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ABSTRACT

This paper presents the development and application of electrical resistance imaging techniques for the visualization of two-phase
flow fields. Two algorithms, the so-called the mesh grouping and the boundary estimation, are described for potential applications of

electrical resistance tomography (ERT) and results from extensive numerical simulations are also presented. In the electrical

resistance imaging for two-phase flows, numerical meshes fairly belonging to each phase can be grouped to improve the

reconstruction performance. In many cases, the detection of phase boundary is a key subject and a mathematical model to estimate
phase boundary can be formulated in a different manner. Our results indicated that the mesh grouping algorithm is effective o
enhance computational performance and image quality, and boundary estimation algorithm to determine the phase boundary directly.
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1. INTRODUCTION

In many engineering fields, such as heat exchangers, oil or
natural gas pumping system, and chemical processing, two-
phase flow systems can be frequently encountered. The
heterogeneous phase distribution affects the thermal hydraulic
phenomena significantly and the determination of the
distribution is a major concern for developing analytical
methods to predict the phenomena. There have been many
attempts to develop the techniques to measure two-phase flow
fields, including X-ray imaging, computerized tomography
(CT), gamma camera, magnetic resonance imaging (MRI), and
ultrasonic imaging. The electrical impedance tomography (EIT)
technique [1] has been developed for medical or industrial
purposes as an alternative to conventional imaging techniques
mentioned above, some of which are expensive and even cause
adverse health impacts. Since EIT is characterized by good
time resolution and low cost, it has obvious advantages in the
application to the visualization of two-phase flow system. In
most cases of EIT the resistance component of the impedance is
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used for the image reconstruction, so sometimes we use the
term of Electrical Resistance Tomography (ERT) instead of EIT.
The first extensive research relative to application of EIT to
measurement of phase distribution in two-phase system was
conducted by a Rensselaer research group [2]. In that approach,
emphasis was placed on developing an iterative algorithm
based on the finite element model. Results clearly indicated
that approximate methods like back projection [3] or non-
iterative methods like NOSER (Newton One Step Error
Reconstruction) [4] are insufficiently accurate for two-phase
visualization. Hence, they proposed the block decomposition
exponential reconstruction method in the context of finite
element, where each of the larger elements is decomposed into
smaller elements and bilinear exponential variation of
resistivity in each element is allowed to reduce the total number
of elements required to describe the overall resistivity field.
This paper describes two algorithms, the mesh grouping and
the boundary estimation, that can be used to visualize two-
phase flow fields for the appreciation of potential possibility of
ERT. We review the mathematical models of these reconstruct
ion algorithms for ERT, and some numerical simulations are
also presented to show favorable features of each algorithm.



2. MATHMATICAL MODELS
In the ERT, the internal resistivity distribution is
reconstructed based on the known set of the injected currents
and the measured voltages on the surface of the object. The
schematic of the ERT is shown in Fig. 1.
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Fig. 1. Schematic diagram of the electrical resistance
tomography (ERT).

The physics of relationship between the internal resistivity
and the surface voltages is governed by a partial differential
equation with the given injected currents. Mathematically, the
ERT is composed of the forward problem to obtain the voltage
distribution subject to the assumed resistivity distribution and
the injected currents and the inverse problem to reconstruct the
resistivity distribution with the measured boundary voltages in
a suitable manner.

