Seok Jae Lee et al. : An Index Structure for Main-memory Storage Systems using The Level Pre-fetching 19

An Index Structure for Main-memory Storage Systems
using The Level Pre-fetching

Seok Jae Lee
Department of Computer and Communication Engineering,
Chungbuk National University, Cheongju, Korea

Jong Hyun Yoon
Department of Computer and Communication Engineering,
Chungbuk National University, Cheongju, Korea

Seok Il Song
Department of Computer Engineering,
Chungju National University, Chungju, Korea

Jae Soo Yoo
Department of Computer and Communication Engineering,
Chungbuk National University, Cheongju, Korea

ABSTRACT

Recently, several main-memory index structures have been proposed to reduce the impact of secondary cuche misses.
memory storage systems, secondary cache misses have a substantial effect on the performance of index structures.
studies still suffer from secondary cache misses when visiting each level of index tree.

In main-
However, recent
In this paper, we propose a new index

structure that minimizes the total amount of cache miss latency. The proposed index structure prefetched grandchildren of a

current node.

The basic structure of the proposed index structure is based on that of the CSB+-Tree, which uses the concept of a

node group to increase fan-out. However, the insert algorithm of the proposed index structure significantly reduces the cost of a split.
The superiority of our algorithm is shown through performance evaluation.

Keywords: Main-memory storage system, Main-memory index structure, Cache conscious, Pre-fetch.

1. INTRODUCTION

As the cost of main memory in server computer systems
becomes cheaper, MMSS (Main Memory Storage Systems)
prevails over other types of memory for most application areas.
It is a well-known fact that MMSS provides an order-of-
magnitude performance improvement over disk based storage
systems. The major bottleneck of traditional disk storage
systems was disk I/O and much research has proceeded to hide
the disk I/O that occupies the fraction of total execution time of
transactions. As a result, the impact of disk I/O on the
performance of storage systems is significantly reduced.

In a similar fashion, recently, as the performance gap
between CPU and main memory increases, it becomes

! Corresponding author. E-mail : yjs@chungbuk.ac.kr
Manuscript received Feb. 28, 2007 ; accepted Mar. 12, 2007

increasingly important to consider cache behavior and to
reduce L2 cache line misses for higher performance, especially
in MMSS[1][2]. Subsequently, several researchers in the
storage system community have improved the performance of
main memory index structures by reducing L2 cache misses [3-
5]. Inthe end of the 1990's, Rao and Ross proposed two index
structures that improved the cache performance of index
searches for main-memory databases{4]{5]: The Cache-
Sensitive Search Tree (CSS-Tree) {4] and Cache-Sensitive B+-
Tree (CSB+-Tree) [5]. These structures are the founding cache
conscious index structures. Subsequently, [3] was proposed
as a cache conscious index structure.

This work was supported by the Regional Research Centers Program of
the Ministry of Education & Human Resources Development in Korea
and the Program for the Training of Graduate Students in Regional
Innovation which was conducted by the Ministry of Commerce,
Industry and Energy of the Korean Government.

International Journal of Contents, Vol. 3, No. 1, Mar 2007

20 Seok Jae Lee et al. : An Index Structure for Main-memory Storage Systems using The Level Pre-fetching

All of the existing index structures described above still
suffer processor’s L2 (level 2) cache miss stall at each level of
index trees. Our approach is to prefetch grandchildren nodes of
a visiting node in parallel. We modity the structure of CSB+-
Tree to apply the prefetch technique. Our proposed index
structure does not need additional space to prefetch
grandchildren. Also, to reduce the update cost of CSB+-Tree, a
new algorithm is presented.

This paper is organized as follows. In section 2, we describe
existing cache conscious index structures. In section 3, we
describe in detail the characteristics of our proposed index
structure and algorithms such as insert and search algorithm.
In section 4, we analyze the performance of the proposed index
structure mathematically. The superiority of our algorithm is
shown through performance evaluation. Finally, in section 5,
we conclude this paper.

2. RELATED WORKS
2.1 Previous Works

CSS-Tree designed for the OLAP environment is a very
compact and space-efficient B+-Tree. It eliminates pointers of
index trees completely, and stores keys in contiguous space.
Children of a node can be easily calculated by exploiting the k-
ary method. The CSB+-Tree applies the idea of the CSS-Tree
to an index structure for the OLTP environment that supports
efficient update. The CSB+-Tree stores groups of sibling nodes
in contiguous memory, and reduces the number of pointers
stored in the parent node.

