Duck-Ho Bae et al. : Design and Implementation of a Main Memory Index Structure in 2 DBMS 1

Design and Implementation of a Main Memory
Index Structure in a DBMS

Duck-Ho Bae
College of Information and Communications
Hanyang University, Seoul, Korea

Jong-Dae Kim
College of Information and Communications
Hanyang University, Seoul, Korea

Se-Mi Park
College of Information and Communications
Hanyang University, Seoul, Korea

Sang-Wook Kim*
College of Information and Communications
Hanyang University, Seoul, Korea

ABSTRACT

The main memory DBMS (MMDBMS) efficiently supports various database applications that require high performance since it
employs main memory rather than disk as a primary storage. An index manager is an essential sub-component of a DBMS used to
speed up the retrieval of objects from a large volume of a database in response to a certain search condition. Previous research
efforts on indexing proposed various index structures. However, they hardly dealt with the practical issues occurred in implementing
an index manager on a target DBMS. In this paper, we touch these issues and present our experiences in developing the index
manager. The main issues are (1) compact representation of an index entry, (2) support of variable-length keys, (3) support of

multiple-attribute kéys, and (4) support of duplicated keys.

Keywords: DBMS, Main Memory DBMS, Indexing

1. INTRODUCTION

The Main-Memory Data Base Management System
(MMDBMS) uses main memory as a primary storage for
eliminating the cost of disk accesses, which have been known
as the main performance bottleneck of the disk-based DBMS
(1131051 ‘

An index manager in a DBMS supports the fast retrieval of
target objects that satisfy a query condition from a database. To
facilitate this functionality, the index manager chooses one or
more attributes as a key and builds an index from them. There
have been many research efforts to devise efficient index
structures for database systems. The binary search tree, AVL-
tree, T-tree [8], B-tree [2], chained-bucket hashing, extensible

* Corresponding author. E-mail : wook@hanyang.ac.kr
Manuscript received Sep. 11, 2007 ; accepted Sep. 27, 2007

hashing [4], and linear hashing [10] are the typical examples.
Cache-conscious index structures such as the CSS-tree [13] and
the CSB+ [14] have also been proposed. They could optimize
search performance in some degree at the expense of update
performance by considering the cache behavior.

Previous research efforts mainly focused on designing
efficient index structures appropriate for their own application
domains. However, they rarely dealt with the practical issues
occurred in implementing an index manager on a target DBMS.

In this paper, we investigate design and implementation
issues experienced in developing an index manager. The main
issues discussed in this paper are: (1) compact representation of

This research was supported by the MIC(Ministry of
Information and Communication), Korea, under the ITRC
support program of supervised by the IITA(IITA-2005-C1090-
0502-0009) via Cheju National University.

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

2 Duck-Ho Bae et al. : Design and Implementation of a Main Memory Index Structure in a DBMS

an index entry, (2) support of variable-length keys, (3) support
of multiple-attribute keys, and (4) support of duplicated keys.

The paper is organized as follows. Section 2 introduces
previous index structures and addresses their strong and weak
points. Section 3 presents the issues and their solutions
experienced in developing the index manager in detail. Finally,
Section 4 summarizes and concludes the paper.

2. INDEX STRUCTURES

This section reviews previous index structures proposed for
database systems.

2.1 Tree-based indexes

Since tree-based indexes traverse down a tree to locate an
object, their performance for exact-match queries is worse than
that of hashing-based indexes. However, tree-based indexes
show better performance for range queries because index
entries having adjacent key values can be easily accessed with
a sorted order.

The binary search tree has a simple structure. Therefore, its

algorithms for search, insertion, and deletion are also simple.
Since the binary search tree is not balanced, its search
performance heavily depends on the distribution of key values
and the insertion/deletion orders of objects.
The AVL-tree is a balanced binary tree in that the difference in
the heights of the two subtrees of any node is at most one. It
maintains the simple structure of the binary search tree and
accomplishes the balancing property using the rotation
operation. The biggest problem of the AVL-tree, however, is its
storage overhead. Each node stores the following three
information: (1) a key entry <key value, object pointer>, (2)
two pointers to its left and right subtrees, and (3) related control
information. Therefore, the total amount of information to be
kept for just one entry is too large.

