50

Journal of Contents Volume 1, Number 1, April 2005

An Efficient Multidimensional Index Structure for Parallel Environments

Koung Soo Bok
Department of Computer Science
Korea Advanced Institute of Science and Technology, Daejeon, Korea

Seok Il Song
Department of Computer Engineering
Chungju National University, Chungju, Korea

Jae Soo Yoo*
Department of Computer and Communication Engineering
Chungbuk National University, Cheongju, Korea

ABSTRACT

Generally, multidimensional data such as image and spatial data require large amount of storage space. There is a limit to store and
manage those large amounts of data in single workstation. If we manage the data on parallel computing environment which is being
actively researched these days, we can get highly improved performance. In this paper, we propose a parallel multidimensional
index structure that exploits the parallelism of the parallel computing environment. The proposed index structure is
nP(processor)-nxmD(disk) architecture which is the hybrid type of nP-nD and 1P-nD. Its node structure in-creases fan-out and
reduces the height of an index. Also, a range search algorithm that maximizes 1/O parallelism is devised, and it is applied to
k-nearest neighbor queries. Through various experiments, it is shown that the proposed method outperforms other parallel index

structures.

Keywords: Multidimensional Data, Parallel Computing, Range Search, k-Nearest Neighbor Search, Index Structure.

1. INTRODUCTION

In the past couple of decades, multidimensional index
structures play a key role in modern database applications such
as GIS (Geographic Information System), LBS (Location
Based Service), content based image retrieval system and so
on. The applications commonly are required to manipulate
multidimensional data. For example, GIS store and retrieve
two-dimensional geographic data about various types of
objects such as a building, a river, a city and so on. Also, MLS
systems provide clients with the current locations of moving
objects such as mobile phones. The locations of moving
objects are represented as points in the two-dimensional space.
To satisfy the requirements of the modern database
applications, various multidimensional index structures have
been proposed. There are space partitioning methods like
Grid-file[1], K-D-B-tree[2] and Bang-file[3] that divide the
data space along predefined or predetermined lines regardless
of data distributions. On the other hand, such as R-tree[4],
Re+-tree[5], R*-tree[6], X-tree[7], SR-tree[8], TV-tree[9] and
CIR-tree[10] are data partitioning index structures that divide
the data space according to the distribution of data objects

*Corresponding author. E-mail : yjs@chungbuk.ac.kr
Manuscript received Jan 17, 2005; accepted Feb 24, 2005

inserted or loaded into the tree. Besides, Hybrid-tree[11] is a
hybrid approach of data partitioning and space partitioning
methods, VA-file[12] uses flat file structure, and [13] uses
hashing techniques.

As mentioned above, many researchers have studied
multidimensional index structures to improve retrieval
performance in various ways. However, there are bounds in
improving retrieval performance with a single index structure.
Also, for large amount data a single index structure may show
insufficient retrieval performance. To solve these problems,
several index methods using parallelism of processors or disk
I/Os have been proposed[14, 15, 16, 17, 18, 19, 20]. These
parallel multidimensional index structures can be classified
into 1P-nD and nP-mD where P and D are processor and disk
respectively. In 1P-nD architecture, multiple disks are
connected to one processor so as to improve performance
through parallel disk I/Os. However, there is only one channel
between a processor and multiple disks so loading data to
memory is processed in serial. On the other hand, in nP-mD
architectures, multiple disks are connected to multiple
processors. Therefore, the index structures using this
architecture exploit parallelism of processors and disk 1/Os.

In this paper, we propose a parallel multidimensional index
structure that exploits the parallelism of the parallel computing
environment. The proposed index structure is nP-nxmD

An Efficient Multidimensional Index Structure for Parallel Environments S

architecture which is the hybrid type of nP-nD and 1P-nD. That
is, there are multiple processors and each processor have
multiple disks. Our node structures increase fan-out and reduce
the height of an index tree. Also, range search algorithm that
maximizes I/O parallelism is presented. To our knowledge,
existing parallel multidimensional index structures hardly
consider k-NN(K-Nearest Neighbor) queries. We propose new
k-NN search methods that are proper to our index structures.
Through various experiments, it is shown that the proposed
method outperforms other parallel index structures.

The rest of this paper is organized as follows. In section 2,
we describe existing parallel index structures. In section 3, we
present the detailed description of our parallel
high-dimensional index structure. In section 4, the results of
performance evaluation is presented. Finally, we conclude in
section 5.

