6 Hyung-Il Kang et al. : XML Repository System Using DBMS and IRS

XML Repository System Using DBMS and IRS

Hyung-Il Kang
Dept. of Information and Communication Eng.,
Juseong College, Cheongwon, Korea

Jae Soo Yoo
Dept. of Computer and Communication Eng.,
Chungbuk National University, Cheongju, Korea

Byoung Yup Lee*
Dept. of Electronic Commerce,
PaiChai University, Daejeon, Korea

ABSTRACT

In this paper, we design and implement a XML Repository System(XRS) that exploits the advantages of DBMSs and IRSs. Our
scheme uses BRS to support full text indexing and content-based queries efficiently, and ORACLE to store XML documents,
multimedia data, DTD and structure information. We design databases to manage XML documents including audio, video, images as
well as text. We employ the non-composition model when storing XML documents into ORACLE. We represent structured
information as ETID(Element Type Id), SORD(Sibling ORDer) and SSORD(Same Sibling ORDer). ETID is a unique value assigned
to each element of DTD. SORD and SSORD represent an order information between sibling nodes and an order information among
the sibling nodes with the same element respectively. In order to show superiority of our XRS, we perform various experiments in
terms of the document loading time, document extracting time and contents retrieval time. It is shown through experiments that our
XRS outperforms the existing XML document management systems. We also show that it supports various types of queries through

performance experiments.

Keywords: XML Repository System, Database Management System, Electronic Commerce, IRS.

1. INTRODUCTION

Recently, internet has significantly changed the concept of
document preparation and distribution. Many documents tend
to be produced as structured ones using markup languages like
SGML or XML so that they are readable without any
formatting information and easily interchangeable between
platforms. They are called structured documents. XML that is a
subset of SGML has been proposed by W3C as a new markup
language that supports user-defined tags, and encourages the
separation of document content from presentation[6]. XML is a
meta language that allows the user to define a language for
composing structured documents. It can automate web
information processing and in particular is suitable for data
exchange and interoperability. Currently, the research on XML
proceeds in various domain such as digital library,
EDI(Electronic Data Interchange), EC(Electronic Commerce),

* Corresponding author. E-mail : bylee@pcu.ac.kr
Manuscript received Sep. 11, 2007 ; accepted Sep. 27, 2007

CALS(Commerce At Light Speed), MathML(Mathematics
Markup Language), and so on. The main emphasis of this paper
is on the XML. Because of the proliferation of XML
documents, administering very large XML documents with
logical structured information is becoming more and more
important[8-9].

The XML Repository system(XRS)s should be designed
with considering the following requirements[3][13][17]. First,
since XML documents contain contents as well as structured
information, XRS needs to represent the structured information
efficiently. Second, XML documents may contain various
types of multimedia data, so it must be capable of storing the
multimedia data and managing them. Finally, queries in XRS
are much more complex and diverse than those of other
document management systems. That is, XRS must support a
wide range of queries such as content-based queries and
structure-attribute queries at all levels of the document
hierarchy. Most of the existing XRSs are implemented based
on DBMS(Database Management System). Even though they
achieve good performance in storing and managing data, they
show poor performance in content based search and full text

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

Hyung-Il Kang et al. : XML Repository System Using DBMS and IRS 7

search compared to IRS(Information Retrieval System)[4]. In
that reason, existing XRSs based on DBMS have limitation to
satisfy the requirements mentioned above.

In this paper, we design and implement a XRS that exploits
the advantages of DBMSs and IRSs. It uses BRS to support
full text indexing and content-based queries efficiently and
ORACLE to store XML documents, structured information,
DTD(Document Type Definition), and multimedia. We employ
the non-composition model when storing XML documents into
ORACLE to solve the above problems. Well-organized logical
structured information of XML documents enables XRSs to
process the various queries efficiently. We define
ETID(Element ID), SORD(Sibling ORDer) and SSORD(Same
Sibling ORDer) for XRSs to represent the logical structured
information of XML documents. The implemented XRSs
efficiently process the structure and attribute queries as well as
content-based queries.

The paper is organized as follows. In the section 2, we
describe the related works. Section 3 explains designed
structured information of XML documents. In section 4, we
describe the XML data modeling. In section 5, we show the
overall architecture of proposed XRS and explain the
components in detail. In section 6 we do evaluate the
performance of and finally in section 7, we make a conclusion.