2.1 Mesh grouping algorithm

One of major drawbacks of EIT technique is the poor spatial
resolution. Even the absolute value of resistivity cannot be
reconstructed, but some useful information, such as the
approximated outline of dispersed phase, can be extracted after
a few iterations, especially for two-phase systems. Actually, in
two-phase flows, there should be only two resistivity values. So,
if we could group the elements whose resistivity values are
similar, it would be expected to reduce the total number of
unknowns and to increase the volume of effective meshes. By
alternating conventional Newton-Raphson iterations and
groupings repeatedly, we expect to improve the convergence as
well as to reduce the computational load. If the mesh structure
fits interfacial boundaries, the ideal reconstructed resistivities
have two distinct values and only two groups will be enough to
account for the resistivity distribution. However, the interfacial
boundary cannot be known a priori and we cannot fit mesh
structure to interfacial boundary. Moreover, due to the
numerical and experimental errors, meshes with deviated
resistivity values from the two exact ones will be inevitable.
Experience shows that after a certain number of Newton-
Raphson iterations, the sorted resistivity p; (j=12,A,M) Is
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expected to have the idealized curve as shown in Fig. 2. In this
figure, it is natural to assume that the elements in region I and
IIT belong to the continuous phase (such as, water) and
dispersed phase (such as, vapor), respectively. The elements in
intermediate region II are assumed to be undetermined
elements that do not belong to region I nor III. So, we classify
each mesh into one of three mesh groups: ContGroup (or
DispGroup) is the mesh group with the resistivity value of the
continuous phase (or dispersed phase). TempGroup is the group
of meshes neither in ContGroup nor in DispGroup. All meshes
in ContGroup and in DispGroup are forced to have the same
but unknown resistivity value (g, and p Disp ), respectively.

However, all meshes in TempGroup can have different
resistivity values ( PTemp,i» 1=12,A ,n). However, since we

cannot always expect to get such well-distinguished resistivity
distribution curve as shown in Fig. 2.
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Fig. 2. Idealized resistivity distribution in an ascending order.

It is useful to divide the regions and determine a typical
resistivity value of each region. Let pi (i=1,23) be the
representative values of each region and k; (,':1,2) be the
boundary location between regions. Then, we can formulate the
following optimization problem to determine 7, and k;: Find

a solution vector X,

X={3,7,,0.k.k} 1
to maximize the fitness function AX),

f{X)=-In(D) @

subject to the objective functional D,

p-% S, -5 P ko=1 and ky=m (3)
=1 =k,

To solve the above optimization problem, several methods
can be applicable. However, since the object funtion is not
analytical and the derivatives cannot be calculated easily, the
derivative-based method, such as Newton-Raphson method is
unapplicable. We solved the above problem using the genetic
algorithm (GA) [5]. In the simplest implementation of GA in
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the optimization problem, a set (population) of possible
solution is generated, usually at random. Each individual
consists in three resistivity values (5., Ppisp  Premp ) 80d

two locations (ky,k, ). A fitness value is computed for each

individual. In the present case, the fitness function is the object
function of Eq. (2). After several Newton-Raphson iterations,
meshes are grouped according to the grouping algorithm. And
then, with the grouped meshes, several Newton-Raphson
iterations are conducted. In some cases, some meshes may be
grouped in an improper manner and mis-grouped meshes can
deteriorate the convergence. One of simple way to eliminate
misgrouped meshes is to ungroup after a certain number of
Newton-Raphson iterations with the grouped meshes. With this
grouping, the sensitivity, that is the change of boundary
voltages due to the change of resistivity value of a certain mesh,
can be increased and the number of unknowns can be reduced
as the grouping.

2.2 Boundary Estimation Algorithm

In many cases of two-phase visualization, the major concem
is to determine the phase boundary rather than the resistivity
distribution. Hence, some investigators have focused on the
reconstruction of phase interface rather than phase distribution
in the ERT image reconstruction. If the conductivity value of
each component in mixtures could be given a priori, the
unknown would be the interfacial boundary. Han and
Prosperetti [6] considered a shape decomposition technique
based on the boundary element method, where the boundary of
each object was represented in terms of Fourier coefficients
rather than a point-wise discretization. Kolehmainen et al. [7}
developed an algorithm to recover the region boundaries of
piecewise constant coefficients of an elliptic PDE from
boundary data for the application to optical tomography, which
is applicable to ERT problem. They also expressed boundaries
in terms of Fourier coefficients:

cX(s>=("J=%[W; “)J @

V) n=\ g6 (s)
where C, (s}, is the boundary of the ¢-th object (A=1,A ,m),

s is the coordinate for phase boundary, 7 is the number of the
objects, g,(s) is a periodic and differentiable basis function

with period 1, and N, is the number of basis functions. As

the basis function, we used the form of

6F (s)=1

5 (m )
65 (s)=sin| 27 Es R n=2,4,6,A ,even
«9;,3 (s)= cos[ZﬂQs} n=35"7A ,odd

where se[0 1], f denotes either x ory . The boundaries of
the objects are identified with the vector y of the shape

coefficients,
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where y ¢ R¥Ms . Now our ERT problem is to determine the