2. RELATED WORKS

Existing parallel multidimensional index structures are
classified into 1P-nD and nP-mD types. In 1P-nD architecture,
multiple disks are connected to 1 processor so as to improve
performance through parallel disk I/Os. MXR-trees[14] and
PML-trees[16] are IP-nD parallel index structures. These
improve the performance of multidimensional index structures
using the parallelism of disk I/O. In [14], the requirements for
improving range searches are presented. The one is minLoad.
When the load of processing queries is light, searchers should
access as few nodes as possible. Consequently, queries with
small selectivity should activate as few disks as possible. The
other is uniSpread. Nodes that accessed by a query should be
distributed over the disks as uniformly as possible.
Consequently, queries with large selectivity should activate as
many disks as possible. Three approaches are proposed to
distribute an R-tree over multiple disks. First approach
construct d independent R-trees. Second approach stripes
super-node which consists of d pages on the d disks by striping
pages. The last approach is MXR-tree (MultipleXed R-tree). In
this approach, a single R-tree is constructed. Each node is
spanned one disk page. Nodes are distributed over the d disks,
with pointers across disks.

PML-tree proposed in [16] uses native space indexing with
a disjoint space decomposition method. The disjoint space
decomposition method does not allow overlapping
intermediate MBR(Minimum Bounding Region)s. The
PML-tree eliminates the extra search paths of the R-tree and
the leaf node redundancy of the R+-tree by distributing data
objects into multiple data spaces. Two data distribution
heuristics, which distribute data over the multiple disks evenly,
are proposed and implemented. These index structures improve
search performance with exploiting disk /O parallelism.
However, there is only one channel between a processor and
disks so loading data to memory is processed in serial. In the
nP-mD architecture, multiple disks are connected to multiple
processors. nP-mD parallel index structures are constructed
based on special environments such as NOW (Network of
Workstation). Therefore, nP-mD index structures can use
parallelism of processors and disk I/Os. MR-Tree, MCR-Tree

and parallel R-tree based on DSVM (Distributed Shared
Virtual Memory), GPR-Tree and Parallel VA-file are nP-mD
parallel index structures.

MXR-tree proposed in [14] is shown in Fig. 1. One master
server contains all internal nodes of the parallel R-tree. The
leaf level at the master does not hold the leaf level of the global
tree, but (MBR, site-id, page-id) tuples for each global leaf
level node. The leaf nodes of the global tree are distributed
across the other servers. The (site-id, page-id) is used to locate
a page and server that contains the page. Once a query is sent
to the master, the master searches the internal nodes of the
MR-tree and produces a list of all (site-id, page-id) pairs
needed. The constructed list and the query are sent to sites
containing required pages. Each site then retrieves the page
from disk and sends qualifying rectangles back to the master.

R-tree structure in the Master server

Fig. 1. Architecture of MR-tree

MCR-tree(Master-Client R-tree) proposed in [17] reduces
communication messages of MR-tree. One master and multiple
clients are connected through computer network. The data
structure of the master server is almost same to that of
MR-tree, i.e. only internal nodes are stored at the master
server. Unlike the MR-tree, only the (MBR, site-id) pairs are
needed at the leaf level of the master server. Each client builds
a complete R-tree for the portion of the data assigned to it. In
the MCR-tree, there is redundant information stored compared
to the MR-tree. This redundant information reduces the
overhead at the master and global communication costs.

A query is sent to the master and is processed locally as in
the sequential case. When a leaf node is reached, the query
MBR is sent to the client site designated in the leaf node. As
soon as a client receives a request, it starts processing the query
autonomously. All data are retrieved and returned back to the
master. The master adds the client site id to a list that keeps
track of which clients are working on the query. Since the
clients work autonomously, a maximum of one request is sent
to each client. The master continues searching until either all
clients are notified of the query or no more MBRs intersecting
the query are found. The master then waits for answers and
collects the qualifying data items sent back by the clients.

3. THE PROPOSED INDEX STRUCTURE

52

Journal of Contents Volume 1, Number I, April 2005

disk A
Fig. 3. Index structure of a disk group

Fig. 2 shows the architecture of the proposed parallel index
structure. Disks are grouped into the number of servers evenly.
The groups are assigned to servers. One primary server
coordinates search process and others are normal servers that
process index operations. R-trees are distributed to servers and
each server including primary server has an independent
R-tree. The R-tree of each server is distributed to multiple
disks. We call this architecture as nP-nxmD type. We exploit
the paralielism of CPUs and each CPU uses the parallelism of
multiple disk I/Os.

