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Abstract

Purpose — Finding an optimal path is an essential component
for the design and operation of smart transportation or logistics
network. Many applications in navigation system assume that
travel time of each link is fixed and same. However, in practice,
the travel time of each link changes over time. In this paper,
we introduce a new transportation problem to find a latest de-
parting time and delivery path between the two nodes, while not
violating the appointed time at the destination node.

Research design, data, and methodology — To solve the
problem, we suggest a mathematical model based on network
optimization theory and a backward search method to find an
optimal solution.

Results — First, we introduce a dynamic transportation prob-
lem which is different with traditional shortest path or minimum
cost path. Second, we propose an algorithm solution based on
backward search to solve the problem in a large-sized network.

Conclusions — We proposed a new transportation problem
which is different with traditional shortest path or minimum cost
path. We analyzed the problem under the conditions that travel
time is changing, and proposed an algorithm to solve them.
Extending our models for visiting two or more destinations is
one of the further research topics.
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1. Introduction

Delivery services are becoming more important and com-
petitive among major online shopping companies such as ama-
zon and eBay, and they have introduced various delivery op-
tions for customers. For example, eBay has introduced a ship-
ping service called 'eBay now' which delivers a parcel to cus-
tomers at the appointed place and time. However, many logistic
companies have to solve the tradeoff problems between custom-
er services and operational efficiency, since providing various
options to customer is to increase the operational complexity of
company. In order to increase the operational efficiency in vari-
ous delivery services, we have to consider not only the delivery
time but also the appointment with customers. Traditionally
many researches have been worked to find a shortest path(SP)
or fastest path. But sometimes a shortest path is not a best
solution when there is an appointed time to meet with the cus-
tomer at the destination place. In case the appointment time
with customer is 7 p.m., it is not necessary to arrive and wait
for 20 minutes along the fastest path. Logistic companies have
to consider not only the travel time but also the appointment
time with customers. Furthermore, it is more complicated in con-
gested transportation networks where travel times of each road
change over time due to time-of-day variations in ftraffic con-
gestion(Yajun et al., 2014).

Therefore, computing an efficient delivery path has been an
essential component for the design and operation of smart
transportation or logistic network(Ahuja et al.,1993; Low & Gao,
2011; Amrapali et al., 2015; Shuai & Chao, 2012 Nejad et al.,
2016).With the advancement of IT technology, recently South
Korea started to provide not only current information about traf-
fic congestion but also estimated future traffic congestion such
that logistic company find a delayed departing time to arrive at
destination node not to wait for the appointed time. By using
this information, it is expected that logistic company or user of
navigation system can make a smart or efficient decision about
their delivery problems.

In this paper, we introduce a new transportation problem un-
der dynamic travel time (TP_dynamic for short) that is to find a
latest (delayed) departing time and a delivery path between the
two nodes (from source node u to destination node v),while not
violating the appointment time (due date) at the destination
node v.
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We want to introduce our problem (TP_dynamic) by compar-
ing with traditional shortest path and minimum cost path prob-
lem in Figure 1. As you can see in Figure 1, we have a logis-
tic network composed of 5 nodes and 6 links. We assume that
each link has an information about travel cost such as toll fee
and future travel time which can be changed depending on the
time horizon. For a link (o1), it takes 10 minutes and costs $10
and for a link (1d), it takes 10 minutes between 9:00~9:10,while
it takes 30 minutes between 9:11~9:30. Finally we have an ap-
pointment time with customer at 9:30.

In terms of travel time, delivery path P1(o->1->d) is a short-
est (fastest) path because it takes 20 minutes when departing
at 9:00 while delivery path P2(o->2->d) is a minimum cost path
because it costs $2. Although P1 is a shortest path, we have
to depart at 9:00 and arrive at 9:20 and wait 10 minutes to the
appointment time with customer, since if we depart after 9:00 at
node o, we will be late to the appointment time due to the traf-
fic congestion. Although travel time of delivery path P3(o->3->d)
is 25 minutes which is longer than P1, we may depart at 9:05
at node o to arrive at node d not later than the appointment
time. We can save 5 minutes if we decide to follow the delivery
path P3 rather than P1.Therefore, our problem is related with
finding the delivery path P3 for general logistic network, and
that is the originality of our paper.

