Qualitative Mapping of Ambient Intelligence Characteristics to Operating System Features in Smart Environment 1

Qualitative Mapping of Ambient Intelligence Characteristics to Operating
System Features in Smart Environment

Young-yeol Choo
Department of Computer Engineering
Tongmyong University, Busan, Korea

ABSTRACT

The goal of Ambient Intelligence (Aml) is to build a smart environment for users where they are supported in some of their activities
by many interaction mechanisms. The diversity of Aml characteristics requires special support from Operating Systems (OSes). In
this paper, in order to support a conscious choice of an operating system for any specific Aml application, features requested by Aml
systems were characterized and defined considering various applications. Then, characteristics of existing Operating Systems have
been investigated in the context of Aml application support to relate their key characteristics to the typical requirements of Aml
systems. Qualitative mapping table between Aml characteristics and OS features has been proposed with an illustration of how to
use it. As no OS completely covers the range of characteristics required by Aml systems, challenging issues are summarized for the

development of a new OS and a product line of OSes.

Keywords: Ambient Intelligence, OS, Ubiquitous Computing, Sensor Network, Embedded Systems.

L. INTRODUCTION

Ambient Intelligence (Aml), which is similar to Ubiquitous
Computing in United States, is a challenging research launched
by the European Commission [1][2]. The features of Aml
application are presented in a document entitled Scenarios for
Ambient Intelligence in 2010 which was written by the
Information Society Technology Advisory Group (ISTAG) for
the Fifth European Framework Programmed (1998-2002)[1].
Aml is a summary term for a large variety of different
applications. It is characterized by the European Research
Consortium for Informatics and Mathematics (ERCIM) [2] as
follows (see Fig. 1):

* Intelligent User Interfaces
*» Ubiquitous Communication

* Ubiquitous Computing

According to this definition, Ambient Intelligence systems
are supposed to provide access to information at any time and
anywhere through multi-modal user interfaces. Applications of
Aml cover from essential goods of daily life to entertainment,
home automation, healthcare, administration of warehouses,
transportation, manufacturing industries, and so on. In addition,
they can be applied in many different contexts: e.g., aircraft
maintenance is highly regulated; some production shop
environments are very difficult from a communication point of
view; some contexts make it nearly impossible to work with
traditional visually-oriented I/O; sometimes absolutely low-

* Corresponding author. E-mail: yychoo@tu.ac.kr
Manuscript received Sep.15, 2006 ; accepted Sep. 29, 2006

power operation is required, etc. Accordingly, technological
span to support Aml is very wide: semiconductor, MEMS
(Micro Electro Mechanical Systems), wired and/or wireless

communication, Computer Graphics, Computer Vision,
Software Engineering, sensors, chemistry, etc.
Intelligent
User Interface
Ambient Intelligence
Ubiquitous J [Ubiquitous
Computing Communication

Fig. 1. Technological components of Aml.

Applications of Ambient Intelligence comprise various
devices and systems with diverse hardware and software
specifications. The goal of Aml may boil down to constructing
a smart environment in our daily life. In spite of prevalent
usage of the words “Ambient Intelligence” or “Ubiquitous
Computing”, its specific features and requirements are not

This research was supported by the MIC (Ministry of Information and
Communication), Korea, under the ITRC (Information Technology
Research Center) support program supervised by the IIT4 (Institute of
Information Technology Assessment).

specified yet as a whole since its applications are of wide range
and each systems are quite unlike in performance. Some
devices in the smart environment are highly mobile and have
poor capability in terms of computing power and memory size.
On the other hand, servers such as inventory server or game
server may be immobile and have fast processors and large
memory. In addition, communication bandwidth requirements
range from few bps (bit per second) to several Giga bps and
power consumption requirements from microwatts to watts.
Therefore, Aml systems have various requirements and distinct
characteristics depending on their applications.

Considering a software aspect of Aml application, each and
every Aml systems may be based on an Operating System (OS).
The diversity described above will be reflected in a similar
diversity of OSes for AmI systems. The general purpose OSes
cannot be used as is due to resource restrictions and lack of
functionalities for Aml systems.