LAN LAN

Primary
Server

Primary
Server

o] [oen [oo] [omr]

L] L]]
(T v)

disk-group 1

disk-group 1 disk-group 1 disk-group 1 disk-group 1 disk-group 1

{a) Shared Nothing (a) Shared Disk

Fig. 2. Architecture of the proposed parallel index structure

Each server manages a disk group and the disk group contains
an independent R-tree. Fig. 3 shows the R-tree of a disk group.
As shown in the Fig., a node in the index structure is
distributed to disks in the group, i.e., a node consists of the
pages of disks. An entry in the node contains child node's
MBR and the pointers of those pages that consist of the node.
In the Fig., the first entry of the root node points the node 1.
The node Iconsists of the first pages of disk A, B and C, so the
entry must have the pointers of these pages and the MBR of the
node 1.

The benefits of our architecture are as follows. First, similar
data are declustered across multiple disks in the group. Since
the entries in a node are distributed to multiple disks,
declustering effects are maximized. Second, the height of
index tree is reduced. The size of a node is determined by the
page size and the number of disks in the group. As the node
size increases, it takes more time to load a node into memory.
However, because the index structure can load the node in
parallel, the loading
time is not a problem. In R-tree family, overlaps between
nodes reduce the retrieval performance. The height of a tree is
one of the factors to increase overlaps. As the height of a tree
becomes higher, more overlaps may be caused. Finally. in
multidimensional index structures, as the dimension increases

the number of nodes to be accessed increases. That is, the
number of node accesses is large when processing range search
or k-NN search. Subsequently, in parallel multidimensional
index structure, uniSpread is much more important than
minLoad. The proposed index structure read all pages that
consist of a node, so it maximizes the uniSpread.

3.1 Insert

LAN

entries to be inserted

Comeaaiar] =

o]

Primary Server 1
Server

D

disk-group 3

disk-group 1 disk-group 2

Fig. 4. Insertion of entries

Fig. 4 shows the process of entry insertion. Assume that we
insert entries a, b, ¢, d, e, f, g and h sequentially. The entries
are declustered across disk-groups in round robin fashion, i.e.,
ais inserted into disk-group 1, b is inserted into disk-group 2
and so on. Various declustering techniques have been
proposed, but in high-dimensional data sets, the performance
gap among them is not so large. Also, round-robin technique is
easy and cheap to implement. In that reason, we choose
round-robin technique as the declustering method. Entries
assigned to each group are inserted into the index structure of
the group. In the first phase, we find a proper node to insert a
new entry. When a node is located, we check whether the node
has enough space to accommodate the entry. Then, if overflow
occurs, we start split process.

When processing node split, we need to carefully
allocate pages for newly created node. In general, nodes in
multidimensional index structures are not always full.
Consequently, we cannot fully obtain disk VO parallelism
when accessing index nodes. To relieve this problem, we place
the pages of two nodes (old node and new node) in different
disks as much as possible so as to increase disk I/O parallelism
when processing range search. We will describe our range
search algorithm in the next section. Fig. 5 shows node split
process. In node 2(n2), overflow occurs. To split node 2, we

An Efficient Multidimensional Index Structure for Parallel Environments 53

current allocation

Leaf node 1

lﬂlsen a new entry into leaf node;]

next allocation

disk D disk E

Leaf node 2

current allocation next allocation

¥

disk D disk E

Leafnode2

Leaf node ?

liplit leaf node 2into node 2 and node 3}

Fig. 5. Node split

assign a new node (node 3) and move partial entries of node 2
to node 3. When allocating pages to node 2 and node 3, we
preferentially choose disks that have the smallest number of
allocated pages. In the lower Fig., disk D and E have the
smallest number of allocated pages, so pages for node 2 and
node 3 are allocated from these two disks. First, we allocate
three pages from D, E and A sequentially, and then allocate
three pages from B, C, and D sequentially. Fig. 6 shows the
pseudo code of our insert algorithm.