2. RELATED WORKS

There are three possible approaches to construct XRS
systems. The first approach is to build a special-purpose
database system that only manages XML documents such as
Lore and DocBase[2][101. This kind of system is particularly
tailored to store and retrieve structured documents, but it will
take long time that such systems become mature and scale well
for large amounts of data. The second approach is to build
XRS based on object-oriented database system(OODBMS)[13,
15, 16]. This approach may be the best since the object-
oriented data modeling technique can accommodate the
hierarchical characteristics of structured information.
However, OODBMSs are not yet mature enough to handle very
large amount of database. The last approach is to build XRS
based on RDBMS(relational database system)[1][5][11].
Many researches on building XRSs based on RDBMSs are
being worked on because RDBMSs are mature and scalable
very well and the most prevalent DBMSs over the world. In
the non-composition based XRSs, however, XML documents
are split into more than two tables so join operation that is one
of the most expensive operations in RDBMS are needed to
present whole XML documents.

Additionally, the second and third approaches have the
following common properties. XRSs based on DBMS cannot
support full text indexing unless additional modules that
support full text indexing are added on. Consequently they
cannot process content-based queries more efficiently
compared to IRSs. In that reason, recently coupling based
XRSs that exploit DBMS and IRS have been major research
issues in XML communities. Yan [20] have integrated
structured-text retrieval system(TextMachine) into a object-
oriented system(OpenODB). Documents are stored in the

TextMachine. It also manages index and retrieves documents.
Structured information is stored in the database system. In this
system, the user can retrieve components of documents and
browse documents based on their structure using four
functions : up, down, prev, next. But, a basic assumption is that
text objects may not be modified. Also, Volz[14] have coupled
the IRS INQUERY with the OODBMS VODAC. The coupling
consists of OODBMS classes encapsulating the IRS
functionality. They proposed an indexing to avoid the
duplication of index information by modeling the elements of
SGML documents using object-oriented techniques. But, it has
a burden to calculate similarity between a user query and an
element and it should record the location of keywords appeared
in an element.

3. STRUCTURED INFORMATION OF XML
DOCUMENTS

Existing methods to represent structured information of
XML documents cannot access directly the specific element in
documents. They need complex operations to access the sibling,
parent or child elements. In this paper, we propose a method
to represent the structured information that solves the above
problems. We define the ETID(Element Type ID),
SORD(Sibling ORDer) and SSORD(Same Sibling ORDer) to
represent the structured information efficiently. ETID is a
unique value assigned to each element of DTD. In order to
assign ETID to the elements, we construct a tree structure with
the relationship of elements in DTD. ETIDs have the UNIX
directory-like appearance, for example ‘/° means root element,
‘/1’and */2’ mean the children of the root. Figure 1 shows an
example of construction of a tree structure with a sample DTD
and assignment of ETID to each element in the tree.

ETID (Element Type ID)

e

<t--Sample DTD paper dtd -->

2
abstract

1211
para
13/111
para

chapter

<'ELEMENT paper (title, abstract, chapters)>
<IELEMENT title (YPCDATA)>
<YELEMENT sbstract (para+)>

<!ELEMENT para (#PCDATA)>
<IELEMENT chapter (section+}>
<1ELEMENT section (para | image)+>
<!ELEMENT image (f\PCDATA)>

/31172
image

Figure 1. Assignment of ETID

SORD is order information between sibling nodes on the
same level while SSORD is order information between the
same sibling nodes on the same level. A SORD is a unique
value in a XML document and it is used to search a specific
element. SORDs are represented by the same way of ETID
and it also has order information between parent elements.
The order information is very helpful to deal with the following
example queries : “Find documents where the third child
element of chapter element is section” or “Find documents
where the third child element of chapter element includes a
word ‘XML’.” Therefore we can search a specific element

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

8 Hyung-II Kang et al. : XML Repository System Using DBMS and IRS

with ETID, SORD, and SSORD easily. Figure 2 shows an
example that presents the structured information of a XML
document as a tree with ETID, SORD and SSORD. For
example, the second child element of a chapter whose SORD is
‘/3” has two child elements whose name is para. The ETIDs
of the two ‘para’ are same but their SORD are ‘/3/2/1° and
¢/3/2/3 and their SSORD are ¢/1/2/1” and ‘/1/2/3’ respectively.