The prefetch techniques were applied to the B+-Tree to
eliminate the cache miss latency efficiently [3]. Even though
[4][5] made efforts to reduce cache misses, they still suffer
from full cache miss latency when traversing to the next level
during search, and when trying to read the next leaf node
during scan. The modern CPU prefetch technique was
introduced to solve these problems [3]. To reduce the number
of cache misses incurred during search, a node size is widened
by multiples of cache lines. This reduces the height of the index
structure. To reduce the latency of cache misses incurred
during scan, it introduces jump-pointer techniques. The wider
nodes come almost for free through prefetching, and the jump-
pointer allows the scan to prefetch arbitrarily far ahead leaf
nodes so as to hide the normally expensive cache misses
associated with traversing leaves within the range.

2.2 Motivation and Our Approach

All existing index structures described above still suffer
cache miss stall at each level of index trees. Even though [3]
uses a prefetching technique, cache miss stall occupies more
than 50% of its search time. Reference [3] recognizes the facts
and presents some clues for solutions that prefetch children or
even grandchildren in parallel. [3] also mentions problems of
the method: (i) the data dependence through the child pointer;
(i1) the relatively large fan-out of the tree nodes; and (iii) the
fact that it is equally likely that any child will be visited
(assuming uniformly distributed random search keys).

The most difficult problem is that it is almost impossible to
forecast descendant nodes to be visited. A possible approach is
to prefetch whole children or grandchildren of a child node to
be visited in the next level. However, to prefetch the
descendants we must know their pointers before they are
accessed. Even if it is possible to prefetch descendant nodes,
usually the number of descendant nodes is too large to prefetch
simultaneously.

Our approach is, also, to prefetch grandchildren nodes of a
visiting node in parallel. We modify the structure of the CSB+-
Tree to apply the prefetch technique. Our proposed index
structure does not need additional space to prefetch
grandchildren. To reduce the update cost of the CSB+-Tree, a
new insert algorithm is presented.

To assist explanation of our index structure, we describe the
structure of the CSB+-Tree briefly. The CSB+-Tree is a
balanced multi-way search tree. Every node in the CSB+-Tree
of order d contains m keys, where d<m=2d. The CSB+-Tree
puts all child nodes of any given node into a node group.
Nodes within a node group are stored contiguously and can be
accessed using an offset from the first node in the group.
Since the CSB+-Tree node only needs to store one child pointer
explicitly; it can store more keys per node than the B+-Tree.
For example, if the node size (and cache line size) is 64 bytes
and each key and child pointer occupies 4 bytes, then B+-Tree
can only hold 7 keys per node whereas the CSB+-Tree can hold
14 keys per node. Our index inherits most of these properties.

3. THE PROPOSED INDEX STRUCTURE

3.1 Overview

As we mentioned in the previous section, our index tree is
based on the CSB+-Tree. Fig. 1 shows the index structure of
the IpCSB+-Tree (level prefetching CSB+-Tree). The child
nodes of an internal node are stored in physically contiguous
space. Let h be the height of the index tree and 0 be the level of
the root node. In our index tree, the entries of internal nodes on
the level less than h-2 have pointers for the node groups that
contain grandchildren. The pointers are used to prefetch the
grandchildren of a node that is being visited once the child
node to be visited is decided. This means that except for the
root node, we do not read a node but a node group.

=z
i iEEEEE

Fig. 1. The proposed index structure

International Journal of Contents, Vol. 3, No. 1, Mar 2007

Seok Jae Lee et al. : An Index Structure for Main-memory Storage Systems using The Level Pre-fetching 21

In the CSB+-Tree, the node size is fixed as multiples of
cache line size. However, we do not restrict the size of a leaf

node to a fixed size, since we always read the entire node group.

In addition, the CSB+-Tree creates a new node group when the
number of leaf nodes in an old node group exceeds the fixed
number, without concerning the space utilization of the old
node group. On the contrary, our index tree creates a new node

group only when the space of the node group is consumed by
leaf nodes.

3.2 Structures of Nodes and Node Groups

The structures of nodes and node groups of our index tree are
different from the CSB+-Tree. Internal nodes have different
structure according to their level. The internal nodes whose
level is less than h-2, consists of pointers for grandchildren
groups of the current node and separators for children nodes.

Internal nodes on level h-2 do not have pointers for
grandchildren groups, since the leaf level is h-1. Actually, in
the node of the CSB+-Tree, there is a pointer for the node
group that contains children of the node. On the other hand,
internal nodes in our index tree are not required to maintain the
pointers, because nodes are prefetches when traversers visit
their grandparent node. Therefore, we require the additional
space for the pointers of grandchildren groups.

As described in Sect. 3.1, in order to reduce the split cost of
a node group, we do not restrict the size of a leaf node to
multiples of cache line size When a new node is created, the
fixed size of memory for the node is not allocated. Instead, only
the space that is able to accommodate actual number of entries
is allocated from the reserved space of the node group.