3.2 Search
3.2.1 Range Search

Range search algorithms for multidimensional index
structures have been mentioned in several researches [1, 10].
Searchers take multiple paths when processing range search.
That is, multiple nodes may be selected as next nodes to visit.
Existing range search algorithms visit the selected child nodes
sequentially. Fig. 6 shows the process of existing range search
algorithms. A searcher chooses entries 2, 4 and 7 from root
node that are overlapped with the searcher’s predicate. The
searcher visit child nodes that are pointed by 2, 4 and 7
sequentially. To read node 2, the searcher must access disk
A D and E
since the pages of node 2 are distributed disk 4, D and E.

In the similar fashion the searcher visit node 4 and 7. Total
number of disk accesses is the sum of the number of disk
accesses to read root node and leaf nodes. The number of disk
accesses to read root node is / and that of leaf nodes is 3.
Therefore, the total number of disk accesses to process the
range query'is 4.

Our new range search algorithms use different approaches to
load child nodes. Once child nodes to visit are determined, we

Leaf node 3

make a page loading plan according to which disks are
involved to load child nodes. Fig. 6 describes how to make the
page loading plan. In the Fig., A3 means third page of disk A.
There are 8 pages to be read. We cluster these pages into
groups consists of pages from different disks. For example,
pages A3, B3, C3, D4 and EI in GRPI are from different disks.
It means that those pages can be read at one /O time. Also, AS,
D4 and E2 in GRP2 are from different disks, so we can read
them in one I/O time. If we load pages in this way, only two
disk I/Os are needed to load leaf nodes. One disk I/O is saved
compared to the previously mentioned method.

3.2.2 k-NN Search

Existing parallel multidimensional index structures hardly
consider k-NN search. However, k-NN queries are important in
modern database applications. In this paper, we propose three
k-NN algorithms and through experiments we show which one
is the best.

3.2.2.1 Type 1

The primary server distributes a k-NN query to servers and
each server processes the k-NN query independently. Then, the
servers return the k results to the primary server.

The primary server filters the results from servers and makes
final k results. The response time is the sum of the longest time
among servers' response time and the time to filter servers'
results. This method is simple and easy to implement.
However, we may not use disk I/O parallelism like our range
search algorithm because of the properties of the k-NN
algorithm. When processing range search, a searcher chooses
all child nodes to visit next that are overlapped with query
predicates before going down to next level. Therefore, we can

54

GRP1 : the set of pages that are accessed firstly in each disk

(A3, B3, C3, D1, E1)

GRP2 : the set of pages that are accessed secondly in each disk

(A5, D4, E2)

Journal of Contents Volume 1, Number 1, April 2005

A As i, ins ||
G e
CT el 1]
[o] D1 . loa | |
[e] Bl ie2] |

If entry 2, 4, 7 are contained within range of query,
the number of total disk accesses is 3(root node , GRP1, GRP2)

Disk A Disk B
A1 : the first page of disk A

Disk C

Fig. 6. Example of range search

make a page loading plan and save disk I/Os. However, in the
existing k-NN search algorithm, all child nodes to visit next are
not determined definitely but just one child node is determined.
Consequently, we cannot make a page loading plan as in our
range search algorithm.

3.2.2.2 Type 2

In the second method, the primary server transforms k-NN
queries to range queries. Once a k-NN query is arrived from
client, the primary server processes k-NN query partially.
When the primary server gets first k results, it calculates the
distance between k'th element and query point of the given
k-NN query. It makes a range query with the distance. The
range query is distributed to servers and the servers process the
range query and return results. The primary server gathers the
results from servers and makes k results. The time to process
k-NN query partially is quite short. Since servers can process
the transformed range query, this method can get parallelism of
range search algorithm. However, the transformed range query
may become larger and reduce the overall performance.

3.2.2.3 Type3

In the third method, once the primary server receives a
k-NN query from clients, it sends the query to all servers. The
servers execute partial k-NN queries with the received query,
transform the k-NN query torange query similar to the primary
server of type 2 and return the transformed range query to the
primary server. Then, the primary server redistributed the
transformed query to servers. The servers process the range
query and return their results to the primary server. Finally, the
primary server makes k results from server's results.

