The Journal of the Korea Contents Association

A Loop Transformation for Parallelism from Single Loops

Sam Jin Jeong
Division of Information and Communication Engineering
BackSeok University, Cheonan, Korea

ABSTRACT

This paper describes several loop partitioning techniques such as loop splitting method by thresholds and Polychronopoulos’ loop
splitting method for exploiting parallelism from single loop which already developed. We propose improved loop splitting method
Jfor maximizing parallelism of single loops with non-constant dependence distances. By using the distance for the source of the first
dependence, and by our defined theorems, we present generalized and optimal algorithms for single loops with non-uniform
dependences. The algorithms generalize how to transform general single loops into parallel loops.

Keywords: Parallelizing Compiler, Loop Splitting, Loop Transformation, Loop Parallelization, Non-uniform Dependences

1. INTRODUCTION

An efficient approach for exploiting potential parallelism is
to concentrate on the parallelism available in loops in ordinary
programs and has a considerable effect on the speedup [1][6].
Through some loop transformations using a dependence
distance in single loops[1][5], a loop can be splitted into partial
loops to be executed in parallel without violating data
dependence relations, that is, the size of distance can be used as
a reduction factor[1], which is the number of iterations that can
be executed in parallel. In the case of non-constant distance
such that it varies between different instances of the
dependence, it is much more difficult to maximize the degree
of parallelism from a loop.

Partitioning of loops requires efficient and exact data
dependence analysis. We can consider some tests that examine
the dependence of one-dimensional subscripted variables the
separability test, the GCD test and the Banerjee test[3].

When we consider the approach for single loops, we can review
two partitioning techniques proposed in [1] which are fixed
partitioning with minimum distance and variable partitioning
with ceil(d(:)). However, these leave some parallelism
unexploited, and the second case has some constraints.

The rest of this paper is organized as follows. Chapter two
describes our loop model, and introduces the concept of data-
dependence computation in actual programs. In chapter three,
we review some partitioning techniques of single loops such as
loop splitting method by thresholds and Polychronopoulos'
loop splitting method. In chapter four, we propose a
generalized and optimal method to make the iteration space of
a loop into partitions with variable sizes. Finally, we conclude
in chapter five with the direction to enhance this work.

* Corresponding author. E-mail: sjjeong@bu.ac.kr
Manuscript received Nov.15, 2006 ; accepted Dec. 11, 2006

2. PROGRAM MODEL AND DATA DEPENDENCE
ANALYSIS

For data-dependence computation in actual programs, the
most common situation occurs when we are comparing two
variables in a single loop and those variables are elements of a
one-dimensional array, with subscripts linear in the loop index
variable. Then this kind of loop has a general form is shown if
Fig. 1. Here, /, u, a, a,, b; and b,, are integer constants known
at compile time.

DOI=1u

S] . A(al*I+ az) =

SZZ :A(b1*1+ bz)
END

Fig. 1. A single loop model.

For dependence between statements S; and S, to exist, we must
have an integer solution (i, j) to equation (1) that is a linear
diophantine equation in two variables. The method for solving
such equations is well known and is based on the extended
Euclid's algorithm[2].

aji+a,=by+bywhere/<i,j<u)

This equation may have infinitely many solutions (i, ;) given by
a formula of the form:

(i,)) = ((by/g)t + i\, (a/g)t +,
where (i1, /1) = ((b;-22) i ¢/g, (b-22) j o/8) 2

i o, jo are any two integers such that a; iy - byjp = g(ged(ay,
b)) and ¢ is an arbitrary integer [5}[6]. Acceptable
solutions are those for which [< ¢, j < u, and in this
case, the range for ¢ is given by

A Loop Transformation for Parallelism from Single Loops 9

max(min(a, £), min(y, d)) <¢ < min(max(a, #), max(y, 4))
where a = -(1-i)/(b)/g), B=-(u-i)/(b/g),
y=-(1-j/@/g), 6 = ~(u - i)/(a/g). 3

3. RELATED WORKS

Now, we review some partitioning techniques of single loops.
We can exploit any parallelism available in such a single loop
in Fig. 1, by classifying the four possible cases for a; and b,
coefficients of the index variable J, as given by (4).