The T-tree [8] solves the storage overhead of the AVL-tree.
While the T-tree uses the structure and the balancing scheme
that are identical to those of the AVL-tree, it stores multiple
entries in a node. As a result, storage overhead for each key
entry gets smaller.

The B-tree [2] is a completely balanced index structure
widely used in disk-based DBMSs. It maximizes the fan-out of
a node to reduce the height of a tree, and thus minimizes the
number of disk accesses in tree traverse. In most cases where
the fan-out of a node is at least 2, the B-tree has storage
overhead larger than the T-tree.

2.2 Hashing-based indexes

Hashing-based indexes compute the position of an object
directly from its key value. Therefore, they have better
performance in processing exact-match queries compared with
tree-based indexes. However, they show worse performance in
processing range queries because the index entries having
adjacent key values tend to be scattered in hashing-based
indexes.

The chained-bucket hashing uses a fixed-size hash table, and

thus shows good search performance only when it has a hash
table that is optimal to a given database. When the hash table is
too small, overflow buckets degrade search performance. On
the contrary, a hash table wastes storage space when it is too
large. In dynamic environment where insertions and deletions
of objects frequently occur, however, it is not easy to estimate
an optimal size for a hash table.

The extensible hashing [4] consists of data pages and a
directory. Data pages store data objects and a directory stores
pointers to data pages. The directory has 2k (k=0,1,...) pointers.
The directory adapts to dynamic environment by splitting and
merging. When the number of pointers stored in a directory
exceeds its capacity, the directory doubles. Therefore, the
extensible hashing seriously wastes storage space for its
directory when most objects are concentrated in a few data
pages.

The linear hashing [10] also has a dynamic structure. It
maintains data pages in physically contiguous space, thus
performs page addressing by calculation rather than directory
searching. The linear hashing permits overflow chains, which
may cause search performance to degrade. Whenever necessary,
it splits data pages in the pre-defined order, resulting in
increased space utilization.

Lehman et. al [8] modifies the linear hashing to be suitable
for MMDBMSs. The directory is re-introduced for locating
data pages for making it unnecessary to store data pages in
physically contiguous pages. Since the modified linear hashing
does not allocate empty pages, it has space utilization much
better than the extensible hashing.

2.3 Our Choice

We selected an index structure based on the three criteria: (1)
search performance for both exact-match and range queries, (2)
storage overhead, and (3) adaptability to dynamic environment.

For range queries, we chose the T-tree for its balancing
property and small storage overhead. The balancing property
enables us to guarantee good search performance regardless of
the key distribution and the insertion/deletion orders of objects.
Since the T-tree stores multiple entries in a node, its storage
overhead is small. Dynamic allocations and deallocations of
nodes make the T-tree adapt to dynamic situations. The T-tree
performs well for range queries, and is also capable of
processing exact-match queries via tree traversal.

At first, we intended to employ an additional hashing-based
index structure for exact-match queries. The chained-bucket
hashing was left out because of its static nature. Since dynamic
hashing indexes find the location of the target data page by
computation, they have to maintain directory pages (in the
extensible hashing and the modified linear hashing) or data
pages (in the linear hashing) in physically contiguous space.
However, it is not trivial to determine the optimal size of
contiguous main memory.

The easiest way is to allocate the largest size of contiguous
space at a database setup stage. If the size of contiguous space
is too small compared with the database size, however,
performance degrades seriously due to overflow chains. On the
contrary, main memory space wastes when the size of
contiguous space is too large. The other way is to allocate

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

Duck-Ho Bae et al. : Design and Implementation of a Main Memory Index Structure in a DBMS 3

larger contiguous space whenever needed after releasing
current contiguous space. However, it could not be always
possible to obtain larger contiguous space due to memory
fragmentation in dynamic environment. When larger space is
not available, overflow chains would be unavoidable.