14] (5] 6]
Disk E

4. PERFORMANCE EVALUATION

The simulation platform is Sun Enterprise 250 with 1GB
main memory and Solaris 2.7. Simulation programs are
developed with gcc 2.8 compiler. Table 1 shows simulation
parameters. Nga means that the total number of disk accesses to
perform a query. Assume that the number of disk accesses to
read pages in parallel from different disks is 1. The response
time to process a range query and type 1 k-NN query is
calculated by the equation, max(RT;) + filtering time + total
message sizex Teomm, Whete i = O~ Niewer, filtering time is the
time to filter results from server and make final results and
total message size is the size of total communication messages
between the primary server and each server. The response time
of type 2 and 3 k-NN queries is calculated by the following
equation, query transform time + response time of a range
query. The query transform time of type 2 is calculated by the
equation, Ny, for a partial k-NN queryxTasio + Tepu for a
partial k-NN query. The query transform time of type 3 is
calculated by the equation, max(RT; for partial k-NN query) +
filtering time + total message sizex Teomm, Where i= O~ Nseper.
We assume the value of Teomn and Tyisuo as in Tablel according
to [21].

We use uniformly distributed 100,000 data with 10 ~ 80
dimensions. We measure response time and total number of
disk accesses of a query to compare the retrieval performance
of our index structure with existing parallel multidimensional
index structures. We perform several experiments in various
environments. We present the results of experiments with
varying dimension, the number of disks and page size. We
compare our proposed index structure with MCR-tree. To our
knowledge, the MCR-tree is the most recently proposed
nP-mD parallel index structure and shows best performance

An Efficient Multidimensional Index Structure for Parallel Environments 55

among existing parallel multidimensional index structures.

Table 1. Notations and simulation parameters

Symbol Definition Value
Teor communication time 1.544
" Mbps
Nase | number of disks 3~18
Taswo | disk I/O time to access a block 1/20,000
second
Py page size 2~48
e kbyte
Ngerver | number of servers 3~15

CPU time to process a query of a

Ter
Py server

Naa [number of disk accesses
processing time for a range query of| T +
a server NaoxTuiskio

RT

4.1 PERFORMANCE EVALUATION RESULTS

4.1.1 Performance of the proposed range search and 3 types
of k-NN search algorithms

We perform experiments to measure the response time and
the disk accesses of k-NN queries and range queries with
varying dimensions from 10 to 80, page sizes from 4k ~ 48k
and disks from 3 ~ 15. Fig. 7 to 12 show the response time and
disk accesses of range searches and three types of k-NN
searches. The graph of k-NN type 1 is omitted from the
following charts since the performance gap of k-NN type 1 and
others is too large to present in the charts with others. We
carefully observe the performance of three k-NN queries. From
the performance evaluation, we could conclude that our
proposed k-NN search algorithms outperform the existing
k-NN search algorithm (k-NN type 1). Also, as shown in the
Fig.s, the k-NN type 2 out performs slightly the k-NN type 1.
The reason is that even though the selectivity of transformed
range query in the k-NN type 3 may be smaller than that in the
k-NN type 2, k-NN type 3 requires more communication
messages and more CPU time to gather and filter results from
the servers.

\

disk accesses
a
2

- ~
- e

e

10 20 30 40 50 50 70 80
dimension

[k type 2 ko typs 3 range search]

Fig. 7. Number of disk accesses of search operation with
varying dimensions (data set:100K, page size:4k, disks:I5,
servers : 3)

¥
~

response time (seconds)

dimension

[=e=knntypez ~Bx-mtype 3 range search |

Fig. 8. Response time of search operation with varying
dimensions (data set: 100K, page size: 4k, disks: 15, servers: 3)

disk accesses
g 8
pe

disks

[==ienntype2 @ knntype 3 range search |

Fig. 9. Disk accesses of search operation with varying the
number of disks (data set : 100K, page size : 4k, dimension :
20, servers : 3)

:

5
.

4

)

v
/7
//

:

disks

[~ knntypez Bkmtyped rangs sewch|

Fig. 10. Disk accesses of search operation with varying the
number of disks (data set : 100K, page size : 4k, dimension :
20, servers : 3)

56

o\

. \
. .