ETID (Efement Type ID)\

1 (paper)
SORD (Sibling ORDer), SSORD(Same Sibling ORDer) <1- XML Sample -->
<IDOCTYPE paper SYSTEM "paper.did™>
<psper>
<titte> bypertext <ftitle>
<abstract>
<para> index </pars>
<para> document </papa>
</abstract>
<chapter>
<section>
<para> index </para>
<para> documeat </para>
<Isection>
<sectivn>
<para> xml </pars>

11 gritke)
.

nn

13 (chapter)
—

byperext


J2/1 (para) || 721t (paca) 3/1 {secion)) <pars> index </para>
2/, 140 422,114 2 aBn.nn 132,112 Tan. 120 qifﬂﬂ“ﬂv

<para> index </para>
<Jsection>

</chapter>

[13i0t para) | [137111 parm)] | <ipaper>

131101 (para) 31172 (image
i, ann| [pniz, nnal (s nen| fareoiea| [ses.nen) fean, ann
i [tocumen ||| Cter][

| T | e |

Figure 2. Structured information of XML document

The structured information of XML documents are
extracted by a structured information extractor that consists of
ETID extractor and structured information generator. Figure 3
shows the architecture of the structured information extractor.
The ETID extractor extracts element type from DTD and
constructs a mapping table that maps the element name to
ETID. The XML structured information extractor analyzes
XML documents and extracts the structured information by
referencing the mapping table.

Structured Information Extractor;
Mapping
Table

Structured
Generator

XML
document

Extracted XML
. | Structure bject Manage:

w

DB

XML
Index Manager

v

Content

End offset length

Tag name| DID | ETID | SORD | SSORD | Type | Start offset

Content

Figure 3. Structured Information Extractor Architecture

order information between same type of

SSORD sibling nodes

TYPE element or attribute

START OFFSET start offset of element or attribute in the

document
END OFFSET end offset of element or attribute in the
- document
CONTENT value of PCDATA or attribute contained

in the element

Figure 4 exemplifies that the structured information
extractor extracts structured information from a XML
document including images. The start offset and end offset of
<figGrp> element in a document is 21666 and 21958
respectively and the attribute ‘name’ of <figure> element
represents image file ‘figl .gif’.

21666—~<figGrp>
<title>(fig 1) Culture Level</title>
<figure name=""figl.gif"/>
<footnote>
<refph> Data : Edger H. Schein, Organization Culture
and Leadership,Sanfrancisco:Jossey-Bass, 1988. p.14 </refph>
</footnote>

</figGrp> \

XML
document

21958

title 1 /2/1/9/9/9/5/2 /2/2/3/5/6/4/1 /1/2/1/3/3/1/1 1 21682 21732 36

(fig 1) Culture Level

figure 1 /2/1/9/9/9/5/4 /2/2/3/5/6/4/2 /1/2/1/3/3/1/1 1 21741 21765 ©
name 1 /2/1/9/9/9/5/4 12/2/3/5/6/4/2 /1/2/1/3/3/1/1 2 21741 21765 8 figl gif
refph 1 /2/1/8/9/9/5/5/2 /2/2/3/5/6/4/3/1 /1/2/1/3/3/1/1/1 1 21793 21923 116
Data : Edger H. Schein, Organization Culture and Leadership, Sanfrancisco
:Jossey-Bass, 1988. p.14

footnote 1 /2/1/9/9/9/5/5 /2/2/3/5/6/4/3 /1/2/1/3/3/1/1 1 21774 21942 ©
figGrp 1 /2/1/9/9/9/5 /2/2/3/5/6/4 /1/2/1/3/3/1 1 21668 21958 ¢

Extracted
Structure
Information|

Figure 4. Structured Information of XML documents including
image data

4. XML DATA MODELING

XRSs must be able to store and manage XML documents,
DTD, structured information, various types of media in XML
documents and so on. In order to do that we need data
modeling of XML documents. In this paper, we use relational
data modeling based on ORACLE used as storage system and
employ composition storage model to guarantee fast retrieval
of whole documents. The proposed XML data modeling
structure in this paper is shown in the figure 5.