(900-9:10),  (@11~0:30),

O (0min, §0)  (30min, $0)
(10min, $10)
Due date
o (15min, $1) o (15min, §1) 09 30 minutes
(10min, $3) (15min, $2)
P1(0->1->d) 20 minutes $10 9:00 9:20 Shortest path
P2(0->2->d) 25 minutes $2 9:00 9:30 Minimum cost path

P3(0->3->d) 30 minutes $5 9.05 9:30 Our problem(TP_dynamic)

<Figure 1> Comparison of SP, MCP and Our problem(TP_dynamic)

The contribution of our paper is two-fold. First, we introduce
a new transportation problem under dynamic travel time(TP_dy-
namic)which is different with traditional shortest path problem or
minimum cost problem. Second, we propose a solution algorithm
based on backward search to solve our problem.

2. Problem Description
2.1. Literature review
The single source shortest path problem of finding a shortest

path between a source node u and a target node v can be al-
ways solved by applying a Dijkstra’s algorithm (Dijkstra, 1959),

who gave an algorithm using O(m+n) priority queue operations
for a graph G = (V, E) with n nodes and m edges. Many appli-
cation models have been followed after Dijkstra(1959) such as
reverse shortest path problem, K-shortest path problem,
one-to-all shortest path problem, and shortest pair of disjoint
path problem(Ahuja et al., 1993).

Due to varying congestion on roads during the day, both the
time to travel from a source node s to a destination d and the
optimal path between them can change over time. Therefore,
time-dependent networks are used to model situations in which
traveling times are changing with time and time-dependent short-
est paths are also a fundamental problem with non-trivial
complexity.

The time-dependent shortest path problem has been first
studied by Dreyfus(1969) who observed that Dijkstra’s algorithm
can be used to find a time-dependent shortest path, given a
starting time at the source node. Orda and Rom(1990) showed
that the choice of waiting policies and the type of the edge cost
functions have non-trivial implications on time-dependent shortest
paths. Among three kinds of waiting policies of Orda and
Rom(1990), that is, unrestricted waiting, forbidden waiting and
source waiting, our model assumes source waiting policy since
waiting is allowed only at the source node. Sherali et al.(1998)
studied about the problem to find a time-dependent shortest pair
of disjoint paths and showed that many variants of problem be-
longs to NP-complete and suggest a binary linear programming
formulation to solve their problem. Dean(2004) studied to mini-
mize travel cost and travel time for all-to-one shortest path
problem in time dependent network. Horst et al. (2006) pro-
posed an efficient algorithm for time dependent shortest path
problem with two conflicting objective functions. Abbasi and
Ebrahimnejad(2011) studied the problem of finding shortest
paths from one node to all the other nodes in dynamic network.
Each link has a transit time and parking with a corresponding
time whichis allowed at the nodes. They showed that this prob-
lem is equivalent to a classical shortest path problem in a
time-expanded network, and suggest a label correcting algorithm
as a solution algorithm. Low and Gao (2011) introduced the
just-in-time delivery and scheduling problem in construction in-
dustry considering the characteristics of concrete. Shuai and
Chao(2012) studied the heterogeneous fixed fleet vehicle routing
problem with pick-up and delivery for vehicles with different ca-
pacities, fixed costs, and travel costs, and they proposed a
practical mathematical model and simulated annealing algorithm
to solve their problem. Song and Kim (2012) analyzed the struc-
tural relationships between customer loyalty and delivery service
quality in Korean courier services. Dewen et al. (2014) proposed
an application case of vehicle navigation system considering dy-
namic traffic congestion and providing users with multiple op-
tions for path selection. Yang et al.(2014) proposed a cost-opti-
mal optimization problem in time dependent network which con-
siders travel cost and travel time simultaneously. Jiang and
Wub(2014) have proposed a dynamic navigation system that is
considering the traffic congestion, bad weather condition or link
disruptions. El-Sherbeny (2014)studied variants of the time-de-
pendent shortest path problem such that in order to arrive at
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the destination node between time windows [a, b].Maurizioet al.
(2014) introduced the case of project (IMPULSO) for the in-
tegration between ICT systems and logistic operators for the
distribution in metropolitan areas. IMPULSO considered a mul-
ti-attribute road network such as travel times, travel costs and
risks, and tried to solve multi-objective time dependent shortest
path with forbidden turns problem. Recently, Amrapali et al.
(2015)propose an implementation case of finding the shortest
path from the user location to hospitals selected by using
ArcGIS and the Dijkstra’s algorithm where ArcGIS is software
used to digitize the map into road network.