In this paper, in order to support a conscious choice of an
operating system for any specific AmlI application, features
requested by Aml systems were characterized and defined
considering various applications. Then, characteristics of
existing Operating Systems have been investigated in the
context of Aml application support to relate their key
characteristics to the typical requirements of Aml systems.
Qualitative mapping table between Aml characteristics and OS
features has been proposed with an illustrative example of how
to use it. In this analysis, focus is how to support the everyday
selection task that developers of Aml systems face. As no OS
completely covers the range of characteristics required by Aml
systems, challenging issues are summarized for the
development of a new OS and a product line of OSes. We
understand the selection of the appropriate OS is not a trivial
task because of the various requirements of Aml systems and
applications.

The remainder of the paper is organized as follows. In
chapter 2, I describe the characteristics of Aml systems
focusing on the distributed, embedded, mobile, and
heterogeneous nature of Aml systems. The relevant operating
system features to support Aml systems are presented in
chapter 3. In chapter 4, the relation between Aml
characteristics and OS attributes is addressed in a mapping
table along with an illustration of how to use it. Chapter 5
contains summary of this paper and some remarks on the
development of a new OS for Aml applications.

2. AmI ATTRIBUTES
2.1 Small and embedded

Various types of devices such as cameras, head phones, data
gloves, special sensors, smart phones, Augmented Reality glass,
Active Badge, actuators, etc. participate in the operation of
Aml systems to make smart environment [3-10]. The
environment may be peppered with a variety of networked
sensors. Hence, these devices will adopt MEMS or nano-
technology so that they take small space. Aml devices will be
placed in remote a location, which causes constraints in power
consumption [11]. In these cases, the life time of each Aml

The Journal of the Korea Contents Association

system may be determined by the battery life. Consequently,
they should be implemented in the form of small size devices
using SoC or nano technology. Inevitably, embedded system
support is a basic requirement for the development of Aml
systems [12].

2.2 Distribution

Inherently, Aml systems are working on the premise that all
participating nodes are distributed in the environment and
collaborate with others through networks, especially mobile
networks. The distribution involves not only hardware and
software, but also information and Hence,
collaboration should be supported on two levels:
communication protocol and application service. Especially, a
service for a mobile system should be elaborated to
dynamically integrate and configure relevant information
located at different systems and layers.

service.

2.3 Mobility

The nodes in Aml applications and communication networks
are of high mobility [7-11]. When an Aml system moves to be
faced with a new ambience, it joins ad-hoc networks and/or
wireless sensor networks and exchanges information and
service with the nodes of the ambience. Hence, self-
configuration and re-configuration functions are important
features to permit seamless addition and deletion of a node in a
network as well as to cope with its vulnerability to failure.

2.4 Heterogeneity

Aml nodes include numerous types of devices, which
pervade the “smart environment” [1]. They may be from
various vendors, be based on various platforms including
different hardware, operating systems, communication
protocols, and application software, and provide different
interfaces. Thus, the heterogeneity of Aml nodes should be
worked out in all aspects.

2.5 Real-time

The applications for real-time computing include process
control, intelligent vehicle highway system, telemedicine
systems, telematics, multimedia system, etc. All of the above
applications involve Aml implementation. Intensive research
has been done on real-time computing [13-15]. Real-time
systems can be defined as follows: “A real-time system is a
system in which the correctness of the computations depends
not only upon the logical correctness of the computation but
also on the time at which the result is produced [15].”

Aml applications have various real-time properties to be
supported by the system level and the application level. In the
case of manufacturing application of Aml, real-time processing
is necessary for the following fields:

* Real-time control
= Alarm and event processing
* Real-time communication between control devices

Qualitative Mapping of Ambient Intelligence Characteristics to Operating System Features in Smart Environment 3

2.6 Proactivity and context-awareness

Proactivity is the ability to act in anticipation of a future
problem or need of a user by combining knowledge in system
and environment. To make a proper decision based on
proactivity, an Aml system continuously tracks human intent
and has sufficient knowledge of the context related to the
current circumstances (internal state + context information).
Context is defined as follows:

“Context is the set of environmental states and settings that
either determines an application’s behavior or in which an
application event occurs and is interesting to the user [16].”

