8 JongKeun Cho et al. . Study on Optimizing Mobile 3D Game Engine using JSR-184

A study on Optimizing Mobile 3D Game Engine using JSR-184

JongKeun Cho
Dept. of Computer Science, Soongsil University
Dongjak-ku, Seoul, Korea

ShinJun Lee
Dept. of Computer Science, Yonsei University
Shinchon-dong, Seoul, Korea

MoeonWon Choo
Division of Multimedia, Sungkyul University,
Anyang-city, Kyunggi-Do, Korea

ABSTRACT

This study focuses on modeling mobile 3D game engine and suggesting modified skinned-mesh schema based on JSR-184 in order to
improve the performance in terms of memory consumption and time complexity. Most of the 3D games have used OpenGL-ES low-
level APIs, which may limit portability and fast developing time. Hence, the 3D mobile game engine providing high-level APIs which
works on GSM (Global System for Mobile Communication) phones on J2ME, is proposed here in order to optimize the performance
for Java environment abiding JSR-184 standard. To prove performance enhancement, skinned-mesh schema on JSR-184 engine is

modified and tested. The experimental results are shown.

Keywords. mobile application, mobile game, 3D game engine, mesh skinning

1. INTRODUCTION

The JSR(Java Specification Request)-184 has recently
become very popular in mobile 3D industry[1,2]. It is a
standard 3D graphic API optimized for the Java environment.
The issue is that if low-level OpenGL-ES is used in Java 2
Platform Micro Edition (J2ME) environment for the 3D
graphics, the code will be lengthy and large in volume,
resulting in unfitness for MIDP(Mobile Information Device
Profile)[3]{4][5]. MIDP are combined with the Connected
Limited Device Configuration (CLDC), which defines the base
set of application programming interfaces and a virtual
machine for resource-constrained mobile devices, in order to
provide a standard Java runtime environment for today's most
popular mobile information devices and define a platform for
dynamically and securely deploying optimized, graphical,
networked applications.

J2ME technology is delivered in API bundles called
configurations, profiles, and optional packages. A configuration
provides the most basic set of libraries and virtual-machine
features that must be present in each implementation of a ]2ME

Corresponding author. E-mail : mchoo@sungkyul.edu
Manuscript received Nov.20, 2007 ; accepted Dec.7, 2007

environment. When coupled with one or more profiles, the
CLDC gives developers a solid Java platform for creating
applications for consumer and embedded devices. On the other
hand, a profile is a set of standard APIs that support a narrower
category of devices within the framework of a chosen
configuration. A specific profile is combined with a
configuration like CLDC to provide a complete Java
application environment for the target device class. MIDP,
which is a profile supported by CLDC, provides a rich run-time
environment. An optional package is a set of technology-
specific APIs that extend the functionality of a Java application
environment. The CLDC supports a number of optional
packages that allow product designers to balance the
functionality needs of a design against its resource constraints.
The CLDC-based optional packages include several API
collections related to wireless messaging and mobile media,
supporting J2ZME applications targeted at cell phones and other
devices that can send and receive wireless messages.

The goal of the CLDC specification is to standardize a
highly portable, —minimum-footprint Java  application
development platform for resource-constrained, network-
connected devices[4]. The CLDC and MIDP provide the core
application functionality required by mobile applications, in the
form of a standardized Java runtime environment and a rich set
of Java APIs. Developers using MIDP can write applications

International Journal of Contents, Vol. 3, No. 4, Dec 2007



Duck-Ho Bae et al. : Design and Implementation of a Main Memory Index Structure in a DBMS 9

and deploy them quickly to a wide variety of mobile
information devices. MIDP has been widely adopted as the
platform of choice for mobile applications. It is deployed
globally on millions of phones and PDAs, and is supported by
leading integrated development environments (IDEs).
Companies around the world have already taken advantage of
del is proposed and is compared with that of Nokia’s JSR-184
engine. The rest of paper consists of as follows. Section 2
explains the system design and implementation. Section 3 and
section 4 discuss the skinned mesh algorithm. Section 5 and
section 6 is about experimentation and short conclusion
remarks.

