E-ISSN : 2383-9449
This study uses a network approach to investigate the structural characteristics of sub-organizations within public research institutes in order to obtain their implications for organizational structures. We construct a network based on research similarities between sub-organizations because sub-organizations generally build their own research portfolios. We examine how sub-units are organized based on their structural features. The structural features are compared between three public research institutes in different countries: the Korean the Government-funded Research Institutes (GRIs), the Max-Planck-Gesellschaft in Germany, and the National Laboratories (NLs) in the United States. The structural comparison helps to identify organizational characteristics and to differentiate between them. We found little common ground in the research areas between the GRIs because individual sub-organizations have distinct research portfolios. Therefore, the organizational hierarchy of research in the GRIs is less matured than it is in other public research institutes. This study suggests that the GRIs need to establish integrated strategies in order to strengthen the common knowledge base.
Wickham, H.;. ggplot2: elegant graphics for data analysis.
Velden, T.;Haque, A.-u.;Lagoze, C.;. (2010). A new approach to analyzing patterns of collaboration in co-authorship networks: mesoscopic analysis and interpretation. Scientometrics, 85(1), 219-242. 10.1007/s11192-010-0224-6.
Vonortas, N. S.;. (2012). Social networks in R&D program evaluation. The Journal of Technology Transfer, 38(5), 577-606.
Vonortas, N. S.;Okamura, K.;. (2013). Network structure and robustness: lessons for research programme design. Economics of Innovation and New Technology, 22(4), 392-411. 10.1080/10438599.2012.757897.
Yang, H.;Jung, W.-S.;. (2014). A strategic management approach for Korean public research institutes based on bibliometric investigation. Quality & Quantity, 49(4), 1437-1464.
Yang, H.;Jung, W. S.;. (0000). Structural Efficiency to Manipulate Public Research Institution Networks. Technological Forecasting and Social Change, .
Ye, F. Y.;Yu, S. S.;Leydesdorff, L.;. (2013). The Triple Helix of University-Industry-Government Relations at the Country Level and Its Dynamic Evolution Under the Pressures of Globalization. Journal of the American Society for Information Science and Technology, 64(11), 2317-2325. 10.1002/asi.22931.
Yim, D. S.;. (2005). The Evolutionary Responses of Korean Government Research Institutes in a Changing National Innovation System. Science Technology & Society, 10(1), 31-55. 10.1177/097172180401000103.
Kim, Y.-S.;. (1995). Technological Development and R&D Policy: The Case of Korea. Human Systems Management, 14(3), 249-258.
Kruskal, J. B.;. (1956). On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem (48). Proceedings of the American Mathematical Society. 10.1090/S0002-9939-1956-0078686-7.
Latora, V.;Marchiori, M.;. (2001). Efficient behavior of small-world networks. Phys Rev Lett, 87(19), 198701. 10.1103/PhysRevLett.87.198701.
Lee, D. H.;Bae, Z.-T.;Lee, J.;. (1991). Performance and adaptive roles of the government-supported research institute in South Korea. World Development, 19(10), 1421-1440. 10.1016/0305-750X(91)90084-U.
Leydesdorff, L.;. (2003). The mutual information of university-industry-government relations: An indicator of the Triple Helix dynamics. Scientometrics, 58(2), 445-467. 10.1023/A:1026253130577.
Newman, M.;Girvan, M.;. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2).
Eck, N. J. v.;Waltman, L.;. (2009). How to normalize cooccurrence data? An analysis of some wellknown similarity measures. Journal of the American Society for Information Science and Technology, 60(8), 1635-1651. 10.1002/asi.21075.
Lorrain, F.;White, H. C.;. (1971). Structural equivalence of individuals in social networks. The Journal of Mathematical Sociology, 1(1), 49-80. 10.1080/0022250X.1971.9989788.
Lundvall, B. Å .;. (2007). National Innovation Systems—Analytical Concept and Development Tool. Industry and Innovation, 14(1), 95-119. 10.1080/13662710601130863.
Mazzoleni, R.;Nelson, R.;. The roles of research at universities and public labs in economic catch-up.
Floricel, S.;Ibanescu, M.;. (2008). Using R&D portfolio management to deal with dynamic risk. R&D Management, 38(5), 452-467. 10.1111/j.1467-9310.2008.00535.x.