2.2. Problem Description

In this section, we will explain our problem based on the net-
work optimization modeling.

Definition 2.1: (Time Dependent Network) A time-dependent
network is defined as G(V,A,C) : V is a set of nodes, V = {1,2,

,n}, A is a set of links, A < V x V, C is a set of travel
times, C = {c,(t)| (i,j) €A, tET}, ¢;(t)is an estimated travel time
for link (i,j) if departing at time |nterval t = {[i].

¢ (t)= (ept[l] = (t),ty)

cptlk]l = (tptpey)

As you can see in Figure 2, the travel time at link (10) is 10
minutes at time interval t[1]=[9:00~9:10] and 30 minutes at time
interval 1[2]=[9:10~9:30] while the travel time at link (02) is 10
minutes.

travel time travel time
30 30 -
25 2% |
15 15 |
o 1] I—
5 5

(600~12000 i interval (9:00~9:10) (3:10~9:30)
Coalt) c, ) timeinterval

<Figure 2> Example of time-dependent network

2.3. Mathematical Model

In this paper, we will use the following symbols and notations
to explain our problems.

Decision Variables:

z;;(t) =1, if path p traverse link (ij) at time interval t

0, otherwise

depart(i) : departing time at node i
wait(i) : waiting time at node i
arrive(i) : arriving time at node i

successor(i) : set of successor nodes of i

When arriving at node i, one may wait a time w(i) if the de-
parting time can be delayed. For each node, we have a rela-
tionship that is

depart(i) = arrive(i) + wait(i)
Let p = <o, ny, ..,nk, d> be a given path, then we have
arrive(n1) = depart(o) + c,;(depart (o))

arrive(nz) = depart(ni) + c;(depart (n,))
arrive(d) = depart(ny) + (,U(depaTt(nA.))

By using the above symbols and notations, we can suggest
an optimization model as follows:

Optimization Model:

maximize depart(o) (1)
subject to

depart (i) + X,¢,,(t) z,;(t) < depart (j), i€ pred(j), Vj= d (2)
depart (i) + Z /i ( Ja;(t) < di € pred(j), j= d (3)
DX ryt) = XX e(t)=1,i= o 4)
22 t) — ZZr,(f) —1,i=d (5)
22 yt)— XX m(t)=0,i=0,d (6)

0

,rU(,) > 0, depart (i) >

The objective function (1) means that we want to delay the
departing time at the node o. Constraints (2)-(3) mean the prec-
edence relationship between two nodes (jj) such that departing
time of node j cannot be larger than the arrival time at node j.
Constraints (4)-(6) mean the flow conservation constraints in net-
work flow theory.

3. Solution method for TP_dynamic

In the following, we propose a solution algorithm based on
backward search composed of two functions, find_latest_time_in-
terval() and update_depart_time() for the TP_dynamic and we
will explain each functions in details.