(a) a; = b] =0

(b) 21|=0,b1?é Ooral;é O,b,=0

(© a=b# 0

(d a# 0,bi# Oa# b 4)

In case 4(a), because there is no cross-iteration dependence, the
resulting loop can be directly parallelized. In the following
subsections, we briefly review several loop splitting methods
for the cases of 4(b) through 4(d).

3.1 Loop splitting by thresholds

A threshold indicates the number of times the loop may be
executed without creating the dependence. In case 4(b), for a
dependence to exist, there must be an integer value i of index
variable / such that by * i + b, =a, (ifa;=0)ora;*i+a,=b,
(if by = 0) and / < i < u. If there is no solution, then there is no
cross-iteration dependence and the loop can also be parallelized.
And if integer exists, then there exist a flow dependence (or
anti-dependence) in the range of I, [/, #] and an anti-
dependence (or flow dependence) in [i, u]. In this case, be
breaking the loop at the iteration / = i (called turning threshold),
the two partial loops can be transformed into parallel loops.

In case 4(c), let (7, j) be an integer solution to (1), then there
exists a dependence in the range of I and the dependence
distance (d)is 1j-il| = | (a;-by)a; | . Here, the loop can
be transformed into two perfectly nested loops; a serial outer
loop with stride d (called constant threshold) and a parallel
inner loop[5].

In case 4(d), an existing dependence is non-uniform since there
is a non-constant distance, that is, such that it varies between
different instances of the dependence. And we can consider
exploiting any parallelism for two cases when a; * b; <0 and a,
* b; > 0. Suppose now that a; * b; < 0. If (i, i) is a solution to
(1), then there may be all dependence sources in (/, i) and all
dependence sinks in [i, #]. Therefore, by splitting the loop at
the iteration [= i (called crossing threshold), the two partial
loops can be directly parallelized[5].

3.2 Polychronopoulos’ loop splitting

We can also consider exploiting any parallelism for the case
4(d) when a; * b; > 0. We will consider three cases whether it
exists only flow dependence, anti-dependence, or both in the
range of L. First, let (7,) be an integer solution to (1). If the
distance, d(i) depending on i, as given by (5), has a positive
value, then there exists a flow dependence, and if d,(j)
depending on j, as given by (6), has a positive value, then there
exists an anti-dependence. Next, if (x, x) is a solution to (1) (x

may not be an integer.), then d(x) = d,(x) = 0 and there may
exist a flow (or anti-) and an anti-dependence (or flow) before
and after / = ceil(x), and if x is an integer, then there exists a
loop-independent dependence at / = x. Here, suppose that Then
for each value of 7, the element A(a;*/ + a,) defined by that
iteration cannot be consumed before ceil(d(i)) iterations later,
and this indicates that ceil(d(i)) iterations can execute in
parallel.

d(i) =j - i = D(i)/b;, where D(i) = (a;- b)) * i + (a;- b;) (5)
di(j) =i -j = Da(j)/a;, where D,() = (by - ap) * j + (b2 - a2)(6)

DOI=I,N

S;: AGIH) =...
S;: ...=AQ-4)
ENDDO

Fig. 2. An example of a single loop.

Consider the loop, as given in Fig. 3, in which there exist flow
dependences. d(i) = D(i)/b; = (i +5)/2 > 0 for each value of I
and d(¢) have integer values, 3, 4, 5, ... as the value of [is
incremented.

4. MAXIMIZING PARALLELISM FOR SINGLE LOOPS

From a single loop with non-constant distance such that it
satisfies the case (d) in (4) and a;*b;, > 0, we can get the
following theorems. For convenience' sake, suppose that there
is a flow dependence in the loop.

Theorem 1: The number of iterations between a dependence
source and the next source, sd is given by | b; | /g iterations
where g = ged(ay, by).

