바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1738-3110
  • E-ISSN2093-7717
  • SCOPUS, ESCI

The Role of Technological Progress in the Distribution sector: Evidence from Saudi Arabia Wholesale and Retail Trade Sector

The Journal of Distribution Science / The Journal of Distribution Science, (P)1738-3110; (E)2093-7717
2021, v.19 no.3, pp.15-23
https://doi.org/https://doi.org/10.15722/jds.19.3.202103.15
ALZYADAT, Jumah Ahmad
ALMUSLAMANI, Monira Saleh

Abstract

Purpose: This study aims to identify the role of technological progress in the distribution sector in Saudi Arabia. Research design, data, and methodology: The study applies the Autoregressive Distributed Lag (ARDL) approach to estimate the Cobb Douglas production function of the wholesale and retail trade sector in Saudi Arabia, relied on annual data from the General Authority for Statistics from 2005 to 2019. Results: The results show that there is a long run relationship between the production of the wholesale and retail trade sector in KSA and the factors of production labour, capital and technology progress. The elasticity of the wholesale and retail trade production with respect to capital and labour are 0.26 and 0.78 respectively; the coefficients are positive and statistically significant. The wholesale and retail trade sector is operating under increasing returns to scale. The main result indicates that the elasticity of the wholesale and retail production with respect to the technology progress is 4.62%, which is positive and statistically significant. Conclusions: The study concluded that technological progress has a positive contribution to the growth of the distribution sector in KSA. Therefore, the technological progress can improve the productivity and efficiency of the resources allocated to the dis.

keywords
Saudi Arabia, Wholesale &amp, Retail Trade, Total Factors Productivity, Technological Progress, Distribution Sector

Reference

1.

Abdel Hamid, M. M. & Abdul Latif, M. H. (2018). Estimation and Analysis of the Cobb-Douglas Production Function for the Rail Transport Sector in Iraq for the Period 1990-2016 using the ARDL Model. Journal of Economics and Administrative Sciences, 24(109), 358-382. http://dx.doi.org/10.33095/jeas.v24i109.1553

2.

Abouzeid, A. M. (2016). Estimation of Technical Progress in Agriculture Sector for Arab Countries. Middle East Journal of Applied Sciences, 6(02), 298-307.

3.

Al-Abdulrazag, B. (2004). Technical change in the Jordanian construction sector (1968-1997: Standard Study. Damascus University Journal of Economic and Legal Sciences, 20(1), 463 – 487.

4.

Aljebrin, M. A. (2013). A Production Function Explanation of Saudi Economic Growth 1984-2011. International Journal of Economics and Finance, 5(5), 97-103. Retrieved from http://dx.doi.org/10.5539/ijef.v5n5p97

5.

Al-Fahdawy, L. K., & Al-Jumaily, G. S. (2017). Assess the Impact of Technological Chang in the Agricultural Sector in Iraq for the Duration of the (1990-2013) Using Transcendental Logarithmic Production Function. Tikrit Journal of Agricultural Sciences, 17(3), 279-291.

6.

Al Koufahi, M. A. & Warad, T. A. (2020). The Impact of Information and Communication Technology (ICT) on IntraArab Trade: The Case of the Gulf Cooperation Council Countries. The Jordanian Journal of Economic Sciences, 7(1), 19-40.

7.

Alloush, J. B. M. (2015) Accounting for Total Factor Productivity Growth in Iraq Economy by using Solows Developed Model. Wasit Journal for Humanities, 11(31), 9-42

8.

AL-Refai, M. F., Abdelhadi, S., & Al-Qaraein, A. A. (2016). The Impact of Technological Development on Jordanian Industrial Sector. International Journal of Business and Management, 11(4), 291-298. Retrieved from http://dx.doi.org/10.5539/ijbm.v11n4p291

9.

Alropy, E. T., Desouki, N. E., & Alnafissa, M. A. (2019). Economics of technical efficiency in white honey production:Using stochastic frontier production function. Saudi journal of biological sciences, 26(7), 1478-1484. Retrieved from https://doi.org/10.1016/j.sjbs.2019.09.029

10.

Alvarez, R., & Crespi, G. (2003). Determinants of technical efficiency in small firms. Small business economics, 20(3), 233-244.