2K 4k 8k 16k 32k 48K
page size
[~o=i-nn type 2 B=k-nn type 3

disk accessss
@
]

range search |

Fig. 11. Disk accesses of search operation with varying page
size (data set : 100K, disks : 15, dimension : 20, servers : 3)

3.50E400

3.00E+00

250E+00 k

~
3
§
H
8 200£.00 \
@ 1508400
H \
8 1.008.00 k
5.0001
—— _‘
0.00E 400
2 “* I 16K 32k e

page size
= k-t type 2 ~~k-nn type 3

range search |

Fig. 12. Response time of search operation with varying page
size (data set : 100K, disks : 15, dimension : 20, servers : 3)

4.1.2 Comparison of the performance of range search
algorithms

We perform various experiments to measure disk accesses
and response time of the range search operations of MCR-tree
and the PR-tree with varying the number of disks from 3 to 15.
As shown in Fig. 13 and 14, the PR-tree outperforms
MCR-tree in all cases. In the MCR-tree, each server and client
construct R-trees on one disk. However, we present an
architecture that servers builds R-trees on multiple disks. Also,
our new range search algorithms improve the disk /O
parallelism.

disk accesses

_
o e
e

10 £ 30 40 s0 50 70 a0
dimension

Y

(’.— MR-Tree ~#~ PR-Tree (3 disks) PR-Tree (6 disks) ~ PR-Tree (15 disks)]

Fig. 13. Disk accesses of search operation with varying
dimension (data set : 100K, servers : 3, page size : 4k, disks :
15)

Journal of Contents Volume 1, Number 1, April 2005

' . re.sponsem:e(secands)
SRR RN

10 20 30 a0 50 & w 0
dimension
[==AR-Tree <@ PR-Tree (3disks) _ PR-Tree (6 disks) -+ PR-Tree (15 disks) |

Fig. 14. Response time of search operation with varying
dimension (data set : 100K, servers : 3, page size : 4k, disks :
15)

4.1.3 Comparison of the performance of k-NN search
algorithms

The Fig. 15 and 16 shows the results of performance
comparisons between k-NN search algorithms of PR-trees and
MCR-trees. As shown in the Figs, PR-trees outperform
MCR-trees about 3 times when comparing only k-NN search
algorithms. In MCR-trees, there is only one global R-tree that
contains only internal nodes and leaf nodes of the global R-tree
are organized as R-trees in multiple clients. k-NN search
algorithms require searchers to take paths downward and
backward repeatedly. Therefore, communication messages
between master and clients increase. Also, since our k-NN
algorithms is to transform k-NN queries to range-queries,
searchers get improved disk I/O parallelism as described in the
previous section.

raspanse time (seconds)

range search kenn type 1

knntypez k-nn type 3
Fig. 15. Response time of search operations (dimension : 9,
data set : real 100K, disks : 3, servers : 3)

An Efficient Multidimensional Index Structure for Parallel Environments 57

3

g

8

disk accesses

8

range search Jenn type 1 Kenp type 2 knntype 3

EMR-Tree 1 PR-Troe

Fig. 16. Response time of search operations (dimension : 9,
data set : real 100K, disks : 3, servers : 3)

5. CONCLUSION

In this paper, we proposed an efficient parallel
multidimensional index structure. The proposed index structure
is nP-nxmD structure that combines 1P-nD structure with
nP-nD structure. We present new range search algorithms
that more efficiently use disk I/O parallelism. Even though the
k-NN search are one of the important query type in
multidimensional index structures, researches on improving
k-NN search performance in parallel multidimensional index
structures are hardly noticed. We present a new k-NN search
algorithm that improves the disk I/O parallelism. Through
various experiments, we prove that our proposed index
structure outperforms exiting parallel multidimensional index
structures. In the future, we will implement the proposed index
structure based on Storage Area Network which provides
shared nothing or shared disk environment and perform various
experiments in real parallel computing environment.

REFERENCES

[1] J. Nievergelt, H. Hinterberger, and K. Sevcik, "The grid
file: An adaptable, symmetric multikey file structure",
ACM Transactions on Database Systems, Vol. 8, No. 1,
pp- 38-71, 1984.

[2] J. T. Robinson, "The K-D-B-tree: A search structure for
large multidimensional dynamic indexed", Proc. ACM
SIGMOD Conference, pp. 10-18, 1981.

[3] M. Freeston, "The BANG file: a new kind of grid file",
Proc. VLDB, pp. 260-269, 1987.

[4] A. Guttman, "R-Trees: A dynamic index structure for
spatial searching", Proc. ACM SIGMOD Conference, pp.
47-57,1984.

[51 T. Sellis, N. Roussopoulos and C. Faloutsos, "The
R+-Tree: a dynamic index for multidimensional objects”,
Proc. VLDB, pp. 507-518, 1987.