Proof: Let i, i’ be iterations for a source and next source,
respectively. Then from (2), i = (b/g)t + i, and i’ =
(bi/g)(¢+1)+i; for i}, g and ¢, as defined in (2). Therefore, sy =
[i<i] = |b;l/g

And we can know the facts that if we obtain the iteration for the
source of the first dependence, then we can compute the others
easily, and i = j(mod sy) for i, j are arbitrary iterations for all
sources.

Theorem 2: The dependence distance, that is, the number of
iterations between the source and the sink of a dependence, is
D(i)/b; where D(i) = (a, - by} * i + (a; - by), and the increasing
rate of a distance per one iteration, d' is given by (a; - by)/ b,.
And the difference between the distance of a dependence and
that of the next dependence, dicis | a;-b, | /g.

Proof: According to (5), we can know the distance and d'. And
dipe=d' *sq=(a;-b))/by * | by | /g= la-b |/g

Hence, if we obtain the distance for the source of the first
dependence, then we can compute the others easily. Also for
the case of anti-dependence, similarly, Theorem 1 and 2 can be
represented. Namely, sq is given by | a, | /g iterations where
g = ged(ay, by), the distance is given by (6), and d' is (b;-a|)/a;.
Anddmc=d'*sd=(b,-a1)/al * | a) | /g: | b]-al | /g

By using the iteration and distance for the source of the first
dependence, and concepts defined by Theorem 1 and 2, we

10

obtain the generalized and optimal algorithm to maximize
parallelism from single loops with non-uniform dependences.
Procedure MaxSplit shows the transformation of single loops
satisfying the case (d) in (4) and a;*b; > 0 into partial parallel
loops.

In step 2 in Procedure MaxSplit, the iteration for the sink of the
first dependence in each block, Sri + di, is selected as the first
iteration in the next block, St;;;, to maximize parallelism from a
loop. And the iteration and distance for the source of the first
dependence in each of blocks are obtained in step 3 and 4,
respectively. The transformed loop will speed up by a factor of
St - St; (reduction factor, which is the number of iterations
that can be executed in parallel), the stride of the outer loop.

Procedure MaxSplit (/, u, sy, diy., @, f)
/*Transformation of single loops with
dependences into partial parallel loops */

non-uniform

BEGIN
/* (1) Computing the first iteration in each of blocks partitioned
by loop splitting.
St; : the first iteration in the ith block
Sr; : the iteration for the source of the first dependence in the ith
block
d; : the distance for Sr;
dn; : the sequential number of the source of the first dependence
in the ith block with respect to all sources in the original loop
1, u: the lower and upper bounds of loop, respectively
o, f: the iteration and distance for the source of the first
dependence in the loop computed by the separability test,
respectively
Sds dine: the same as defined in theorem 1 and 2, respectively */
Step 1: 1=1;St; =1; Sr;=a; d, = 5;
Step 2: Stm = Sri + di;
If Stjy; > then {St;,; = u +1 go to Step 5}
Step 3: Srj3; = Stiyy + q, where 0 < q <5, and
q=(Sr; - Stj1;) mod sg;
Step 4: dnyy; = (Stisg - St))/sq +1;
diyy = dy + (dngy - 1) * dic
i=i+1 gotostep 2;
/*(2) Transforming the original loop into the following parallel
loop. */
Step5:i=1;1'=1;
While I' < u Do
inc = Sty - St; ;
DOALLI=1I,I'+inc- 1
Af@*+ay))=...
S A(b]*1+ bz)
ENDDO
'=['+inc;i=1i+1;
Endwhile
END MaxSplit

Applying Procedure MaxSplit to the loop in Fig. 2, the unrolled
version of this result is shown in Fig. 3(c). As shown in Fig. 3,
we can know that Procedure MaxSplit is an algorithm to
maximize parallelism from single loops with non-constant
distances.