Fourier coefficients, not the resistivity value of each finite
element mesh. For the optimal solution of the Fourier
coefficients, Newton-type method can be employed [6,7]. Tt is
known that Newton-type method is usually time consuming
although it has shown good performance in many optimization
problems. Such slow convergence would be an adverse effect
in the application to mixture flows undergoing fast transient.
For the computational efficiency in practical applications, as an
alternative to Newton-type method, the neural network
approach can be introduced. Adler and Guardo used the neural
network method to reconstruct resistivity distribution and their
concept could be applied to the present boundary estimation
problem [8]. In the next section, our results from the algorithms
mentioned above are presented.

3. RECONSTRUCTION RESULTS

We have conducted extensive numerical and phantom
experiments to verify the performance of each algorithm.
Detailed description of phantom and experimental conditions
can be found in [9]. Tt is worthwhile to mention so-called the
inverse crime that means inadvertent cancellation of numerical
error when the same mesh structure is used in the forward and
the inverse solutions. In order to avoid the inverse crime, the
mesh structure for the inverse solution should be different from
that for the forward problem. The mesh structure used to
generate the synthesized data of injected current patterns and
corresponding boundary voltages for numerical experiments
should also differ from that used for the inverse problem. A
coarse mesh is considered for the inverse solution to reduce the
number of unknowns, that is computational burden. This mesh
structure corresponds to the spatial resolution of 1/16.

3.1 Mesh Grouping

Figs. 3 and 4 show the reconstructed images by the modified
Newton-Raphson (mNR) and the mesh grouping based on the
data generated from phantom experiments, respectively. It is
estimated that the errors involved in the generation of injected
currents and in the measurement of boundary voltages for
homogeneous medium are maintained less than 2%. In Figs. 3
(a) and 4 (a), a cylindrical acryl rod is located at the center.
This example seems to be very simple, but it is quite illustrative
since the farther the target is located from the boundary
electrodes, the less sensitive the boundary voltages are to the
resistivity changes introduced during the inverse solution. Figs.
3 (b) and 4 (b) consider a target located off the center, toward
the boundary electrodes. Figs. 3 and 4 clearly indicates that the
mesh grouping can improve the image quality significantly
although some blurs around the target are inevitable due to
mismatch of mesh structure and phase boundary as well as
measurement noise.
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Fig. 3. Reconstructed images of a cylindrical acryl rod by using
the mNR grouping algorithm: (a) at the center and (b) off the
center.
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Fig. 4. Reconstructed images of a cylindrical acryl rod by using
the mesh grouping algorithm: (a) at the center and (b) off the
center.
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3.2 Boundary Estimation

For the verification of the algorithms developed for the
boundary estimation, we conducted extensive numerical
experiments although only a few results are presented in this
paper. Phase boundaries are expressed in terms of truncated
Fourier series. We assume targets to be circular or elliptic, so
the dimension of Fourier series is set to N, =3. Two kinds of

algorithms are used to determine the Fourier coefficients: mNR
method and multilayer neural network (MNN). As can be seen
in Fig. 5, both of the mNR and the MNN show good
performance in the determination of the unknown Fourier
coefficients even when measurement error of 1% is considered.
However, numerical experiments show that the MNN has better
performance in treating measurement error than the mNR.
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Fig. 5. Estimated boundary shape by MNN and mNR with 1%
noise (y = [-1.25, 0.75, 0.20, 1.00, 0.25, 1.25]).

4. CONCLUSION

In the paper, two promising approaches of electrical
resistance tomography (ERT) technique to the visualization of
two-phase flows were described [10]. Mesh grouping algorithm
to enhance computational performance and image quality, and
boundary estimation algorithm to determine the phase
boundary directly were introduced and experimental results
from numerical simulations and phantom experiments were
presented. Even with up-to-date algorithms introduced in this
paper, the spatial resolution of reconstructed images by the
ERT should be improved further and the improvement will be
quite challenging. As shown in the above, however, the ERT
can give some information on the approximate location and
size of target (e.g., bubble) and it seems to be promising at least
in monitoring two-phase flows.
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