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ABSTRACT

This paper proposed a new modular inverse algorithm based on the right-shifting binary Euclidean algorithm. For an n-bit
numbers, the number of operations for the proposed algorithm is reduced about 61.3% less than the classical binary extended
Euclidean algorithm. The proposed algorithm implementation shows substantial reduction in computation time over Galois field

GF(p).
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1. INTRODUCTION

The modular arithmetic is an essential operation in many
public-key cryptosystems, including RSA and elliptic curve
crypto systems (ECC) [1][2]. The modular inversion is one of
the slowly arithmetic operations. The modular inversion is the
most time-consuming and complicated operation of the field
arithmetic operations. The speed of the modular inversion
brings a bottleneck in cryptographic process. A high speed
inversion is a key to make systems efficient.

There are some well-known inversion algorithms: such as
the binary extended Euclidean method [3-5]. This method can
quickly compute multiplicative inverses. The binary extended
Euclidean method is simple and fast, because it requires only
modular additions, subtractions and shifting. This algorithm has
some weak points. For example, it has a step comprising
comparison of two integers. This paper proposed an implement
modular inversion algorithm addressing the speed of
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comparisons. The Kaliski algorithm achieved speed improve-
ment of Montgomery modular inversion [6]. The proposed
inversion algorithm borrowed a part of the Kaliski method
yielding faster inversion in the integer domain.

Section 2 explains the previous work on the modular inverse
algorithm. Section3 illustrates our algorithm for improvement
and analyzes the proposed algorithm. Section 4 evaluates the
proposed algorithm, followed by the conclusion in Section 5.

2. MODULAR INVERSE ALGORITHM

The modular inversion of an integer x over the Galois field
GF(p) is defined as the integer y satisfying xy = 1 (mod p).

y=Mod _Inv(x) =a" (med p) )
The modular inversion takes long operation time due to the

division by the modulus in its computations [7]. In this point,
researchers have been seeking methods to alter the division and
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modular inversion less time consuming. The binary extended
Euclidean algorithm has been modified to a faster modular

Algorithm I: Modular inversion for GF(p)

Input: An integer gx, where x € (1, p), and a modulus p with ged(p, 2) = 1.

Output: An integer y, such that y = x” (mod p).

Stepl. u=pv=xr=0s=1
Step 2. if (u is even) then
u=u/2, r=r/2 (mod p).
Step 3. if (v is even) then
v=v/2,s =52 (mod p).
Step 4. if (v and v are both odd) then
if (u > v) then
u=(u-v),r=(r-s)(modp),
else
v={(v-u),s=(s-r)(modp).
Step 5. if (u# 1 and v # 1) then goto Step 2.

elseif(u=1)retumy=r.
else return y = s.

Algorithm 1 requires general additions and subtractions; it is
relatively simple and fast. However, this algorithm has some
shortcoming. After the Step 4, one of the values of # and v
must become even while the other remains odd. In the next
iteration only one of the Step 2 or the Step 3 will be
performed. Moreover, if # or v can be divided by some power
of 2, only the Step 2 or 3 will repeat while the other steps will
do nothing. These null operations make the computing process
inefficient. The Step 4 and the Step 5 see a comparison of
large numbers. The comparison degrades the efficiency since
it employs the subtraction.

3. IMPROVED BINARY EXTENDED EUCLIDEAN
ALGORITHM

The proposed pseudo-code of the improved binary extended
Euclidean algorithm is given below.

Algorithm 2: Improved modular inversion for GF(p)
Input: An integer x, where x € (1, p), and a modulus p with ged(p, 2) = 1.
Output: An integer y, such that y = x (mod p).

Stepl. u=pv=xr=0,s=1
Step 2. while (v is even)
v=v/2, 5 =s/2 (mod p), goto Step 4.
Step 3. while (u is even)
u=u/2,r=r/2 (mod p), goto Step 5.
if (v=1) then return y = 5.
if (u > v) then
u=(u-v)2,r=(r+s)/2 (mod p),
if (u is even) then goto Step 3.
else goto Step 5.
else
v=(v-u)/2,s=(s+r)2 (mod p),
if (v is even) then goto Step 2.
else goto Step 4.