: <DTD table>
The information is extracted by structured information gy STDNAME | FULLTEXT
extractor such as DID, ETID, SORD, SSORD, Tag Name, sumber char long char
Start_offset, End_offset, Content, and Content Length. Table <DOCUMENT table>
1 explains the meaning of each extracted structured information. e 5TDID | NAME | FULLTEXT
wumber | number char long char
Table 1. Extracted Structured Information <ELEMENT table>
SymbOlS DESCriptlonS pip SORD DTDID STARTOFFSET LENGTH
aumber char number number number
Tag Name element name or attribute name <MULTIMEDIA table>
DID unique document identification "DIb. | NAME | STARTOFFSET | LENGTH [FULLTEXT
ETID element type identiﬁcation nember [char number number long raw
SORD order information between sibling nodes Figure 5. XML Data Modeling

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

Hyung-Il Kang et al. : XML Repository System Using DBMS and IRS 9

Our XRS typically consists of four tables such as DTD table,
Document table, Element table and Multimedia table. DTDs of
XML documents are stored and managed in the DTD table.
DTDID is a unique value of a DTD instance and DTDNAME is
the file name of a DTD instance. DTDFULLTEXT is contents
of a DTD instance and its data type is long type. When XML
documents are requested, their DTDs are provided by DTDIDs.
The Document table stores a whole document with document
id(DID) and document name. DID is a unique id of a XML
instance and NAME is the file name of a XML instance.
FULLTEXT is the contents of a XML instance and it also has
long type. In element table, structured information of each
element of XML documents is stored and managed. To
indicate the position of an element contained in XML
documents, we store DID, DTDID, SORD, the start offset and
length of an element into ELEMENT table. We need to store
and manage media since XML documents may contain
multimedia data. Multimedia data are managed in the
Multimedia Table. The DID, start offsets, length and name
that means the multimedia file name are included in the table.
FULLTEXT is contents of multimedia and it has long type.

5. DESIGN AND IMPLEMENTATION OF XRS

The proposed XRS in this paper use ORACLE 7.3.
RDBMS to manage XML documents and BRS search engine to
provide efficient content-based queries and full text indexing.
Figure 6 shows the overall architecture of the proposed XRS.
It consists of a query analyzer, a result generator, a XML object
manager, a XML index manager, a BRS search engine, and a
structured query processor. In the followings we describe the
each component in detail.

XML browser Query Interface XML editor
wery Analyzer
R%sug Gmyr::or ‘*’{ XML Object Manager }
Slructure query

Attnbute query

Content query P d Query] iﬂdﬂM&)&gﬂ" store and fetch

Index term generation

é s =ara

Figure 6. XML Repository System Architecture

ORACLE DBMS

The XML object manager that is in charge of the most
important part of the system creates schemas for XML
documents. It also extracts the structured information from
XML documents and stores the XML documents into ORACLE
DBMS. The sub-components of XML object manager are a
object storage manager, a structured information extractor, a
XML instance manager, a XML instance storage manager and a

XML schema generator. The object storage manager provides
other modules with unified interfaces of all of the sub-
components of the XML object manager. The XML index
manager creates and manages index structures to support
various types of queries. It consists of three sub-components
such as content index manager, structure index manager and
attribute index manager. The BRS search engine creates and
manages full text index that process content-based queries.
However, it cannot process the structured query, the attribute
query, and the hybrid query. Therefore we implement the
structured query processor that can provide all of them. The
query analyzer analyzes queries and distributes the query to
BRS search engine or structured query processor according to
the type of the query. Also, result generator provides the
user’s view of the search results from BRS search engine and
structured search engine. In this section, we describe process
flow between each module of our proposed XRS.

5.1 Schema Generation

The XML schema generator of the XML object manager
creates schemas for XML documents as designed in the section
4. The XML schema generator creates DTD tables when the
system initialized. After this, it creates document tables,
element tables and multimedia tables dynamically whenever
new DTD is required to be stored. Each table is named
DOCUMENT_DTDname, ELEMENT_DTDname, and
MULTIMEDIA DTDname respectively. The process of
schema creation is shown in figure 7.