2. SYSTEM DESIGN

Nokia’s JSR-184 mobile 3D engine is organized as shown in
the Fig. 1. [6]

5 i Java lications
| Mative TICes | Avpl

| Applications
i

i

Graphics Hardware

i
H
E

Fig. 1. Diagram of Nokia’s JSR-184 3D engine

In this engine, Java Virtual Machine is integrated into
OpenGL-ES and Java GUI into M3G(Mobile 3D Graphics API,
JSR-184). The M3G is a J2ME Optional Package that allows
three-dimensional (3D) graphics to be rendered at interactive
frame rates on mobile, resource constrained devices. It also
includes facilities for 3D scene management and animation, as
well as a file format for efficient over-the-air deployment of 3D
content. This architecture is not quite different from the system
implemented in this paper. Fig. 2 shows the conceptual diagram
of the proposed architecture.

D Appisifion L

| s Bowtos Lewat

e
A & 3

uuuuu e o e e ‘i Hathver Sonps Lioed]

Fig. 2. The proposed JSR-184 3D Engine

MIDP to write a broad range of consumer and enterprise
mobile applications[6].

In this paper, mobile 3D engine based on J2ME environment
using JSR-184 that accommodates a various kinds of 3D
multimedia contents is proposed. Also, faster and more efficient
way to process skinned-mesh mo

For Java source level, 30 classes and 250 methods of JSR-
184 are implemented and written in Java[7]. The specifications
of these classes are categorized into several functional levels as
follows.

3D Graphics

The classes in this level are essentially related to 3D graphics
such as Modeling, Transform, Camera, Texture mapping,
Material, and Lightings{8]. These are made up of Java
wrappers which allow full use of existing OpenGL-ES
engine[9][10]. The followings illustrate some of them.

Appearance: define mesh and sprite 3D rendering property
Background: decide whether to clear viewport or not and how
to clear

Camera: the position of the viewer and how 3D will be
projected in 2D

CompositingMode: composite property of each pixel

Fog: fog effect

Graphics3D: definition of graphic context that will be drawn
on rendering target

Image2D: definition of 2D image that will be texture,
background or sprite image.

IndexBuffer: how geometrical object and vertex will be
connected

Light: define the type of light

Material: define the material for the light calculation

Mesh: definition of polygon surface of the 3D object
MorphingMesh: define morphing effect of polygon mesh
PolygonMode: definition of polygon property

SkinnnedMesh: definition of polygon mesh expession for bone
animation

Sprite3D: billboard effect using 2D images

Texture2D: definition of texture mapping for the mesh
Transform: definition of 4x4 matrix for transformation
Transformable: class for transformation of node and texture
TriangleStripArray: array declaration for storing triangle strip
VertexArray: vector array for the vertices position, normal,
color and texture coordinate

Animation

The classes in this level are written in C and built into Java
wrappers. The OpenGL-ES doesn’t have animation features,
but it includes Keyframe animation, Bone animation, and
Motion morphing.

International Journal of Contents, Vol. 3, No. 4, Dec 2007



10 JongKeun Cho et al. - Study on Optimizing Mobile 3D Game Engine using JSR-184

AnimationController: define position, speed, and rate of the
Animation sequence

AnimationTrack: animation controller that have values that
can be animation and definition of KeyframeSequence
KeyframeSequence: animation data for each sequence

Scene Graph

Written in Java, it includes Hierarchy, Object traverse,
Picking and Alignment. Some of the classes in this level are as
follows:

Group: require information when storing nodes structurally
Node: common property related to SceneGraph nodes
Object3D: common properties related to 3D objects
RaylIntersection: definition of features for the picking
World: top level container for SceneGraph

Additionally, the class Loader is specified to define specific
data format for describing the SceneGraph structure when
downloading SceneGraph nodes and node components.