A user’s context may consist of the following attributes
[17][18]:

* Location

* Time

* State of system

Once the current context is seized by an Aml system, it is
used to control the environment or adjust the system to the
circumstance. According to the detection of context change, an
AmlI system may behave as follows:

* The Aml system automatically adapts to the new context by
changing its activity.
* It reports the new context to the user by various Human

Computer Interface (HCI) devices or stores the context for

later retrieval.

Besides the contexts mentioned above, personal history,
behavior pattern, and physiological state such as body
temperature, heart rate, etc. could be contexts requested by a
specific application. These might be collected by appropriate
peripheral devices.

Examples of proactivity and context-awareness are as
follows:

* In the application of “Bicycle Team Training {7],” the Aml
system suggests optimal speed, formation pattern, and the
position of each cyclist at each timing section based on track
profile, speed and direction of wind, physical condition of all
cyclists, and so on.

* In the scenario of inter-car communication [9], to guide a
user to his/her destination quickly and safely, the Aml
system needs to collect and combine data for proper
suggestion of the route. The data may be gathered from
communication with nearby car as well as traffic information
servers and filtered to prevent false suggestions.

2.7 Adaptivity

The information and the services that an Aml system can get
from environmental nodes are unstable regarding both
quantitative and qualitative aspects. Adaptivity is the ability
that an Aml system can adjust its operation without human
intervention to cope with the change of circumstances or
resources. The resources can be bandwidth in wired/wireless
communication, battery power, memory space, Central
Processing Unit (CPU) capacity, and so on. To decide resource
allocation or future system behavior, the following three

strategies can be considered [19]:

* Aml entities guide the application to use less of a scarce
resource.

Aml entities can ask the environment to guarantee a certain
level of resources.

* Aml entities suggest a corrective action to the user when a
good decision is not possible or the result of a bad decision
entails high cost.

In these strategies, the quality of service (QoS) is an
important feature to consider. Although an application faces a
new circumstance, Aml system should maintain the minimum
QoS required to fulfill the mission of the application or reduce
gracefully the service quality even in the worst case. QoS of an
application needs to be considered in all levels of Aml systems
including hardware, OS, middleware, application, etc.

Communication in smart environment includes several
adaptivity issues to cope with. The sensors deployed in an
environment may fail to operate properly due to an unexpected
accident or depletion of battery power. The Aml system should
adapt to these failures and continue to provide its service
without human intervention such as replacement of devices and
maintenance operation. In particular, the following adaptive
services are necessary to support seamless communication
among Aml devices and/or systems.

* Self-organization of ad-hoc network or sensor network

* Self-healing capability

* Self-management

* Reconfiguration of network when the network components
are changed

* QoS support: To satisfy this requirement, Aml systems
adapt to the change of network states and resources. This
feature is closely related to proactivity.

2.8 Spontaneity

An Aml system interacts with its environment spontaneously
and seamlessly [20]. As mentioned above, when an Aml system
is faced with a change of circumstances, it should adapt to the
new ambience without human intervention. That is, joining the
new network, exchanging information with other nodes, and
collaborating with the environment to fulfiil the mission of the
system should happen without explicit commands. This feature
may be closely related to the domain of software quality or
application services

2.9 Open Systems

Aml systems may consist of heterogeneous devices, which
are connected with various network protocols. Therefore, open
system technology is indispensable for the seamless integration
and cooperation among Aml devices. I define open systems in
three aspects:

* Interoperability: An application collaborates with other
applications on local and remote systems.

* Portability: A software/hardware should adapt to other
software/hardware so that it will function in a different

computing environment than the one for which it was
originally written.

» Connectivity: An application can exchange information with
other applications without modification of communication
facilities.

2.10 Dependability

To avoid ambiguity, I will use the definition of dependability
as follows [21]: “Dependability is the trustworthiness of a
computer system such that reliance can justifiably be placed on
the service it delivers. The service delivered by a system is its
behavior as it is perceived by its user(s).”

More precisely, a dependable system should satisfy four
attributes:

* Availability: to be ready for usage

* Reliability: to continue a service without error

+ Safety: to avoid catastrophic consequences

+» Security: to prevent unauthorized access and/or handling of
information.