Then, whenever a new entry is inserted into the node, space
is allocated for the new entry. This means that a node may
occupy the whole space of a node group. Due to this property,
node groups for leaf nodes need additional information that
indicates the size of each leaf node in node groups. The space
overhead of the additional information can be ignored since the

number of nodes in a node group is small enough to represent
with 4~8 bits.

3.3 Insert and Search Algorithms

A. Insert Algorithm

Our insert algorithm is carried out in two stages. In the first
stage, we traverse the tree to find a leaf node for the newly
inserted entry. First, we access the root node. Before accessing
the root node, we prefetch the children of the root in parallel.
We assume that the pointers for the root node and the node
group that contains the children of the root are stored in the
index descriptor. In the root node, once an inserter decides on a
child node to be visited, the children of the child node are
prefetched in parallel through a pointer stored iri the root node,
and then the inserter visits the decided child node. The inserter
repeats the above procedure in the same manner on the next
level until finding a leaf node for the newly inserted entry.

In the second stage, we insert the new entry into the found
leaf node. If overflow occurs, we treat this situation as follows.
Our split algorithm on the leaf level reduces the update cost of

the CSB+-Tree. Leaf nodes of our index tree are not restricted
to a fixed size. In Fig. 2, a node group is stored in the address
500 in memory, and the maximum number of leaf nodes is 5. If
we restrict the number of entries in a leaf node to 2, when the
new entry 53 is inserted into d, overflow occurs.
Subsequently, d is split, and finally the node group is split since
the maximum number of nodes is 5.

However, as in Fig. 2, our split algorithm does not split d.
Instead, we allocate space for the new entry from the node
group, and extend the space of d to accommodate the new entry.
Subsequently, the node group is not split. Node groups in our
index tree are split only when their reserved space is consumed
completely. The split of internal nodes are similar to that of
the CSB+-Tree [5].

B. Search Algorithm

The search algorithm is very similar to the traverse algorithm
of insert operations. Before accessing the root node, we
prefetch the children node group of the root node. In addition,
once a child node is decided, we prefetch the children of the
child node. The process is repeated on the next node. We can
easily adapt the scan algorithm of [3] for the search algorithm
to our index tree.

500

2| N a b ¢ d 3
Vv Bsler] Pee] Tazdse] [esize] {ss]
i || Coeloed [op] Doofop] [olop] [op] :

@ Inserting 53
500

a b ¢ d e
47]50] fs3]e6]70]

Fig. 2. Inserting a new entry into a leaf node group

ez

4. PERFORMANCE EVALUATION

In this section, the search performances of our index
structure and the CSB+-Tree mathematically are analyzed in
terms of the latency caused by cache misses. We can present
the total number of cache line misses (T,,;) during a search
operation, where the height of the index tree is h, as the
following equations:

h-1
Tmm/ = Tl + {aTl + WTI’ (tn —a - pn)}
1=
_|pn=0, 1 (0
where, pn>0, 0

T =T +{T (w-1)}

T, is the average latency to load a node consisting of w
cache lines. It is composed of cache miss latency (7}) to
load the first cache line and the latency of prefetching the
following cache lines that consists of the node. T, is the
time taken to prefetch a cache line. pn is the number of
prefetched nodes in a node group. If pn is greater than 0, the
first node of the node group is already prefetched at least. tn

International Journal of Contents, Vol. 3, No. 1, Mar 2007

22 Seok Jae Lee et al. : An Index Structure for Main-memory Storage Systems using The Level Pre-fetching

is the position of a target child node to be visited in the node
group.

If the #n is equal to pn, there is no cache miss and no
prefetching latency. If the m is greater than O and less than
pn, there is only prefetching latency. pn impacts on the
performance of index tree significantly. If we are able to
assure that pn is greater than 0, we obtain considerable
performance gain.

The T, of the pCSB+-Tree(prefetching CSB+-Tree) is

2l
Tmm,:ZTu .

=0 since it suffers from cache misses whenever
accessing each level.

The search performance of our index tree is definitely
dependent on pn and i. If pn is 0, we suffer from 7, delay
whenever accessing a node in the next level. pn depends on
the processing time in a node. A of our index tree may be
higher than that of the pCSB+-Tree because we cannot
extend the node size as the pCSB+-Tree due to the number
of grandchildren to prefetch.

We performed simulation on a 1.7Ghz Pentium 4 CPU
with 512Mbytes main memory. The OS was Redhat Linux
7.1 and compiler was gcc 2.96. Table 1 shows the
parameters used for simulation.