Freeman, L. C.;. (1977). A Set of Measures of Centrality Based on Betweenness. Sociometry, 40(1), 35. 10.2307/3033543.
Freeman, L. C.;. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. 10.1016/0378-8733(78)90021-7.
Guimera, R.;Sales-Pardo, M.;Amaral, L. A.;. (2007). Classes of complex networks defined by role-to-role connectivity profiles. Nat Phys, 3(1), 63-69. 10.1038/nphys489.
Freeman, L. C.;Roeder, D.;Mulholland, R. R.;. (1979). Centrality in social networks: II. Experimental results. Social Networks, 2(2), 119-141. 10.1016/0378-8733(79)90002-9.
García, J. A.;Rodríguez-Sánchez, R.;Fdez-Valdivia, J.;Robinson-García, N.;Torres-Salinas, D.;. (2012). Mapping academic institutions according to their journal publication profile: Spanish universities as a case study. Journal of the American Society for Information Science and Technology, 63(11), 2328-2340. 10.1002/asi.22735.
Bavelas, A.;. (1948). A Mathematical Model for Group Structures. Human Organization, 7(3), 16-30. 10.17730/humo.7.3.f4033344851gl053.
Guimera, R.;Amaral, L. A.;. (2005). Cartography of complex networks: modules and universal roles. J Stat Mech, 2005(P02001), nihpa35573.
Hong, H. D.;. Search for R&D projects according to expertise in Korean Government-funded Research Institutes.
Csardi, G.;Nepusz, T.;. (2006). The igraph software package for complex network research. InterJournal, Complex Systems, 1695(5).
Albuquerque, E. d. M. e.;. (2001). Scientific Infrastructure and Catching-Up Process: Notes about a Relationship Illustrated by Science and Technology Statistics. Revista Brasileira de Economia, 55, 545-566. 10.1590/S0034-71402001000400005.
Arnold, W.;. (1988). Science and Technology Development in Taiwan and South Korea. Asian Survey, 28(4), 437-450. 10.2307/2644737.
Prim, R. C.;. (1957). Shortest Connection Networks And Some Generalizations. Bell System Technical Journal, 36(6), 1389-1401. 10.1002/j.1538-7305.1957.tb01515.x.
Cho, H.-D.;Hwang, Y. S.;Kim, W. D.;Sung, T.-K.;Lee, D.;Lee, B.-H.;Kang, Y.;Lee, K.;. The Evolution of Public Research Systems of Major Countries and Policy Recommendations for Korea.
Borgatti, S. P.;Mehra, A.;Brass, D. J.;Labianca, G.;. (2009). Network Analysis in the Social Sciences. Science, 323(5916), 892-895. 10.1126/science.1165821.
Borner, K.;Klavans, R.;Patek, M.;Zoss, A. M.;Biberstine, J. R.;Light, R. P.;Lariviere, V.;Boyack, K. W.;. (2012). Design and update of a classification system: the UCSD map of science. PLoS ONE, 7(7), e39464. 10.1371/journal.pone.0039464.
Bozeman, B.;. All organizations are public: Bridging public and private organizational theories.
Colliander, C.;Ahlgren, P.;. (2012). Experimental comparison of first and second-order similarities in a scientometric context. Scientometrics, 90(2), 675-685. 10.1007/s11192-011-0491-x.
OECD. Public Research Institutions: Mapping Sector Trends.
Park, H. W.;Leydesdorff, L.;. (2010). Longitudinal trends in networks of university–industry–government relations in South Korea: The role of programmatic incentives. Research Policy, 39(5), 640-649. 10.1016/j.respol.2010.02.009.
R Core Team. R: A language and environment for statistical computing [Computer program].
Sci2 Team. Science of Science (Sci2) Tool. Indiana University and SciTech Strategies. [Computer program].
Sharif, N.;. (2006). Emergence and development of the National Innovation Systems concept. Research Policy, 35(5), 745-766. 10.1016/j.respol.2006.04.001.
Teece, D. J.;Pisano, G.;Shuen, A.;. (1997). Dynamic capabilities and strategic management. Strategic Management Journal, 18(7), 509-533. 10.1002/(SICI)1097-0266(199708)18:7<509::AID-SMJ882>3.0.CO;2-Z.