2. Deliver DTD to
Schema Generator
Object Storage) A

XML X
Manager Schema Generator,

3. Generate database Schema for New DTD
DOCUMENT_DTDname
ELEMENT_DTDname
MULTIMEDIA_DTDnema

1. New DTD
—_— P

Figure 7. Process of Schema Generation

5.2 Store and Fetch of XML Documents

The XML instance storage manager that is one of the
subcomponents of XML Object Manager stores DTD, XML
documents, structured information, and multimedia in the
database. We assign DTDID and DID to DTD and a XML
document to be stored respectively and store structured
information of the documents i.e., DID, SORD, Start_offset,
length extracted by structured information extractor. A
multimedia contained in XML documents as an attribute is
stored with structured information of the attribute. Figure 8
shows the process for storing XML documents.

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

10 Hyung-II Kang et al. : XML Repository System Using DBMS and IRS

2.call structural
information extractor 1. XML document

tructural informationy Object storage \
extractor manager

3. Return extracted
structural information

4.send extracted structural
information and XML document

——— 1
ORACLE |

XML instance ¥
storage manager

5. Store XML document, structural
information of elements and image

Figure 8. Process of storing XML documents

The XML instance manager fetches full documents or
specific elements from the database. Figure 9 shows the
process of fetching XML documents. If the documents or
elements contain multimedia, it fetches them together. When
fetching full documents from the database, we use DIDs or file
names. On the other hand, when fetching an element, we first
get position information (Start offset, length) with DID and
SORD of the element, and extract the element by using the
position information. = Multimedia is extracted like the
followings. In the case of fetching a full document, the XML
instance manager fetches all of the medias contained in the
required documents. In the case of fetching an element, we
fetch all medias that their start_offset is greater than that of the
element and their end_offset is less than that of the element. In
the figure 4, when figGrp is fetched, the start offset and end
offset of figGrp is 2166 and 2195 respectively. Consequently,
just figl.gif between 2166 and 2195 is fetched.

1 Request of XML document

2. deliver the fetch infi i
or its particular elements deliver the fetch information

object % XML
storage instance
manager manager

3. Fetch of desired
XML documents

ORACLE

i

Figure 9. Process of fetching XML documents
5.3 Index for efficient Search

The XML index manager creates and manages index
structures to support various type of queries. It consists of
three sub-components such as a content index manager for
content-based queries, a structure index manager for supporting
structure queries and an attribute index manager for attribute
queries. When documents are reached to the content index
manager, it extracts DIDs of the documents, removes tags in
XML documents and delivers them to BRS index manager.
The BRS index manager creates index for content queries.
We exploit the search engine of BRS to support fast full text
search. To provide XML documents in ORACLE as search
results to users, it creates a DOCN_MAP table that converts

DOCN(document number) of BRS to the DID(Document ID)
of a XML object manager and stores the table in ORACLE
since only BRS perform content queries and XML documents
are stored and managed in ORACLE. Figure 10 shows the
process of creation of the content index.

3. Store DOCN and DID
in DOCN_MATP table

Mapping module Tag delete module f
) “Remove tags from
XML documents

2. Load documents for BRS index manager

and creates mapping table
containing DID, DOCN pairs

A A

ORACLE §

Content index

Figure 10. Process of creating content index

To process structure queries and structure-content queries
efficiently, we index ETID and keywords together. It makes
hybrid query processing more efficient. The structure index
table in the figure 11 contains (ETID, term) pair as an index key.
The SORD and SSORD make possible to access the unique
element in large amount of XML documents. This index
structures even can support queries like “Find documents
which include keyword ‘mobile’ in <title> element” efficiently.

Figure 11 shows the structure and attribute index table and
DOCN_MAP table. The key of the structure index table
consists of ETID, TERM and DID and the key of the
ATTRIBUTE index table is composed of ATTR_ NAME and
VALUE.

DOCN_MAP table

DOCN DID
ehar char

STRUCTURE index table

ETID TERM DID SORD
char thar char char char

SSORD

ATTRIBUTE index table

ATIR_NAME | VALUB DiD SORD ETID SSORD
dhar char char char char

Figure 11. Structure, Attribute index table and DOCN_MAP
table

5.4 Search

Queries are processed by BRS when they are content-
based type or by structured query processor when they are
structure, attribute, or hybrid type. The result generator
handles the search results and provides the whole or the part of
documents with users. It obtains the documents stored in
ORACLE through a XML instance manager.