As in J2ME, JSR-184’s core is mostly written in C. Thus,
when passing the data from Java to C, a proper structure for
data passing is required, which is characterized by KNI in this
case. KNI(K-Native Interface) is used for mapping JSR to
OpenGL-ES functions, which is based on customized OpenGL-
ES engine function[11]. KNI is a native function interface that
provides high performance and low memory overhead without
the pitfalls of low-level interfaces in order to facilitate the
integration of native functionality across a wide variety of
CLDC target devices. The whole JSR-184 engine was designed
by following steps shown in Fig. 3. For more details, you may
refer to the related paper[7].

Anirmation Related Structure Related

Function

_ Implementation

" M3G File Format
.. Impleme

Sample make and
o performance Test. .|

Fig. 3. 3D Engine Implementation using JSR-184

3. OVERVIEW OF SKINNED MESH ALGORITM

The use of skinning when rendering meshes is nowadays
widely used. The technique works as follows: for a model, a
skeleton is defined by using a hierarchy of bones and the joints
of the skeleton are attached to the vertices of the mesh (the
“skin”). To animate the mesh only the skeleton have to be
animated because the vertices of the mesh are deformed based
on the joints they are attached to. The vertices of the mesh can
be attached to a number of joints. A vertex is needed to attach
to at least one joint and for current game animation of human-
like characters, animators need at most four joint influences per
vertex. If exactly one joint per vertex is used, this is called
simple skinning. If multiple joints is needed to influence a
vertex , which is called smooth skinning, which amount every
joint influences the vertex with a total influence(or weight) that
sums to one[12] should be specified. The final transformed
vertex position is a weighted average of the initial position
transformed by each of the attached joints. For example, the
vertices in a character’s knee could be partially weighted to
both the hip joint (controlling the upper thigh) and knee joint
(controlling the calf). Many vertices will only need to attach to
one or two joints and rarely is it necessary to attach a vertex to
more than four. In this paper, smooth skinning method is
considered to improve the rendering performance.

Fig. 4. Smooth skinning on arcrzylinder[lv2]

Using smooth skin, a vertex can be attached to more than
one joint with and receive a weighted average of the
transformations. Let us say that a particular vertex is attached
to N different joints. Each attachment is assigned a weight W;
which represents how much weight the joint will have on it. To
ensure that no undesired scaling will occur, we enforce the
constraint that all of the weights for a vertex must add up to
exactly 1. To compute the world space position v of the vertex,
it is transformed by cach joint that it is attached to. Then it
needs to be computed a weighted sum of the results as follows:

v=Swy By Wy,

where v is the untransformed vertex in skin local space, in
which the skin mesh was originally modeled. The matrix W7 is
the world matrix of the joint for attachment i The indexing
notation [1] is used to indicate that we don’t want the matrix of
the  joint in the skeleton (which would be written W), but
instead we want the world matrix of attachment 7’s joint.

The matrix By is called the binding matrix for joint [4]. This
matrix is a transformation from joint local space to skin local
space, and so the inverse of this matrix, B Iﬁ,, represents the
opposite transformation from skin local space to joint local
space. As the number of joints is likely to be small compared to

International Journal of Contents, Vol. 3, No. 4, Dec 2007



Duck-Ho Bae et al. : Design and Implementation of a Main Memory Index Structure in a DBMS 11

the total number of vertices that need to be skinned, it is more
efficient to define and compute My for each joint before
looping through all of the vertices as follows:

_ p-1
My =By -Wy.

The skinning equation that must be computed for each vertex
then simplifies to

V‘= 2 VVIVM[I'] .

In addition to transforming the vertex positions into world
space, the skinning algorithm must also transform normals that
the renderer will need to perform lighting calculations. We will
assume that in the initial untransformed mesh, a normal » is
specified for every vertex v. This normal is usually specified
offline through an interactive modeling tool. To compute the
world space normals, we use exactly the same skinning weights
as the vertices, and so the normals are treated in very much the
same way:

Even if the untransformed normal #» is unit length, the
weighted averaging in the equation could cause the length of
the intermediate blended normal n* to vary. To accommodate
for this change in length, the final blended normal #’ will most
likely need to be normalized after the skinning is applied, in
order for lighting calculations to work properly:

n'=n*/|n¥.