Table 1. Parameters for performance evaluation

Parameters Values
total size of L2 cache 256 KByte
size of a L2 cache line 64 Byte
full cache miss latency 88.2 ns
prefetching time 5.5ns
the time of binary search in a cache line 54.2 ns
data set 500’.000
entries
. 1 - 8 cache
node size .
lines

| = IpCSB+-tree(1) = IpCSB+-tree(2) — IpCSB+—tree(4) -» IpCSB+-tree(8)
— pCSBH-tree(1) — pCSB+-tree(2) —~ pCSB+-iree(d) = pCSB+-tree(8)

6.0

> o
o o

response time {(ms)

N &)
o (=]

/—_ D -

o

[I ——

e
o

3 5 10 20 100 200 500
number of entries (x1k)

Fig. 3. Response time of search transaction
(node size: n cache line size)

—— pCSB+-tree(1) —@—pCSB+-tree(1) ——B+-tree

1.5

)

=3

o
o

Insertion time(S

20 40 60 80 100 120 140 160 180 200

number of entries {x1k)}

Fig. 4. Insertion time of [pCSB+ tree, pCSB+ tree
and B+ tree (node size: 1 cache line size)

We measure the response time of searches and compare
these with the pCSB+-Tree. As shown in Fig. 3, the response
time of search of the IpCSB+-Tree is faster than that of the
pCSB+-Tree in all cases. The reason that we fix the node size
as the n cache lines is to reduce the cache miss latency time of
the prefetched child nodes. As mentioned earlier, optimum
performance is achieved when the node size is one cache line.
Fig. 4 shows the insertion time of IpCSB+ tree, pCSB+ tree and
B+ tree when the node size is fixed at one cache line.

5. CONCLUSIONS

This paper proposed a new index structure to minimize the
total amount of cache miss latency of insert and search
operations. The proposed index structure prefetches
grandchildren once the searcher or inserter visits an internal
node through pointers for node groups of grandchildren
nodes. We modify the structure of the CSB+-Tree to apply the
proposed prefetching techniques. To reduce the insert and
update cost of the CSB+-Tree, the new management method of
leaf node groups has been proposed. We presented a few
factors that have impact on search performance through
mathematical analysis. The performance evaluation shows that
our index structure improves search and insertion performance.

REFERENCES

[1] Stefan Manegold, Peter A. Boncz, Martin L. Kersten.,
"Optimizing database architecture for the new bottleneck:
memory access,” In VLDB Journal, Vol.9, No.3, 2000,
pp- 231-246.

[2] Peter A. Boncz, Stefan Manegold, Martin L. Kersten.,
"Database Architecture Optimized for the New
Bottieneck: Memory Access,” In Proceedings of VLDB
Conference, 1999, pp. 54-65

[3] Shimin Chen, Phillip B. Gibbons, Todd C. Mowry.,
"Improving Index Performance through Prefetching,” In
Proceedings of ACM SIGMOD Conference, 2001, pp.
235-246.

[4] Jun Rao, Kenneth A. Ross., " Making B+-Trees Cache
Conscious in Main Memory," In Proceedings of ACM
SIGMOD Conference, 2000, pp. 475-486.

International Journal of Contents, Vol. 3, No. 1, Mar 2007

Seok Jae Lee et al. : An Index Structure for Main-memory Storage Systems using The Level Pre-fetching

[51 Jun Rao, Kenneth A. Ross., "Cache Conscious Indexing
for Decision-Support in Main Memory," In Proceedings
of VLDB Conference, 1999, pp. 78-89..

Seok Jae Lee
He received the B.S., M.S. and Ph.D
degrees in Computer and

Communication Engineering in 2000,
2002 and 2006 from Chungbuk National
University, Cheongju, South Korea. He is
now a Post Doc. in Chungbuk National
University. His main research interests
are the database system, main memory storage system, cluster
system and real-time distributed computing.

Jong Hyun Yoon
He received the B.S. and M.S. degrees in
Computer and Communication

Engineering in 2003 and 2005 from
Chungbuk National University, Cheongju,
South Korea. He is now a doctoral course
in Chungbuk National University. His
main research interests are the database
system, main memory storage system, object based cluster
storage system and cluster backup system.

Seok 11 Song

He received the B.S., M.S. and Ph.D
degrees in Computer and Communication
Engineering in 1998, 2000 and 2003
from Chungbuk National University,
Cheongju, South Korea. He is now a
professor in the department of Computer
Engineering, Chungju National
University, Chungju, South Korea. His main research interests
are the database system, index structure, distributed computing
and storage management system.

Jae Soo Yoo

He received the B.S. degree in Computer
Engineering in 1989 from Chunbuk
National University, Chunju, South
Korea. And he received the M.S. and
Ph.D. degrees in Computer Science in
1991 and 1995 from Korea Advanced
Institute of Science and Technology,
Taejeon, South Korea. He is now a professor in the department
of Computer and Communication Engineering, Chungbuk
National University, Cheongju, South Korea. His main research
interests are the database system, multimedia database,
distributed computing and storage management system.

International Journal of Contents, Vol. 3, No. 1, Mar 2007