Devices in an Aml system have the characteristics relevant
to dependability as follows.

* Accurate diagnostics
* Fault tolerance

2.11 Scalability

Scalability is defined as the ability of an Aml application or
device (hardware or software) to continue to function well
when it (or its context) is changed in size or volume in order to
meet a user need.

2.12 Security

Because embedded systems in Aml often rely greatly on cost
effectiveness and power efficiency, CPU and other resources
are restricted in performance. For example, an 8-bit CPU
cannot be enough to encrypt/decrypt data with a long
cryptographic key [22]. This is one of the important
challenging issues in general embedded system applications as
well as in Aml applications. Requested security services in
Aml applications are as follows:

» Confidentiality: means that only authorized people/users
can see/access protected data.

* Authentication: protection against fabrication

* Availability: protection against denial of service

* Integrity: means that only authorized people/users/processes
can modify the data in acceptable ways.

2.13 User Interface

Aml systems, just like conventional systems, involve some
sort of interface schemes. Perhaps, the traditional interfaces
such as PDAs and mobile phones might be still used. However,
Aml interfaces often differ widely from traditional interfaces.
Audio equipments, haptic interfaces, or augmented reality can
be exploited to access services of an Aml system. Hence, a

The Journal of the Korea Contents Association

large range of adaptation is expected for context awareness in

an application in terms of user interfaces (UI). The domain of

adaptation can be categorized as follows:

* Device: Aml Uls should be able to integrate and adapt to
various input/output devices exploiting voice and gestures
seamlessly.

Function: If additional functions become available in a

dynamic system, the UI should be able to represent them

and to effectively accommodate them as well.

» Context: If the brightness of a light or the volume of a
sound change, the interface should adapt itself to the
changes.

« User: Depending on the skills and preferences of the user,
the interface should be self-adapting as well.

3. OS CHARACTERISTICS

Nowadays, there is no common definition of the architecture of
how an OS should look like. Depending on the specific
application from an embedded system to a main frame server,
each OS vendor has its own architecture, and more over, it has
its own definition of what makes up an OS [23]. However,
there are many common modules and features offered in an OS.
In the following sub-sections, the most important ones are
listed with some definitions.

3.1 Real-time

A real-time computing environment is an environment where
(some) task are executed (completed) within a predefined time
deadline from start to completion. As stated in Chapter 2, the
real-time property exists in two formats [24]:
¢ Hard real-time property: hard real-time property is said about

deterministic systems where tasks are fulfilling the real-time

requirement all the time.

* Soft real-time property: the soft real-time property means that
the system is tolerant of missing some of the timing
requirements. Probabilistic approaches mostly belong to this
category.

3.2 Scalability

The concept of scalability in an OS is the same as the one
described at Section 2.11.

3.3 User Interfaces (Uls)

Uls are interaction methods with users supported by an OS.
The most notable ones are voice interfaces, graphical user
interfaces in all varieties. Recently, robotic interfaces or input
via gestures are studied intensively. In this paper, Uls of an OS
are classified into three categories:

* Graphical User Interface (GUI) for the OS
* Voice recognition facilities
* I/Os

3.4 Modularity

Qualitative Mapping of Ambient Intelligence Characteristics to Operating System Features in Smart Environment 5

Modularity supports the possibility of being well customized
for particular application in terms of volume and function of an
OS. A modular OS may allow the use of modules that are only
needed for this kind of applications such as no mouse, no
keyboard and so on.

3.5 Resources

Platforms on which OSes run are characterized by a big
diversity in terms of resources. The resources may differ in the
CPU architecture; they may use different memory technologies,
etc. In this paper, I will make distinction between four
categories of platforms in terms of resources:

Tiny: this category contains those systems with CPUs using

less then 8 bits, and memories with ranging from few bytes

to few Kilo-bytes.

Small: this category contains those systems with CPUs using

from 8 bits to 16 bits, and memory ranging from few kilo

bytes to few mega bytes.

Medium: this category contains those systems with CPUs

using from 16 bits to 32 bits, and memory ranging from few

mega bytes to hundreds of mega bytes.

* Large: this category contains those systems with CPUs using
more than 32 bits, and memory with more than hundred of
mega bytes.