11.

Alzyadat. J. A. (2021). Sectoral Banking Credit Facilities and Non-Oil Economic Growth in Saudi Arabia: Application of the Autoregressive Distributed Lag (ARDL). The Journal of Asian Finance, Economics, and Business, 8(2), 809–820. https://doi.org/10.13106/jafeb.2021.vol8.no2.0809

12.

Antras, P. (2004). Is the US aggregate production function CobbDouglas? New estimates of the elasticity of substitution. The BE Journal of Macroeconomics, 4(1). https://doi.org/10.2202/1534-6005.1161

13.

Assaf, A. G., Barros, C. P., & Matousek, R. (2011). Technical efficiency in Saudi banks. Expert systems with Applications, 38(5), 5781-5786.

14.

Bae, J. H. (2012). An Empirical Approach to Evaluate Management Performance Using a Trading Area Analysis:Focus on Small and Medium-sized Retail Businesses. The Journal of Distribution Science, 10(12), 5-11.

15.

Bahta, S., Omore, A., Baker, D., Okike, I., Gebremedhin, B., &Wanyoike, F. An Analysis of Technical Efficiency in the Presence of Developments toward Commercialization:Evidence from Tanzania’s Milk Producers. The European Journal of Development Research, 1-24. https://doi.org/10.1057/s41287-020-00279-8

16.

Barros, C. P., & Dieke, P. U. (2008). Technical efficiency of African hotels. International Journal of Hospitality Management, 27(3), 438-447. https://doi.org/10.1016/j.ijhm.2007.11.004

17.

Baten, M. A., Rana, M., Das, S., & Khaleque, M. A. (2006). Technical efficiency of some selected manufacturing industries in Bangladesh: a stochastic frontier analysis. Lahore. Journal of Economics, 11(2), 23-41.

18.

Binam, J. N., Tonye, J., Nyambi, G., & Akoa, M. (2004). Factors affecting the technical efficiency among smallholder farmers in the slash and burn agriculture zone of Cameroon. Food policy, 29(5), 531-545.

19.

Binam, J. N., Gockowski, J., & Nkamleu, G. B. (2008). Technical efficiency and productivity potential of cocoa farmers in West African countries. The Developing Economies, 46(3), 242-263. https://doi.org/10.1111/j.1746-1049.2008.00065.x

20.

Blundell, R., & Bond, S. (2000). GMM estimation with persistent panel data: an application to production functions. Econometric reviews, 19(3), 321-340.

21.

Boame, A. K. (2004). The technical efficiency of Canadian urban transit systems. Transportation Research Part E: Logistics and Transportation Review, 40(5), 401-416. https://doi.org/10.1016/j.tre.2003.09.002

22.

Bravo-Ureta, B. E., Solís, D., López, V. H. M., Maripani, J. F., Thiam, A., & Rivas, T. (2007). Technical efficiency in farming:a meta-regression analysis. Journal of productivity Analysis, 27(1), 57-72. https://doi.org/10.1007/s11123-006-0025-3

23.

Chisasa, J., & Makina, D. (2013). Bank credit and agricultural output in South Africa: A Cobb-Douglas empirical analysis. International Business & Economics Research Journal (IBER), 12(4), 387-398.

24.

Cobb, C. W., & Douglas, P. H. (1928). A theory of production. The American Economic Review, 18(1), 139-165.

25.

Constantin, P. D., Martin, D. L., Rivera, R. Y., & De, E. B. B. (2009). Cobb-Douglas, translog stochastic production function and data envelopment analysis in total factor productivity in Brazilian agribusiness. Journal of Operations and Supply Chain Management (JOSCM), 2(2), 20-33.

26.

Dastane, O. (2020). The impact of technology adoption on organizational productivity. Journal of Industrial Distribution & Business, 11(4), 7-18. https://doi.org/10.13106/jidb.2020.vol11.no4.7

27.

Doms, M. E., Jarmin, R. S., & Klimek, S. D. (2004). Information technology investment and firm performance in US retail trade. Economics of Innovation and new Technology, 13(7), 595-613. https://doi.org/10.1080/1043859042000201911

28.