Traversing of overflow chains is almost same as traversing
of a tree. Furthermore, the length of overflow chains increases
in O(n), where n is the number of objects while the depth of the
T-tree grows in O(log n). Therefore, even for exact-match
queries, the hashing-based indexes could perform worse than
the T-tree under dynamic environment. In addition, the length
of overflow chains is highly dependent on the size and
distribution of a database. Therefore, the hashing-based indexes
cannot guarantee the worst-case search performance.

For these reasons, we chose the T-tree as an index structure
for both exact-match and range queries. By employing a single
index structure for both exact-match and range queries, we
have enjoyed an additional advantage of making other sub-
components such as the concurrency, backup, and recovery
managers much simpler.

3. IMPLEMENTATION ISSUES OF INDEX MANAGER

In this section, we review the T-tree structure and present
several implementation issues and our solutions experienced in
developing the index manager.

3.1 T-tree

The T-tree [8] enforces the following balancing property: the
height of the two subtrees of any node differs by at most one.
When the balance is broken by deletion or insertion, the T-tree
re-balances itself using the rotation operation. There are three
kinds of nodes in the T-tree: the internal, half-leaf, and leaf
nodes. Internal nodes have two subtrees. Half-leaf nodes have a
single subtree. Leaf nodes do not have a subtree. The number
of entries in an internal node and a half-leaf node should be
between the pre-defined minimum and maximum. The leaf
node also has a constraint on its maximum number of entries,
however has no constraint on its minimum.

minKey(N) and maxKey(N) denote the smallest and the
largest key values, respectively, stored in node N. Given node
N and key value k, we say that N bounds k when k is between
minKey(N) and maxKey(N). GLB(k) and LUB(k) represent the
greatest lower bound and the least upper bound of key value k,
respectively. That is, GLB(K) is the key value just before k and
LUB(k) is the key value right after k in a T-tree. For any
internal node N in a T-tree, there exists: (1) a leaf node or a
half-leaf node that contains GLB(minKey(N)), and (2) a leaf
node or a half-leaf node that contains LUB(maxKey(N)).

The search algorithm of the T-tree is similar to that of the
binary search tree. Two comparisons are required at each node
N of the T-tree: one for comparing a query value with
minKey(N) and one for comparing a query value with
maxKey(N). The search algorithm consists of two steps: The
first step traverses the tree to locate the node that bounds a
query value. The next step performs binary search within that
node in order to find the entry whose key value equals to a

query value.

To insert a new key value, we find the node N that bounds
the value and insert it into N. If N overflows by this insertion,
minKey(N) is shipped to a leaf node or a half node that has
GLB(minKey(N)). When there is no node that bounds a new
key value, we insert it into a leaf node or a half-leaf node at
which the traversal ends. When the node overflows by this
insertion, we create a new leaf node under the overflowed node.
If the T-tree becomes unbalanced by a newly created leaf node,
we perform the rotation operation to make the tree balanced
again.

To delete a key value, we find the node N that bounds the
key value and delete the corresponding entry. If N underflows,
we move LUB(maxKey(N)) into N. If this makes a leaf node
empty', we delete that node from the T-tree. We perform the
rotation operation if the T-tree gets unbalanced by this node-
deletion.

3.2 Support of variable-length keys and multiple-attribute
keys

A key is called a variable-length key when at least one of its
organizing attributes has a variable length. Variable-length
keys make various algorithms used in DBMSs complicated,
especially concurrency control and recovery algorithms [6][12].

For efficient support of variable-length keys, we store only
an object address in an index entry. Using the address of an
object, we can easily access its key value from the object in
main memory. Thus, we do not need to maintain key values in
the T-tree. Our approach has the following advantages: (1) By
fixing the length of index entries, many DBMS algorithms
become quite simple; (2) the storage overhead of the T-tree
gets smaller.

For key comparisons, however, we need to know which
attributes in an object comprise a key. For this purpose, the
system catalog [6] maintains the following information on each
T-tree in Ttreelnfo: UorD, root, numAttributes, <attrDesc[0]
attrDesc[1], ..., attrDesc[MAX-1]>.