The content search module consists of two sub-modules such as
BRS DOCN search module and ORACLE DID search module.
The DOCN search module of BRS performs content search and

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

Hyung-1l Kang et al. : XML Repository System Using DBMS and IRS 11

consists of BRS APIs. When handling content queries like
“Find documents that include keyword ‘parallel’ ”, the queries
are delivered to the BRS search engine and receives DOCNS as
search results. The ORACLE DID search module searches
DIDs that correspond to the DOCNs from DOCN search
module. The result generator uses the DIDs to provide the
documents to users.

Structure queries are based on logical structures of
documents. They should be processed with consideration of
relationship between elements on hierarchy (parents, children,
ancestors and descendants), relationship between elements on
the same hierarchy(siblings) and the ordered relationship
between the same elements on the same hierarchy. The
proposed XRS can deal with all kind of structure queries with
our proposed structured information(ETID, SORD, SSORD).
Structure queries are classified into five types such as parent,
child, ancestor, descendant and sibling. There are five query
processing API sets corresponding to each query type. Each
API translates corresponding structure queries to SQL
statements.

Figure 12 shows the steps of processing the hybrid query,
for example “Find the parent element of the first <ThesisTitle>
including a keyword ‘mobile’”. In the first step, we get the
ETID of start element by referencing ETID mapping table.
The ETID becomes a key together with keyword ‘mobile’.
With this key we can get DID, SORD, SSORD of a document
element whose type is ThesisTile and which contains a
keyword ‘mobile’. In the second step in order to find the first
ThesisTitle element from the results of the first step, we select
SSORDs that satisfy “/*/*/1”. In third step, to find parent
element of the first ThesisTitle, we use SORD. For example,
if SORD is “/3/2/17”, the SORD of its parent element is “/3/1”.
In the last step, we finally obtain document elements by using
the SORD and DID of the parent.

Mapping table

ThesisTitld /374

1. 13/1/1, 781101 [21,1321, /1/2/1[31,/3/2/1, 11211

Extract ETID

extract SSORD, /*/*/1

NLg/3/1/3 117171 !l !3/2/1!/1/2/]

get parent element

parent

Figure 12. Structure Search Processing

Attribute queries specify values for attributes associated
with elements. For example “Find documents such that
<SEX> attribute has ‘female’”. Attribute queries are
classified into four types. There are four query processing
API sets corresponding to each query type. Each API
translates corresponding attribute queries to SQL statements.

5.5 Query Interface

In this section, we design a web based query interface for
users to search XML documents easily on the web. Our user

interface supports the content-based queries, structure queries,
attribute queries and mixed queries. In the case of content-
based queries, users just type a keyword on textfields,
“Keyword”. For structure queries, there are several textfields
such as start element, relationship, order and target element.
The target element has logical relationship with start element.
For a query like “Find the <section> element which is the first
child of <chapter> element”, chapter is the start element,
section is the target element and the relationship between two
elements is the child relationship. We use relationships between
elements such as ancestor, descendant and sibling. Also we
represent the order of elements through +, -, numeric. To
process the attribute search, various relational operations are
provided. Next, we get the results in a document or an element
unit according to the value of Output Scope field.

Figure 13 shows the designed query interface. It exemplifies
“Find the parent element of the first <ThesisTitle> that contains
‘mobile’”. Since the keyword is contained in the first
ThesisTitle, we specify the start element’s ranking value as 1,
element as ThesisTitle and keyword as ‘mobile’. Because the
relationship between the start element and the target element is
parent, we specify the relation ranking value as 1 and the
relationship value as ancestor._Figures 14 shows the search
results on the query.

Ancestor
Descendant

Sibling

Figure 13. Query interface

T en o br o o Bmsoaay Sk AL A 0
A AHEBRL Mt UTE @Ih. @l mdwee

Search Result © 3

{ Autonomous Navigation of a Mobile Robot Using Inertial and Visual Cues
2. Transparent Resource Discovery for Mobile Comouters
& Reducing Router-Crossings in a Mobile Intranet

2] B i

Figure 14. Query Results

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

12 Hyung-Il Kang et al. : XML Repository System Using DBMS and IRS

6. PERFORMANCE EVALUATION

In this section, we show through experiments that our
proposed XRS outperforms existing XRSs in terms of loading
time, fetching time and search time. The type of XML
documents used in this experiment is thesis. The number of
thesis documents is 300 and the total size of them except
images is about 70MBytes. The average number of images in
a document is 13 and their average size is 37.5KBytes. We
compare our proposed XRS with non-composition based XRS.
The platform used in this experiments is SUN Enterprise 3000
with solaris 2.7.

