRASH;)
implies s |= 3i,j: &'F (CRASH;A~CRASH))
implies 3k20 : (s, k) |= 3ij : (CRASH;A -
CRASH,;). This is a contradiction.
So, combined with the fact that the problem P belongs to the
class NFC, it is possible to conclude that Leader Election and P
are equivalent problems, LE-ELT = P.

O(F (LE-ELT-

5. CONCLUSION

In this paper, we reduced an algorithm to solve the Leader
Election problem into the algorithm to solve the construction of
perfect failure detector problem and showed that the Leader
Election problem belongs to the NF-completeness problem that
is most difficult problem to solve in asynchronous systems.

To be our knowledge, it is however the first time that the
hardness of Leader Election problem is discussed in
asynchronous systems. The fact that the Leader Election
problem is at least as hard as the construction of Perfect Failure
Detector problem has a very important consequence, namely,
the cost of solving the Leader Election problem cannot be less
than that of solving the construction of Perfect Failure Detector
problem.

Actually, the main difficulty in solving such a problem in
presence of process crashes lies in the detection of crashes.
Given the results of the previous section, it is clear that any
problem whose specification implies Leader Election is at least
as hard as the construction of Perfect Failure Detector problem.
For example, the asynchronous version of the Primary Backup
problem ([8]) requires that there is no more than one primary
server at any time and that there is always eventually a primary
server, and so Primary Backup implies Leader Election. In fact,
it is easy to implement Primary Backup using a Perfect Failure
Detector since the construction of Perfect Failure Detector is at
least as hard as that of Primary Backup.

There are also problems that do not resemble Leader Election
that belong to the NF-complete problem. The Terminating
Reliable Broadcast problem is one example [11,18]. In this
problem, if a correct process sends a message, then that
message is eventually received by all other correct processes; if
a faulty process sends a message, then all correct processes
eventually receive the same message. In [9], it is claimed that
the Terminating Reliable Broadcast and the construction of
Perfect Failure Detector are equivalent problems that belong to
NFC. Therefore, Leader Election is also equivalent to
Terminating Reliable Broadcast since both are equivalent to the
construction of Perfect Failure Detector problem.

REFERENCES
(11 G. LeLann, “Distributed systems—towards a formal

approach,” in Information Processing 77, B. Gilchrist, Ed.
North-Holland, 1977.

[2] H. Garcia-Molian, “Elections in a distributed computing
system,” IEEE Transactions on Computers, vol. C-31, no.
1, PP.49-59, Han 1982.

[3] H. Abu-Amara and J. Lokre, “Election in asynchronous
complete networks with intermittent link failures.” IEEE
Transactions on Computers, vol. 43, no. 7, pp. 778-788,
1994.

[4] HM. Sayeed, M. Abu-Amara, and H. Abu-Avara,
“Optimal asynchronous agreement and leader election
algorithm for complete networks with byzantine faulty
links.,” Distributed Computing, vol. 9, no. 3, pp. 147-156,
1995.

[5] J. Brunekreef, J.-P. Katoen, R. Koymans, and S. Mauw,
“Design and analysis of dynamic leader election protocols
in broadcast networks,” Distributed Computing, vol. 9, no.
4, pp. 157-171, 1996.

[6] G. Singh, “Leader election in the presence of link
failures,” IEEE Transactions on Parallel and Distributed
Systems, vol. 7, no. 3, pp. 231-236, March 1996.

[71 Fischer M.J., Lynch N. and Paterson M.S Impossibility of
Distributed Consensus with One Faulty Process. Journal
of the ACM, 32(2):374-382, April 1985.

[8]1 N. Budgiraja, K. Marzullo, F.B.Schneider, and S. Toueg.
Primary-backup protocols: lower bounds and optimal
implementations. In Proceedings of the Third IFIP
Working Conference on Dependable Computing for
Critical Applications. IFIP 10.4, September 1992.

[9] Eddy Fromentin, Michel R RAY, Frederic TRONEL. On
Classes of Problems in Asynchronous Distributed Systems.
In Proceedings of Distributed Computing Conference.
IEEE 10.4, June 1999.

[10] L. Sabel and K. Marzullo. Simulating fail-stop in
asynchronous distributed systems. In proceedings of the
Thirteenth Symposium on Reliable Distributed Systems,
pages 138-147_1EEE, Oct. 1994.

[11] Chandra T. and Toueg S. Unreliable Failure Detectors for
Reliable Distributed Systems. Journal of the ACM,
43(1):225-267, March 1996.

[12] Guerraoui R. Revisiting the Relationship Between Non-
Blocking Atornic Commitment and Consensus. Proc. of
the 9th Int. Workshop on Distributed Algorithms (WDAG),
Springer-Verlag, LNCS 972, pp. 87-100. Septernber 1995.

{13] Hadzilacos V. and Toueg S. Reliable Broadcast and
Related Problems. In Distributed Systems (Second
Edition), ACM Press, New York, pp.97-145, 1993.

{14] Hopcroft J.E. and Ullman J.D. Introduction to Automata
Theory, Languages and Computation. Addison Wesley,
Reading, Mass., 418 pages, 1979.

[15] Garey M.R. and Johnson D.S. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
Freeman W.H & Co, New York, 340 pages, 1979.

[16] A. Pnueli. The temporal logic of programs. In

18th Annual Symposium of
Foundations of Computer Science. ACM, November
1977.

{171 S. Mullender, editor. Distributed Systems, chapter 4,
ACM Press frontier series. Addison Wesley, second
edition, 1993.

Proceedings of the

28

[18] David Powell. guest editor. Special section on group
communication. Conumunications of the ACM, 39(4):50
-97, April 1996.

Sung-Hoon Park

He received the B.S in economics and
statistics from Korea university in 1982,
M.S in Computer science from Indiana
University USA in 1991 and received
Ph.D. in computer science and
engineering from Korea university in
2000. In 2004, he has been an associate
professor in chungbuk national university
Korea. His main research interests include distributed system.
mobile computing and theory of computation.

Yoon Kim

He received the B.S. degree in
Mechanical Engineering from Hanyang
University, Seoul, Korea in 1982 and
M.S. degrees in Computer Science from
Stevens Institute of Technology, New
Jersey, U.S.A. in 1988 respectively.
Since then he was with Unicom
Technology as a system engineer in
U.S.A. Currently, he is an assistant professor of Information
Security at Korea National College of Rehabilitation and
Welfare. His main research interests include mobile computing
and distributed system.

Journal of Contents Volume 1, Number 1, April 2005