3.6 Protection and security

Security in computing can be defined as guarantecing the
properties such as confidentiality, integrity, authentication, and
availability.

3.7 Reliability

In OS, reliability is the fact that the OS operates consistently
with its specification [25]. In theory, a reliable OS is totally
free from technical errors; in practice, vendors express this by a
percentage, and weight affected to OSes’ tasks/components.

3.8 Open systems

This characteristics shares its definition with the one
described at Section 2.9.

3.9 POSIX compliant

Portable Operating System Interface for UNIX (POSIX) is a
standard from the IEEE and ISO communities that defines an
interface between programs and OSes [26]. Most OS vendors
are trying to certify their OSes as compliant with the POSIX
specification.

3.10 Multi-tasking
Multi-tasking is the ability to enable the CPU in a computing

environment to execute more than one task at a time. This
requires OS to implement a process scheduling mechanism.

3.11 Distribution

Distribution in operating systems is the concept of
interconnecting many computing nodes through
communication networks to be presented to the OS users as one
computing system [23]. In fact, distribution can take many
formats; here is a list of distribution forms with a few
examples:

* Distributed processing: Distributed processing is the ability
to distribute processes over many processing nodes in a way
that is transparent to users [27]. In this paper, the SUN RPC
(Remote Procedure Call) is stated as an example. In order to
implement system distribution in processing, many features
are required. These include distributed mutual exclusion,
clock synchronization, distributed deadlock detection, and
agreement protocols.

* Distributed file systems: Distributed file systems mean the
ability to implement a common file system that can be
shared by all computing nodes in the distributed system [27].
The Network File System (NFS) is an example. Many
proprieties such as distributed mounting, distributed caching,
encryption (for security proposes), availability, and
consistency are required to implement distributed file
systems.

* Distributed shared memory: Distributed shared memory
means the ability to use some/all of the memories present in
computing nodes in a distributed system, as one logical
memory. Examples include IVY (Integrated Shared Memory
at Yale), which was implemented in the Apollo DOMAIN
environment, Mirage, which was implemented at the
University of California Los Angles, and Clouds, developed
at the Georgia Institute of Technology. This property is
supported by many other concepts like granularity, paging
algorithms, etc. (for details, refer to [27]).

* Distributed scheduling: Distributed scheduling deals with
process scheduling in distributed systems. It deals with load
balancing, load sharing, task migration, etc. In distribution,
many other subjects are of relevance, such as fault tolerance,
security, failure recovery, and concurrency control. In theory,
in order to classify an OS as a distributed OS, all aspects
stated should be fulfilled. However, only some of these
features are present in practice.

4. AMAPPING TABLE BETWEEN AML ATTRIBUTES
AND OS CHARCTERISTICS

The relationship between the Aml characteristics and the OS
characteristics is not evident. More over, commercial OSes are
provided with only a sub-set of the characteristics described in
Chapter 3. In order to understand how we can select which OS
to use in an Aml system, it is needed to analyze the relationship
between the Aml- and the OS- relevant characteristics. Based

on this analysis, the existing relationship between OS and Aml
characteristics is presented in Table 1.

Table 1. Mapping table between Aml characteristics and OS features

% g ; NEREEREEEECEE0SY
x < xix|x[x|x| |G
% < XIChei il el X
= q || oe[x [|x][[x
% | IxigixixbaExin TIxil] |
* x portability ||| X X[X[| (G x| |
<lgin ! interoperabittty <] s e s oe i] 1
x| | Ixpelx] Ix[=<|&x] 1« connectivity || x|x[x[x[x|c]clelc]cc] [a
& Rl rellanilty | [G|R|XIKIXIX R IRIR IR D
g x| security ><xx|><_{><x¢:0xccc x|
& e (X)) el sel 111 TR |
x 8 medium || x| |>[x[x<[x[x|>|>[x[x] [x] |
2 smaf | [xiQ] ICChxx x| Clxix
x 5 tiny [] [1= |
= & modularky 1GMIX| D =belRilslel e
x| F1 viee [afx|c|clelc]clclelclale] [x
) 1l vosuppen lxIxbeixlinixlx | %
= i graphical ||| 5| > | X5 x[x| % x
x scalablity |X[XIX|CIxIxIxIxIRIx El
x| ||« a hard ><l x| || x|
%| |dl4 P solt xx{x ix
gl |g E o »
9| |8
28 o H e |4 galslaad |
= 219|812 & 9|3 2 %
HE: BHHMEEEEREE FEEESE
HEBEMFRHEHEEE ol 8181 §
2 8 8
- £ k-3 i
§l_ of & 3 2 k3 &
@ H wiglslv
HE 2 oEg Eiggs
= 2 8,38 8 s iR
[i]
2 s | z 58 2 2 21g
811 e 8 |8 o 1s| ¥
El]S) 8 & |5 2
= * <€ § g
:
Aml Systems’ Characteristics Operating Systems