Step 4.
Step 5.

inversion algorithm over Galois field GF(p) [4]. The classical
binary extended Euclidean algorithm is given below.

Note: The notation "s/2 (mod p)" in the pseudo-code means

s divided by 2 modulo p.

In the proposed algorithm, both the addition and the
subtraction are combined with the halving (right shift). The
halving is performed at every step. Since the v value provides
with an early termination condition, the proposed modular
inversion algorithm demands fewer operations than convent-
ional modular algorithms.

A detail analysis of the proposed algorithm, including its
correctness, is given below. During the iterations of the
proposed algorithm, the following equations hold:

ged(p, x) = ged(u, v) = 1 2
us+vr(modp)=0,s>l,u>1land0<v<x 3)

When the Step 1 is done, two equations hold:

v=x,s=1, hence xs (mod p)=v @)
u=p, r=0, hence xr (mod p) = -u )

At the Step 2, if v is even, both sides of the equation (4) can
be divided by factor 2 simultaneously, because the modulus p is
definitely odd. An even number, v, can be right shifted one
bit. For the other side of the equation (4), different processing
for s is required according to given different values. If s is
even, the result of 5/2 can be obtained by right shifting. Ifsis
odd, the operation of s/2 (mod p) is accomplished by adding the
modulus p and then right shifting. As shown in the Algorithm
2, the two steps handling odd number can be processed using
an adder in one step. Both s and p, which is right shifted one
bit, are fed into the adder with ‘1’ into the carry-in. At the
Step 3, the operations for both # and » of the equation (5)
correspond to the operations of v and s, respectively. At the
Step 5, if the values of u and v are odd, the difference of u and
v becomes even. Thus, a new equation for the Step 5 can be
obtained from the equations (4) and (5) as below

[Eq.(4) +Eq.(5))2=x(r+s)2=(v-u)2
=x(r+s)y2=-(u-v)2 ©)

According to the equation (6), the new values of v and s, and
u and r can be computed at the Step 5. Thus, after the last

iteration withv=1,xs = 1 (mod p) from the equation (4).

4. VERIFICATION AND EVALUATION

For the verification, we are compared the two algorithms: the
binary extended Euclidean algorithm and the proposed
algorithm. The number of operations of the two algorithms
has been calculated using a C program running in a Pentium-4
3GHz processor with 1Gbytes of main memory. Modular
inversions checked the range from 128-bit through 521-bit.
The program runs for a full day to check more than three
millions cases. Figure 1 and Table 1 illustrate the increase of
operations per bit for the two algorithms for comparison

purposes.
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The number of operations is a typical measure evaluating
algorithms. For 128-bits, the proposed algorithm performs 335
operations in Table 1, while the classical algorithm demands
888 operations. For a larger number of bits the number of
operations increases nearly proportional to the number of bits.
For an n-bit numbers, the number of computations for the
proposed algorithm is reduced about 61.3% less than the
classical binary extended Euclidean algorithm.
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Fig. 1. Number of operations of modular inversion algorithms

Table 1. Performance Comparison of Modular Inversion

Computation cycles for
Bits one inversion Improvement
. . B rate (%)
Classical algorithm Proposed algorithm
128 888 335 62.3
160 1114 442 60.3
192 1340 524 60.9
224 1566 606 61.3
256 1792 697 61.1
384 2695 1074 60.1
521 3665 1339 634

5. CONCLUSION

This paper proposes a modular inversion for fast
computation over Galois field GF(p). The proposed algorithm
is based on the right-shifting binary Euclidean algorithm. For
an n-bit numbers, the number of operations for the proposed
algorithm is reduced about 61.3% less than the classical binary
extended Euclidean algorithm. The proposed algorithm
implementation shows substantial reduction in computation
time over a Galois field GF(p).
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