Mesh Type by Weigt |

1
}

N -

[ﬂ : o : Single Mesh+No Weight

Fig. 5. Comparison of skinned animation values

r'=rxM,x W, + rx Mz x Wy

For illustration, Fig. 4 shows the comparison of skinned
animation values between different mesh types. When a skin A
and a skin B change in animation, partitioned mesh type can’t
do much about it. However, in case of single mesh plus weight,
Ma, matrix of animation 4 and Mb, matrix of animation B will
combine weight Wa and Wb and apply them to compute the
final value. Since the connecting vertex has two coordinates,
each result will be relevantly mixed and can be expressed as
follows:

Rx Ax Bx
Ry|=WM| Ay |+(1-W)M| By |-
Rz Az Bz

If W=0.5 is applied for the vertex belongs to each
coordinates, the averaged result will be obtained. If the other
part of bone will have the weight of 0 or 1, the vertex
belonging to only one coordinate is influenced. However, the
loop will visit each vertex and calculate 4 blend weight. The
skin matrix will be calculated from matrix palette based on
weighted bone and index using the following formula:

Vworid = Viocal * M[O] * VVO + Viocal * M[l] * VVI +
Viocal * M[2] * VVZ + Viocal * M[3] * VV3

The details on skinned mesh can be found at many
references [12][13].

4. THE PROPOSED SKINNED-MESH ALGORITHM

JSR-184 decide specific vertex’s position and weight from
the addTransform(Node bone, int weight, int firstVertex,
int numVertice) function[9]. It associates a weighted
transformation, or bone, with a range of vertices. An integer
weight is supplied as a parameter for each added transformation.
Prior to solving the transformation equation, the weights are
automatically normalized on a per-vertex basis such that the
individual weights are between [0,1] and their sum is 1.0. This
is done by dividing each weight pertaining to a vertex by the
sum of all weights pertaining to that vertex. For example, if two
bones with any equal weights overlap on a vertex, each bone
will get a final weight of 0.5.

Automatic normalization of weights is convenient because it
significantly reduces the number of times that this method must
be called (and hence the amount of data that must be stored and
transmitted) in cases where more than one bone is typically
associated with each vertex. The same Node may appear
multiple times among the bones. This is to allow multiple
disjoint sets of vertices to be attached to the same bone.

The number of bones that can be associated with a single
vertex is unlimited, except for the amount of available memory.
However, there is an implementation defined limit (N) to the
number of bones that can actually have an effect on any single
vertex. If more than N bones are active on a vertex, the
implementation is required to select the N bones with highest
weights. In case of a tie (multiple bones with equal weights
competing for the last slot), the selection method is undefined
but must be deterministic. Parameters have the following
meanings:

Bone: a node in the skeleton group to transform the vertices
with

weight: weight of bone; any positive integer is accepted
firstVertex: index of the first vertex to be affected by bone
numVertices: number of consecutive vertices to attach to the
bone node

4.1 Nokia’s Skinned-Mesh Applied Algorithm

Nokia uses inner class utilizing WT(Weighted Transform) to
implement Skinned-Mesh. Table. 1 shows the variables used in

International Journal of Contents, Vol. 3, No. 4, Dec 2007



1z JongKeun Cho et al. ’ Study on Optimizing Mobile 3D Game Engine using JSR-184

Nokia’s Skinned-Mesh Applied Algorithm.

Table 1. Variables used in Nokia’s study
variable description

wr Weighted Transform with inner class for
skinned mesh implementation

n The number of vertices
i Index for vertices
v; Vertex from v, to v,

RT Relevant Weighted Transform
L Weighted Transform List from WT; to WT,
PT Position Transform
NT Normal Transform
vr Vertex Transform

When addTransform() occurs, new WT object is created
and the bone will have first index and last index(v;, v,, ..., v,)
influenced by transform and weight in rest state, which will
be added in the list, L. It can be expressed as follows:

if v; € L, find WT (which includes v)

When rendering, the Weighted Transform List, L for each
vertex is checked. If the current vertex is included, then the WT
is searched.