[6] N. Beckmann, H. P. Kornacker, R. Schneider and B.
Seeger, "The R*-Tree: An Efficient and Robust Access
Method for Points and Rectangles”, Proc. ACM SIGMOD
Conference, pp. 322-331, 1990.

{71 S. Berchtold, D. A. Keim and H-P. Kriegel, "The X-tree:
An Index Structure for High-Dimensional Data", Proc.

VLDB, pp. 28-39, 1996.
[8] N. Katayama and S. Satoh, "The SR-Tree: An index
structure for high dimensional nearest neighbor queries”,
Proc. ACM SIGMOD, pp. 369-380, 1997.

[9] K. Lin, H. V. Jagadish, and C. Faloutsos, "The TV-Tree an
index structure for high dimensional data", VLDB Journal,
Vol. 3, No. 4, pp. 517-542, 1994.

{10] J. S. Yoo, S. H Lee, K. H. Cho and J. S. Lee, "An
Efficient Index Scheme for High-Dimensional Image
Data", International Journal of Information Technology,
Vol. 6, No. 1, 2000. 5, pp. 1-15

[11] K. Chakrabarti and S. Mehrotra., "The Hybrid Tree: An
Index Structure for High-Dimensional Feature Spaces”,
Proc. ICDE, pp. 440-447, 1999.

[12] R. Weber, H. J. Scheck and S. Blott, "Quantitative
Analysis and Performance Study for Similarity-Search
Methods in High-Dimensional Spaces," Proc. VLDB, pp.
194-205, 1998.

[13] A. Gionis, P. Indyk and R. Motwani, "Similarity Search
in High Dimensions via Hashing”", Proc. VLDB, pp.
518-529, 1999.

[14] I. Kamel and C. Faloutsos, "Parallel R-trees”, Proc. ACM
SIGMOD, pp. 195-204, 1992.

[15] S. Berchtold, C. Bohm, B. Braunmuller, D. A. Keim and
H. P. Kriegel, "Fast Parallel Similarity Search in
Multimedia Databases”, Proc. ACM SIGMOD, pp. 1-12,
1997.

{161 K. S. Bang and H. Lu, "The PML-tree: An Efficient
Parallel Spatial Index Structure for Spatial Databases",
Proc. ACM Annual Computer Science Conference, pp.
79-88, 1996.

[17] B. Sconitzer and S. T. Leutenegger, "Master-Client
R-trees: A New Parallel R-tree Architecture", Proc.
SSDBM, pp. 68-77, 1999,

[18] X. Fu, D. Wang, W. Zheng and M. Sheng, "GPR-Tree : A
Global Parallel Index Structure for Multiattribute
Declustering on Cluster of Workstations”",APDC, pp.
300-306, 1997.

[19] R. Weber, "Parallel VA-File," Proc. ECDL, pp.83-92,
2000.

[20] B. Wang, H. Horinokuchi, K. Kaneko and A.
Makinouchi, "Parallel R-tree Search Algorithm on
DSVM", Proc. DASFAA, pp. 237-245, 1999.

Kyoung Soo Bok

He received the B.S. in Mathematics from
Chungbuk National University, Korea in
1998 and also received M.S. and Ph.D,
repectively. in Computer and
Communication Engineering from
Chungbuk National University, Korea in
2000 and 2005. He is now Postdoc in Korea Advanced
Institute of Science and Technology, Korea. His main research
interests include location based services, spatio-temporal
database, storage management system and content-based
retrieval system.

58

Seok Il Song

He received the B.S. M.S. and Ph.D. in
Computer and Communication Engineering
from Chungbuk National University, Korea
in 1998, 2000 and 2003, respectively. He is
now a full-time lecturer in Computer
Engineering, Chungju National University,
Korea. His main research interests include
database system, distribute computing, index structure,
location based services and storage management system.

Jae Soo Yoo

He received the B.S. in Computer
Engineering from Chonbuk National
University, Korea in 1989 and also received
M.S. and Ph.D. in Computer Science from
Korea Advanced Institute of Science and
Technology, Korea in 1991 and 1995. He is
now an associate professor in Computer and
Communication Engineering, Chungbuk National University,
Korea. His main research interests include database system,
multimedia database, location based services, distributed
computing and storage management system.

Journal of Contents Volume 1, Number 1, April 2005