The Journal of the Korea Contents Association

I AG*H1) AQ*-4) 1 AG*H]) A(2*4)
1 A(04) A(2) T1A(04) A(2)

2 A(07) A0y 2 A0 A(00)
3 _A(10) A02) 3 A(10) A(02)
4 A(13) A(04) 4 A(13) A(04)
5 A(16) A(06) 5 A(16) A(06)
6 _A(19) A(08) 6 A(19) A(08)
7 A(22) A(10) 7 AQ2) A(10)
8 A(23) A(12) 8 A(25) A(12)
9 A(28) A(l4) 9 A(28) A(14)
10 A(31) A(l6) 10AQ(3D) A(16)
11 A(34) A(18) 11 A(34) A(18)
12 A(37) AQ0) 12A37) A(20)
13 A(40) A(22) 13 A(40) A(22)
14 A(43) A(24) 14 A(43) A(24)
15 A(46) A(26) * 15 A(46) A(26)
16 A(49) A(28) 16 A(49) A(28)
(a) Using minimum distance. (b) Using ceil(d(?)).

I A(G*H1) A(2*[-4)
1 A(04) A(-2)

2 A(07) A(00)
3 A(0) A(02)
4 A(13) A(04)
S A(16) A(06)
6 A(19) A(08)
7 A(22) A(10)
8 A(25) A(12)
9 A(28) A(14)
10 A31) A(16)
11 A(34) A(18)
12 A(37) A(20)
13 A(40) A(22)
14 A(43) A(24)
15 A(46) A(26)
16 A(49) A(28)
(c) Our proposed method.

Fig. 3. The unrolled versions of transformed

5. CONCLUSIONS

In this paper, we have studied the parallelization of single
loop with non-uniform dependences for maximizing
parallelism. For single loops, we can review two partitioning
techniques which are fixed partitioning with minimum distance
and variable partitioning with ceil(d(7)). However, these leave
some parallelism unexploited, and the second case has some
constraints. Therefore, we propose a generalized and optimal
method to make the iteration space of a loop into partitions
with variable sizes. Our algorithm generalizes how to transform
general single loops with one dependence into parallel loops.

In comparison with some previous splitting methods, our
proposed methods give much better speedup and extract more
parallelism than other methods.
Our future research work is to consider the extension of our
method to n-dimensional space.

(2]

(3]
(4]

[5]

(6]

A Loop Transformation for Parallelism from Single Loops

6. REFERENCES

C. D. Ploychronopoulos, " Compiler optimizations for
enhancing parallelism and their impact on architecture
design," in IEEE Trans. computers, vol. 37, no. 8, pp.
991-1004, Aug. 1988.

D. E. Knuth, The Art of Computer Programming, vol.
2: Seminumerical Algorithms, Reading, MA: Addison-
Wesley, 1981.

H. Zima and B. Chapman, Supercompilers for Parallel
and Vector Computers, Addison-Wesley, 1991.

U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua,
" Automatic program parallelization, in Proceedings of
the IEEE, vol. 81, no. 2, pp.211-243, Feb 1993.

J. R. Allen and K. Kennedy. "Automatic translation of
Fortran programs to vector form,” in ACM Trans.
Programming Languages and Systems, vol. 9, no. 4, pp.
491-542, Oct. 1987.

W. Li and K. Pingali, “A singular loop transformation
framework based on non-singular matrices,” in Journal of
Parallel Programming, vol. 22, no. 2. 183-205, Apr.
1994.

Sam-Jin Jeong

He received the B.S. in polymer science
from KyungBuk National university,
Korea in 1979, and the M.S. in computer
science from Indiana university, USA in
1987, and also received Ph.D. in
computer science from ChungNam
National university, Korea in 2000. From
1988 to 1991, he was a senior research

staff at SamSung Electric Co. From 1992 to 1997, he was an
assistant professor at Haecheon University. Since then, he has
been with Cheonan University as a professor. His main
research interests include parallelizing compiler, parallel
systems, general compiler, and programming languages.

11