UorD indicates whether a duplicate key is allowed or not.
root stores the address of the root node of the T-tree and
numAttributes the number of organizing attributes. TtreeInfo
also stores the information on each organizing attribute in
attrDesc[i]. As a result, the multiple-attribute key, which is
defined as a key that consists of more than one attribute, are
easily supported. Each organizing attribute is described by the
three fields <offset, size, dataType>. offset is the starting
position of an attribute within an object. size and dataType are
its maximum size and data type, respectively.

3.3 Support of duplicate keys

When a system allows duplicate keys, different objects may
have the same key value. The simple way [6] is to replace the
structure of index entries with <key value, list of object
addresses>. This makes the index entries be of variable length.
Furthermore, overflow nodes have to be introduced since the
size of an index entry possibly gets larger than that of a leaf

! The T-tree permits underflowed leaf nodes.

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

4 Duck~Ho Bae et al. . Design and Implementation of a Main Memory Index Structure in a DBMS

page. All of these make the algorithms in other DBMS sub-
components complicated.

4 &

[223] [o®]

[12] [459 [1n]

(b) after insertion.

(a) before insertion.
Fig. 1. Inserting the duplicate key 7.

As a solution to this problem, we take the approach to
allocate an independent index entry to each object regardless of
its key value. That is, we allocate m index entries in the T-tree
for m objects even when they have the same key value. Our
approach does not change the structure of index entries and
also does not require additional mechanisms to handle special
cases. This makes other algorithms kept simple. In Figure 1, we
observe that the only change is to replace the sign "<" in left
child pointer with "<".

Figure 1 shows the two stages of the T-tree; the left one
before inserting a duplicate key value 7 and the right one after
inserting that key value. We assume that the blocking factor is
3. For easier explanation, we express each node entry with its
key value instead of its object address. In order to insert 7, we
first search for the node that bounds 7, which is the root node
having no more space. In this case, we go down the tree with
the key value and insert it into a newly created leaf node. As
shown in Figure 1, multiple index entries with the same key
value can be dispersed in more than one node. Therefore, even
though we find the first node that bounds the value given at
query time, we have to check its GLB value in order that we do
not miss other nodes that bound the value.

4. CONCLUSIONS

MMDBMS:s provide a promising solution to improve DBMS
performance by replacing disk with main memory. The index
manager is an essential DBMS sub-component that supports
the fast retrieval of target objects. There have been a lot of
research efforts to devise efficient index structures. However,
they hardly address the issues on their implementation and
seamless integration with DBMSs.

This paper investigated practical issues experienced in
developing an index manager, and proposed our approaches to
them. The main issues discussed in this paper are:(1) compact
representation of index entries, (2) support of variable-length
keys, (3) support of multiple-attribute keys, and (4) support of
duplicate keys. We believe that our contribution would help
MMDBMS developers highly reduce their trial-and-errors even
when they employ different index structure other than the T-
tree for their target DBMS.

(1]

[2]
(3]

[4]

[3]

[6]
(7

(8]

(]

[10]

(11]

[12]

[13]

(14]

REFERENCES

A. Ammann, M. Hanrahan, and R. Krishnamurthy,
"Design of a Memory Resident DBMS", Proc. Intl. Conf.
on COMPCON, Feb. 1985.

D. Comer, "The ubiquitous B-Trees", ACM Computing
Surveys, Vol. 11, No. 2, 1979, pp. 121-137.

D. DeWitt et al., "Implementation Techniques for Main
Memory Database Systems", Proc. Intl. Conf. on
Management of Data, ACM SIGMOD, 1984, pp. 1-8.

R. Fagin et al., "Extensible Hashing: A Fast Access
Method for Dynamic Files", ACM Trans. on Database
Systems, Vol. 4, No. 3, 1979, pp. 315-344.

H. Garcia-Molina and K. Salem, "Main Memory
Database Systems: An Overview", IEEE Trans. on
Knowledge and Data Engineering, Vol. 4, No. 6, 1992, pp.
509-516.