Figure 15 shows the documents loading time. The
loading time of our proposed XRS is about 28.71 seconds while
that of non-composition based XRS is 59.42 seconds. The
proposed XRS loads documents about 200% faster than
composition-based XRS.

100 —eo—non—composition based XRS

—m— proposed XRS
80

60 /
0//
40 /

20 —

0 L " —

80-100K 100- 120- 140- 160- 180- more
120K 140K 160K 180K 200K than
200K

Figure 15. Loading Time

Figure 16 shows the documents fetching time. Since a XML
document is split into elements and the elements are stored in
non-composition based XRSs, the XRSs must assemble
elements before presenting the whole document. The
assembling process takes rather long time.

~=—¢---non-com position based XRS
70 4

—@—proposed XRS

. _
30 ///
—

e

160-180K more than

200K

80-100K 100-120K 120-140K 140-160K

Figure 16. Fetching Time

In order to measure search time we use seven keywords
such as ‘mobile’, ‘communication’, ‘development’,
‘agriculture’, ‘contemporary’, ‘society’ and ‘research’. We
measure time of processing each query. Figure 17 shows the
measured search time. The search time of non-composition
based XRS increases almost linearly as the size of documents
increases. Generally DBMS cannot create index for variable

size of texts. However, our proposed XRS use BRS that
create inverse file so it can deal with content queries efficiently.

e [1ON-COMPOSition mode! l

80.00 —m—oproposed XRS

70.00
60.00

50.00
40.00

30.00

20.00

10.00

0.00

Figure 17. Search time of Content based Query

We cannot compare the search time of structure query with
other XRSs, because none of existing XRSs can support
structured queries fully. Therefore we only measure recall and
precision to show retrieval effectiveness of our XRS. Recall
is the ratio of relevant documents retrieved for a given query
over the number of relevant documents for that query in the
database. Precision is the ratio of the number of relevant
documents retrieved over the total number of documents
retrieved. The table 2 shows the recall and precision of
processing the various structure queries. We can easily know
from the table the proposed XRS support the various type of
queries such as content queries, structure queries, attribute
queries and hybrid queries correctly.

Table 2. Recall and Precision of Structure based Query

Queries Recall Precision
Structure queries
(hierarchy 100% 100%
relationship)
Structure queries
(relationship on 100% 100%
sibling)
Structure queries
(order 100% 100%
relationship)
Attributed queries 100% 100%
Hybrid queries 100% 100%

7. CONCLUSION

In this paper, we have designed and implemented a XRS
that exploits the advantages of DBMSs and IRSs. Our scheme
uses BRS to support full text indexing and content-based
queries efficiently, and ORACLE to store XML documents,
multimedia data, DTD and structured information. In order to
process structure queries, our XRS represents structured
information of a XML document as ETID(Element Type Id),
SORD(Sibling ORDer) and SSORD(Same Sibling ORDer).

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

Hyung-Il Kang et al. : XML Repository System Using DBMS and IRS 13

We have also designed databases to manage XML documents
including audio, video, images as well as text. We employ the
non-composition method when storing XML documents into
ORACLE. To show superiority of our XRS over the existing
methods, we have performed various experiments in terms of
the document loading time, the document fetching time, search
time of content-based queries, precision and recall. It has
been shown through experiments that our XRS outperforms the
existing XML document management systems. In the further
work, we will extend XRSs by adding some functions such as
versioning and collaborations.

ACKNOWLEDGEMENT

This work was supported by the Korea Science and
Engineering Foundation(KOSEF) grant funded by the Korea
government(MOST) (No. R01-2006-000-1080900)

And the Korea Research Foundation Grant funded by the
Korean Government(MOEHRD)" (The Regional Research
Universities Program/Chungbuk BIT Research-Oriented
University Consortium)

REFERENCES

[1] Albrecht Schmidt, Martin L. Kersten, Menzo
Windhouwer, Florian Waas, “Efficient Relational Storage
and Retrieval of XML Documents,” WebDB (Informal
Proceedings), 2000.

[2] Arijit Sengupta. "Toward the union of databases and
document management: The design of DocBase,"
Conference on Management of Data (COMAD'98),
Hyderabad, India, 1998.