> WI;/n,(i=1...n)

RT(Relevant Weighted Transform) weight will be summed and
divide the weight by the sum, which can be improved in terms
of performance.

S (PT+NT) - WT;-v;, (i=1... n)

Then Position Vertex value and Normal vertex value are
calculated and accumulated using surplus number of
PT(Position Transform), NT(Normal Transform) and inner
class in rendering time. In other word, PT and NT have to be
accounted for current state of V7(Vertex Transform), whose
calculation should be done in each rendering time.

Nokia’s algorithm, in some cases, may be inefficient. As
addTransform() function call increases, memory usages will
increase proportionally, resulting in more rendering time.

4.2 The proposed algorithm
The Nokia’s algorithm can be modified to reduce space and
time complexities. Table 2 shows the variables used in the

proposed skinned-mesh algorithm.

Table 2. Variables used in the proposed study
variable

description

WL,; | Weight List(i: vertex index, j: bone index)
The number of vertices

The number of bones

The index of vertex

The index of bone

AT R L ]

The WL,; is the new variable for skinned-mesh rendering. 2D
array (WeightList[Vertex Number][Bone Number]) will store
the weight and how each vertex will be influenced from which
bone. From this variable, the weighted sum of all bones for
each vertex is calculated as follows;

WS,'=Z WLi,j, (j=1... b)

Arrays will be initialized as 0 and when the function call
addTransform() occurs, the weight each vertex receives will
be accumulated. For the vertex where update occurred,
WeightSum will be updated so that sum of weight will be
calculated when addTransform() is called. In this case at the
rendering time, only PT and NT for number of bones are
calculated. Since sum of weight for each vertex is already
calculated, this process can be omitted in rendering time. If the
vertex is not influenced by the bone (the weight for a bone is 0),
the calculation can be totally omitted. The core part of
proposed algorithm is as follows:

/* Stores Deform Information */

int weightList] Number of vertex}{ Number of bone]
int weight Sum[ Number of vertex]

Transform toBone[ Number of Bone]

Transform positionTransform| Number of Bone)
Transform normalTransform] Number of Bone)
Vector boneList

Accumulate weight in weightList at specified position.
Recalculate accumulated weightSum
for(int i=0; i<Number of Bone; i++)

{
Calculate positionTransform
Calculate normalTransform
}
for(int i=0; i<Number of Vertex; i++)
{

for(int j=0; j<Number of Bone; j++)
{ .
Calculate vertex position and normal deform
using weightSum and transform.
}
}

Basically, skinned-mesh object processing should be calculated
real-time as shown in Fig.3 for the accurate movement and
natural link between the meshes. In this algorithm, the weights
of vertices associated with bones are not computed at every
rendering time, rather once at loading time. Hence, it can save
memory usage and longer rendering time due to skipping the
normalization processes which should be done in Nokia’s
solution.

5. EXPERIMENTS
Sample file made by 3D MAX 7.0 is exported using M3G

exporter. Using this file, the proposed JSR-184 engine and
Nokia solution are tested and compared in terms of time

International Journal of Contents, Vol. 3, No. 4, Dec 2007



Duck- o aeetal. : Design and Implementation of a Main Memory Index Structure ina D MS 13

complexity. Fig. 6 shows the workspace for creating sample
polygons using 3D MAX 7.0 for the engine performance test.
The created file is exported as JSR-184 standard, M3G file. The
actual file used in this experiment contains 3D objects using
skinned-mesh, texturization and camera applications.

i

Fig. 6. Creating 3D Object in 3D MAX

Table 3 shows 3D sample objects in this test. Fig. 7 shows the
three screen shots of simple skateboarding boy running JSR
engine using M3G file format. Fig.8 shows the result of
comparison between Nokia and proposed JSR-184 engine. It
shows that the resultant performance is specially better at 2-3
fps(Frames Per Second). When games run on small LCD size
of the mobile phones with 240x176 or 320x240, the
performance issue is critical. The algorithm proposed here will
be a definite benefit.