3.1 find_latest_time_interval()

find_latest_time_interval() is a function to find a latest time in-
terval at link (i, j) not later than depart(j) between two nodes i
and j. From the end of time_interval lists, simple check whether
the last time_interval is not delaying the departing time of suc-
cessor node. For the example in Figure 3, since there are three
time_intervals between nodes 3 and d and the last time_interval
t[3] is not possible to arrive not later than the due date, the
next time_interval t[2] becomes the latest time_interval. Likewise,
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among three time_intervals between nodes 2 and d, time_inter-
val t[1] becomes the latest time_interval since the both time_in-
terval t[3] and t[2] are not possible to arrive not later than the
due date.

find_latest_time_interval()

Input : two nodes i, j and departure time of node j
Output :find a latest time interval at link (i,j) not later than
depart(j)

1: | from the largest time_interval f[i] at link (i,j)
if (ti + ¢ (ti)< depart(j)) return f[i;

3.2 update_depart_time()

update_depart_time()is a function to update or assign new de-
part time based on the latest time_interval determined by the
function find_latest_time_interval(). For the example in Figure 3,
since the latest time_interval between node 3 and d is de-
termined by t[2] and travel time at t[2] is 18 minutes, the de-
parting time at node 3 can be 5:42 not to be late at node d.
Likewise, since the latest time_interval between node 2 and d is
determined by t[1] and travel time at t[1] is 25 minutes, the de-
parting time at node 3 can be 5:35 not to be late at node d.

update_depart_time()

Input : two nodes k, i and time interval s
Output : depart time(k)

1: | depart(k) = depart(i) - cij(s)

two-step heuristic method based on backward search

Input Input: a time-dependent network GT, a query <o, d, t>,
some big number M

Output : optimal path p*=<o, n1, n2, ... , nk, d>

latest departure time, s*=max ,{depart (o)}

k =d;

depart(k) = t;

do {

k = k-1;

for each node i in successor(k)
depart(k) = M;

for each link(k, i)

s* = find_latest_time_intervallk, i, depart(i)];
temp_depart(k) = update_depart_time(k, i, s*);
0: | if (temp_depart(k) < depart(k)) then

1: | depart(k) = temp_depart(k);} while( k # o)

220N aRON 2

Detailed steps to explain our methods are provided in <Table
1> and <Figure 3>.

<Table 1> Running example of solution method for example in

Figure3
at node d |depart(d) = due date = 6:00
at node 3 find_latest_time_interval[3,d,6:00] = t[2]
update_depart_time(3, d, t[2]) = depart(3) = 5:42
at node 2 find_latest_time_interval[2,d,6:00] = t[1]
update_depart_time(2, d, t[1]) = depart(2) = 5:35
find_latest_time_interval[1,3,5:42] = {[3]
update_depart_time(1, 3, t[3]) = depart(1) = 5:12
at node 1
find_latest_time_interval[1,2,5:35] = {[1]
update_depart_time(1, 2, t[1]) = depart(1) = 5:15
at node o find_latest_time_interval[o,1,5:15] = {[1]
update_depart_time(o, 1, 5:15) = depart(o) = 5:10

depart(2): 5:35 (]-(20-340, 5
1]=(5:10-5:20), 20 HH=(:30-340),
t{Z]]:((S:20~5:30)),20 1121=(540-550,, 30
62054025 A~ (EI=E0-600,3

depart(1) = max(5:12, 5:15) .
=515 L . Due date

m 6:00 p.m.

pd ’t[l]:(5:30~5:40),20
9’ 112]=(5:40~5:50), 18
t[3]=(5:50~6:00), 15

depart(3): 5:42

depert(o) =5:10

H1]=(500+5:10), 5
H2]=(5:10-5:20), 10

<Figure 3> example to explain our heuristic algorithm

5. Conclusion

In this paper, we have proposed a new transportation prob-
lem, which is different with traditional shortest path problem or
minimum cost path problem since our problem tries to find a
just-in-time delivery path. The objective of our problem is to find
a latest departing time and a delivery path from source node u
to destination node v, while not violating the due date at the
destination node v. We have proposed a mathematical model
based on conditions that travel time is changing with time and
suggested an efficient solution algorithm based on backward
search to solve our problem. Extending our results for more
than two or more destinations is one of the further research
topics.
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