J. Gray and A. Reuter, Transaction Processing: Concepts
and Techniques, Morgan Kaufman Publishers, 1993.

S. I Jun et al, "SROS: A Dynamically-Scalable
Distributed Real-time Operating System for ATM
Switching Network", Proc. IEEE Global
Telecommunications Conference, 1998, pp. 2918-2923.

T. Lehman and M. Carey, "A Study of Index Structures
for Main Memory Database Management System", Proc.
Intl. Conf. on Very Large Data Bases, VLDB, Aug. 1986,
pp. 294-303.

T. Lehman and M. Carey, "A Recovery Algorithm for a
High-Performance Memory-Resident Database System",
Proc. Intl. Conf. on Management of Data, ACM
SIGMOD, 1987, pp. 104-117.

W. Litwin, "Linear Hashing: A New Tool For File and
Table Addressing", Proc. Intl. Conf. on Very Large Data
Bases, VLDB, 1980, pp. 212-223.

C. Mohan and F. Levine, "ARIES/IM: An Efficient and
High Concurrency Index Management Method Using
Write-Ahead Logging”, IBM Research Report RJ 6846,
1989.

C. Mohan et al, "ARIES: A Transaction Recovery
Method Supporting Fine-Granularity Locking and Partial
Rollbacks Using Write-Ahead Logging", ACM Trans. on
Database Systems, Vol. 17, No. 1, Mar. 1992, pp. 94-162.
J. Rao and K. A. Ross, "Cache Conscious Indexing for
Decision-Support in Main Memory", Proc. Intl. Conf. on
Very Large Data Bases, VLDB, 1999, pp. 78-89.

J. Rao and K. A. Ross, "Making B+-Trees Cache
Conscious in Main Memory", Proc. Intl. Conf. on
Management of Data, ACM SIGMOD, 2000, pp. 475-486.

Duck-Ho Bae

In 2006, he received the B.S. degree in
Information & Communications from
Hanyang University, Seoul, Korea. Now,
he is working on the Master's degree in
Electronics and Computer Engineering
from Hanyang University. His research

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

Duck-Ho Bae et al. : Design and Implementation of a Main Memory Index Structure in a DEMS

interests include embedded database systems, flash memory
databases, mobile databases, and social network analysis.

Jong-Dae Kim

In 2003, he received the B.S. degree in
Computer Science from Soongsil
University, Seoul, Korea. Now, he is
working on the Master's degree in
Electronics and Computer Engineering
from Hanyang University. His research
interests include moving object
management, data mining, embedded database systems, flash
memory databases.

Semi Par

In 2007, he received the B.S. degree in
Information & Communications from
Hanyang University, Seoul, Korea. Now,
he is working on the Master's degree in
Electronics and Computer Engineering
. from Hanyang University. His research
interests include embedded database systems, flash memory
databases, mobile databases, and social network analysis.

Sang-Woo Kim

School of Information and Communicati-
ons Hanyang University, Korea email:
wook@hanyang.ac.kr Sang-Wook Kim
received the B.S. degree in Computer
Engineering from Seoul National
University, Seoul, Korea at 1989, and
earned the M S. and Ph.D. degrees in Computer Science from
Korea Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea at 1991 and 1994, respectively. From 1994 to
1995, he worked with the Information and Electronics Research
Center in Korea, as a Senior Engineer. From 1995 to 2003, he
served as an Associate Professor of the Division of Computer,
Information, and Communications Engineering at Kangwon
National University, Chunchoen, Kangwon, Korea. In 2003,
he joined Hanyang University, Seoul, Korea, where he
currently is a Professor at the School of Information and
Communications. From 1999 to 2000, he worked with the
IBM T. J. Watson Research Center, Yorktown Heights, New
York, as a Post-Doc. He also visited the Computer Science
Department of Stanford University as a Visiting Researcher in
1991. He is an author of over 80 papers in refereed
international journals and conference proceedings. His
research interests include storage systems, transaction
management, main-memory DBMSs, embedded DBMSs, data
mining, multimedia information retrieval, and geographic
information systems, web data analysis. He is a member of
the ACM and the IEE

International Journal of Contents, Vol. 3, No. 3, Sep. 2007