Table 3. 3D sample objects used in experiment.

JSR-184 Type Objects File format
Number of | 100 Polygon/Sec Arm.M3G
Polygonl

Number of | 350 Polygon/Sec Boy.M3G
Polygon2

Number of | 500 Polygon/Sec dragonfly. M3G
Polygon3

Number of | 1200 Polygon/Sec | MonsterM3G
Polygond

Fig. 7. Screen shots after running with JSR-184 engine

| Proposed JSR-184

\DNokia's JSR-184 .

Fig. 8. Nokia and Proposed JSR-184 Engine Performance

. CONCLUSION

This paper has discussed the improvement of mobile 3D
graphics engine based on JSR-184 for the GSM phone market
which takes up 70% of global phone market. The experiment
result shows that the proposed algorithm using Optimized JSR
gives better performance compared with Nokia’s engine.

. REFERENCES

[1] JSR-184 Expert Group, Mobile 3D Graphics API for
J2ME, version 1.0, Nov. 19, 2003.

2] YJ. Kim, 3D Game Programming, Hanvit Media, 2004.

[3] JW. Muchow, Core J2ME Technology MIDP, Prentice

Hall, 2001.

[4] http://java.sun.com/.

[5]1 Khronos Group, http://www.khronos.org.

[6] Nokia Forum, http://www.forum.nokia.com/java /jsr184.

[71 J. K. Cho, Y. H. Park, and J. M. Kim, “Design and

Implementation of Mobile 3D Engine using JSR-184 on

J2ME,” Korea Information Science Society, Vol.32(2),

pp. 673-675, Oct. 2005.

[8] Enrico. Gobbetti and Fabio. Marton, “Far Voxels:A
Multiresolution Framework for Interactive Rendering of
Huge Complex 3D Modle on Commodity Graphics
Platforms,” ACM Trans on Graphics, Vol.24(3), pp.878-
885, July 2005.

[9] JK.Cho, Mobile 3D Programming using G3SDK,
Gomid 2005.

[10] Gomid Corp, http://www.gomid.com.

[11] J. K. Cho and J. M. Kim, “Design and Implementation of
Mobile 3D Bluetooth Engine based on OpenGL-ES,”
Journal of Korea Game Society, Vol.6(1),pp. 23-28,
March 2006.

[12] Skinned Mesh Export: Optimization http:/www.gamasutra.com/features/.

[13] James. Dong. L and Twigg. Christopher. D, “Skinning
Mesh Animation,” ACM Trans, Vol.24(3), pp. 399-407,
July 2005.

International Journal of Contents, Vol. 3, No. 4, Dec 2007



14 JongKeun Cho et al. : Study on Optimizing Mobile 3D Game Engine using JSR-184

JongKeun Cho received the M.S. degree
and the Ph.D. degree in computer science
from Soongsil University, Seoul, Korea,
in 2001 and 2004. His main research
interests include mobile 2d/3D system,
3D computer graphics, and multimedia
application.

ShinJun Lee received the MS degree in
Computer  Science  from  Yonsei
University, Seoul, Korea, in 1999. He is
currently a PhD student in the
Department of Computer Science at
Yonsei University. His research interests
include 3D  Graphics, Real-time
Rendering, 3D Navigation, 3D Data

Compression.

MoonWon Choo received the Ph.D.
degrees in computer science from Steven
Institute of Technology, Hoboken, NJ, in
1996. He is currently Associate Professor
in the Division of Multimedia at
Sungkyul University since 1997. His
main research interests include adaptive
vision system and multimedia

application.

International Journal of Contents, Vol. 3, No. 4, Dec 2007