[3] Brian Lowe, Justin Zobel and Ron Sacks-Davis, "A
Formal Model for Databases of Structured Text,"
DASFAA 1995.

[4] CH. Park, JH. Cheong, D.LShim, S.G. Lee,
"Performance Comparsion between DBMS and IRS for
Structured Documents”, Proceedings of the Korean
Database Conference. 1999.

[5] D. Florescu, D.Kossman, "Storing and Querying XML
Data using a RDBMS," IEEE Data Engineering Bulletin,
Vol. 22, No. 3, 1999.

[6] Extensible Markup Language(XML) 1.0,
"http://www.w3.org/TR/1998/REC-xml-19980210"

[7] Francois, "Generalized SGML repositories: Requirements
and Modeling," Computer Standards & Interfaces, 1996.

[8] lan A. Macleod, "Storage and Retrieval of Structured
Documents, Information Processing and Management,"
Information Processing and Management, Vol. 26, 1990.

[9] J. McHugh, S. Abiteboul, R. Goldman, D. Quass and J.
Widom., "Lore: A database management system for semi-
structured data,” SIGMOD Record, 26(3), September
1997.

[10] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D.
DeWitt, J. Naughton, " Relational Databases for Querying
XML Documents : Limitations and Opportunities,”

VLDB Conference, Edinburgh, Scotland, September 1999.

[11] Klemens Bohm, Adrian Muller, Erich Neuhold,
"Structured Document Handling- a Case for Integrating
Database and Information Retrieval," CIKM. 1994.

[12] Kyuchul Lee, Yongkyu Lee and Bruce Berra,
"Management of Multi-structured Hypermedia
Documents: A Data Model, Query Language, and
Indexing Scheme, Multimedia Tools and Applications,”
Vol. 4, 1997.

[13] Marc Volz, Karl Aberer, Klemens Bohm, "Applying a

Flexible OODBMS-IRS-Coupling to Structured
Document Handling," ICDE. 1996.
[14] Patricia Francois, Pierre Bazex, “SGML/HyTime

Repositories: Requirements and Data Modeling Using
Object-Oriented Database Concepts,” DEXA, 1995.

[15] Philippe Futtersack, Didier Bolf “The Electronic Library
Project: SGML Document Management System Based on
ODBMS,” TAPOS 5(4), 1999.

[16] Ron Sacks-Davis, Tuong Dao, James A. Thorn, and Justin
Zobel, “Indexing documents for queries on structure,
content and attributes,” In International Symposium on
Digital Media Information Base(DMIB'97), Nov. 1997.

[17] Tuong Dao, "An Indexing Model for Structured
Document to Support Queries on Content, Structure and
Attributes," In Proc. of IEEE ADL '98, 1998

[18] T.W.Yan, J.Annevelink, "Integrating a Structured-Text
Retrieval System with an Object-Oriented Database
System," VLDB. 1994.

yung-Il Kang
He received the B.S. degree in the
department of Computer Communication
Engineering from Howon University in
1999. And he received the M.S. degree in
department of Computer and Industrial

V% i Engineering, Chungbuk National
M . ﬁg University in 2002. He is currently
working towards PhD. degree on Bioinformatic system. His

research interests also include Database System, Multimedia
Database and Storage management system.

Jae Soo Yoo

He received the B.S. degree in Computer
Engineering in 1989 from Chunbuk
National University, Chunju, South Korea.
And he received the M.S. and Ph.D.
degrees in Computer Science in 1991 and
1995 from Korea Advanced Institute of
. Science and Technology, Tagjeon, South
Korea. He is now a professor in the department of Computer
and Communication Engineering, Chungbuk National
University, Cheongju, South Korea, where his research
interests are the database system, multimedia database,
distributed computing and storage management system.

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

14 Hyung-1l Kang et al. : XML Repository System Using DBMS and IRS

young Yup Lee

He received the B.S. and M.S. degree in
Computer Science in 1991 and 1993 from
Korea Advanced Institute of Science and
Technology, Daejeon, South Korea. And
he received the Ph.D. degree in the
Management Information Systems from
Korea Advanced Institute of Science and Technology, Daejeon,
South Korea in 1997. He is now a professor in the department of

Electronic Commerce, Paichai University, Taejeon, South Korea,
where his research interests are the datamining, XML, artificial
intelligence, multimedia database, distributed computing.

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