The table also provides a set of commercial OSes and their
characteristics. The meanings of notations in Table 1 are as
follows:

* X: means that there is strong cotrelation between the
corresponding attributes in the table or an attribute is
supported by the corresponding OS.

* A: means that there is weak correlation between an Aml
characteristic and the corresponding OS characteristic.

* Q: means that an OS does not fully support the
corresponding OS characteristic.

To illustrate how Table 1 can be used to select an OS based
on the Aml characteristics, an example is provided as follows:
The HomeCare company wants to engineer a node of an Ami
system in the assisted living domain. The analysis of the node
reveals the following characteristics: it is small and embedded,
mobile, has to be aware of the position, and its communication
should be adapted depending on energy consumption. At first,
the person in charge of selecting an appropriate OS identifies
the respective rows in the upper part of the (rotated) table. In
each of these lines, he identifies the X or A s and follows the
columns down to the corresponding OS characteristics. X
means that designated OS characteristic is requested. A means
that the OS characteristic may be necessary. In this example,
real-time property may be of interest; modularity and resources
have to be considered. Furthermore the OS has to provide an

The Journal of the Korea Contents Association

appropriate connectivity. With the identified OS characteristics,
he can then find the listed OSes that meet these requirements.

5. CONCLUSIONS

Aml is a totally new paradigm shift in information
technology. Aml applications need holistic approaches
consisting of systems and technologies that are sensitive,
embedded, distributed, heterogeneous, highly mobile, adaptive,
contextualized, transparent, dependable, and intelligent. In this
paper, the characteristics of Aml systems and features of
operating systems to support them were presented. The
relations between two characteristics were summarized in a
table along with support of current commercial OSes for AmI
characteristics. Since Aml applications cover many areas, we
understand that the selection of the appropriate OS to fulfill a
variety of Aml characteristics is not a trivial task. Some Aml
characteristics might be handled on the application level.
However, others need support on the OS level. As a whole,
current OSes are inadequate for supporting most Aml systems
and applications because those are based on a new
technological paradigm. Hence, a new type of operating system
architecture is a challenging issue to support Aml systems and
applications. The following attributes of an OS are often
required for AmI systems:

* Small size and power management: to be used in sensor
nodes and resource-constrained systems.

* Modularity and openness: to be ported in various hardware
and software architectures.

» Concurrency: to execute high level processing for users such
as proactive behavior, and low level input/output functions
such as sensing, concurrently.

* Mobility: to support highly mobile ad hoc networks.

« Direct access to hardware: to control power usage directly in
applications.

REFERENCES

[1] Paolo Remagnino, Gian Luca Foresti, “Ambient
Intelligence: A New Multidisciplinary Paradigm,” IEEE
Trans. on Systems, Man, and Cybernetics, Vol. 35, No.
1, pp.1-6, Jan. 2005.

[2] http://cordis.europa.ew/istag-reports.htm

[3] http://agrausch.informatik.uni-
kl.de/budapest/kompetenzen/documents/chall_in_Aml.pdf

[4] http://agrausch.informatik.uni-kl.de/budapest/kompetenzen/

[5] http://agrausch.informatik.uni-kl.de/budapest/kompetenzen/

[6] http://agrausch.informatik.uni-
kl.de/budapest/kompetenzen/documents/HMI_white_pape
r.pdf, white paper in the area of MMI for the research
topic “Ambient Intelligence”

[7] http://agrausch.informatik.uni-kl.de/budapest/szenarien/

[8] http://www eit.uni-kl.de/ami/en/inhalte.html, “Scenario
Human centered manufacturing”

[9] http://agrausch.informatik.uni-kl.de/budapest/szenarien/

[10] http://agrausch.informatik.uni-kl.de/budapest/szenarien/

Qualitative Mapping of Ambient Intelligence Characteristics to Operating System Features in Smart Environment 7

[11] Nojeong Heo and Pramod K. Varshney, “Energy-Efficient
Deployment of Intelligent Mobile Sensor Networks,”
IEEE Tr. On Systems, Man, and Cybernetics, Vol. 35,
No. 1, pp. 78-92, Jan. 2005

[12] http://www.cordis.lu/ist/istag.htm

[13] Ian Broster, “Flexibility in Dependable real-time system,”
Ph. D thesis, Univ. of York, Aug. 2003

(14} Hermann Kopetz and Gunther Bauer, “The Time-
Triggered Architecture,” Proc. of the IEEE, Jun. 2002.

[15] Shin K., and Ramanathan P. “Real-time Computing: A
New Discipline of Computer Science and Engineering,”
Proc. of the IEEE, Vol. 82, No. 1. Jan. 1994

[16] Guanling Chen and David Kotz, “A Survey of Context-
Aware Mobile Computing Research,” Technical Report
TR2000-381, Dartmouth College, Dept. of Computer
Science, 2000

[171 M. A. Strimpakou, I. G. Roussaki, M. E. Anagnostou, “A
Context Ontology for Pervasive Service Provision,” Proc.
of 20th Conf. on Advanced Information Networking
and Applications, Vol. 2, pp. 18-20, April 2006

[18] C. Anagnostopoulos, A. Tsounis, S. Hadjiefthymiades,
“Context Management in Pervasive Computing
Environments,” Proc. of Int’l Conference on Pervasive
Services, pp. 421 — 424, July 2005

[19] M. Satyanarayanan, “Pervasive Computing: Vision and
Challenges,” IEEE Personal Communications, pp. 10-
17 Aug. 2001

[20] S. S. Yau and F. Karim, “A Lightweight Middleware
Protocol for Ad Hoc Distributed Object Computing in
Ubiquitous Computing Environments,” Proc. of 6th Int’l
Conference on Object-Oriented Real-Time Distributed
Computing, pp. 172 — 179, May 2003

[21]1J. C. Laprie, “Dependability—Basic Concepts and
Terminology,” Vol. 5 of Dependable Computing and
Fault-tolerant Systems, Springer-Verlag, IFIP WG 10.4
1992.

[22] Philip Koopman, “Embedded System Security,” IEEE
Computer, Vol. 37, No. 7, pp. 95-97, Jul. 2004

[23] Abraham Silberschatz, Peter Baer Galvin, Greg Gagne,
Operating System Concepts, 7th Edition, John Willy &
Son, Reading, Massachusetts, Dec. 2004

[24] Jane W.S.LIU, Real-Time Systems, p-28-32; Prentice
Hall.

[25] http://whatis.techtarget.com/definition/0,,sid9 gci752461.

[26] http://www.webopedia.com/TERM/P/POSIX html.’

[27] K. Li, “IVY: A shared virtual memory system for parallel
computing,” Proc. of Int’l Conference on Parallel
Processing, pp. 94-101, 1988.

Young-yeol Choo

He received a B.S. and an M.S.
degree in Control and
Instrumentation Engineering from
Seoul National University, Seoul,
Korea in 1986 and 1988, respectively
and a Ph. D. from the Pohang
University of Science and
Technology, Pohang, Korea, in 2002. From 1988 to 2002, he
has worked for posco as a senior researcher. At present, he is
an Assistant Professor in the Dept. of Computer Engineering
of Tongmyong University, Busan, Korea since 2002. He was
invited as a Visiting Scientist by Fraunhofer IESE (Institute
of Experimental Software Engineering) from January 2005
to July 2005. His research interests include computer
network, Ambient Intelligence, Ubiquitous Sensor Network,
real-time systems and network security.