Enaami, M., Ghani, S. A., & Mohamed, Z. (2011). The Estimation of Cobb-Douglas Production Function Parameter through A Robust Partial Least Squares. Journal of Science and Mathematics Letters, 3(1), 32-38.

29.

General Authority for Statistics, (2018). Internal Trade Survey Third Quarter 2018 Retrieved from https://www.stats.gov.sa/ar/6127

30.

Godin, B. (2015). Technological Change: What do Technology and Change stand for?. Project on the Intellectual History of Innovation, (24), 1-51.

31.

Husain, S., & Islam, M. S. (2016). A test for the Cobb Douglas production function in manufacturing sector: The case of Bangladesh. International Journal of Business and Economics Research, 5(5), 149-154. http://dx.doi.org/10.11648/j.ijber.20160505.13

32.

Jerzmanowski, M. (2007). Total factor productivity differences:Appropriate technology vs. efficiency. European Economic Review, 51(8), 2080-2110

33.

Johnston, A., Porter, D., Cobbold, T., & Dolamore, R. (2000). Productivity in Australia's wholesale and retail trade. Productivity Commission Working Paper No. 1641. http://dx.doi.org/10.2139/ssrn.270784

34.

Jones, C. I. (2005). The shape of production functions and the direction of technical change. The Quarterly Journal of Economics, 120(2), 517-549. https://doi.org/10.1093/qje/120.2.517

35.

Khai, H. V., & Yabe, M. (2011). Technical efficiency analysis of rice production in Vietnam. J. ISSAAS, 17(1), 135-146.

36.

Kim, S. H., & Yoo, B. K. (2014). An analysis of retail business efficiency in Korea. The Journal of Distribution Science, 12(4), 23-30. https://doi.org/10.13106/jds.2014.vol12.no4.23.

37.

Kleyn, J., Arashi, M., Bekker, A., & Millard, S. (2017). Preliminary testing of the Cobb–Douglas production function and related inferential issues. Communications in StatisticsSimulation and Computation, 46(1), 469-488

38.

Kumbhakar, S. C., Lien, G., & Hardaker, J. B. (2014). Technical efficiency in competing panel data models: a study of Norwegian grain farming. Journal of Productivity Analysis, 41(2), 321-337

39.

Kumbhakar, S. C., & Wang, H. J. (2005). Estimation of growth convergence using a stochastic production frontier approach. Economics Letters, 88(3), 300-305.

40.

Lee, J. W., & Xuan, Y. (2019). Effects of technology and innovation management and total factor productivity on the economic growth of China. The Journal of Asian Finance, Economics, and Business, 6(2), 63-73. https://doi.org/10.13106/jafeb.2019.vol6.no2.63

41.

Levius, S., Safa, M., & Weeks, K. (2018). Information and communication technology strategies to improve international competitiveness in the wholesale and retail trade sector. International Journal of Business and Globalisation, 20(1), 128-138. https://doi.org/10.1504/IJBG.2018.088680

42.

Majumder, S., Bala, B. K., Arshad, F. M., Haque, M. A., & Hossain, M. A. (2016). Food security through increasing technical efficiency and reducing postharvest losses of rice production systems in Bangladesh. Food Security, 8(2), 361-374.

43.

Mizala, A., Romaguera, P., & Farren, D. (2002). The technical efficiency of schools in Chile. Applied Economics, 34(12), 1533-1552.

44.

Muchdie, M., & Narmaditya, B. S. (2019). Are trades related to technology? Evidences from the Baltic States: Estonia, Latvia and Lithuania. The Journal of Asian Finance, Economics, and Business, 6(2), 83-93. https://doi.org/10.13106/jafeb.2019.vol6.no2.83

45.

Murthy, K. V. (2002). Arguing a case for Cobb-Douglas production function. Review of Commerce Studies, 20, 21

46.

Nassar, S. (2019). The Influence of Intellectual Capital on Corporate Performance of the Turkish Wholesale and Retail Trade Companies. IUG Journal of Economics and Business. 27(3), 1-14. http://dx.doi.org/10.2139/ssrn.3700356

47.

Ngo, M. N., & Nguyen, L. D. (2020). Economic growth, total factor productivity, and institution quality in low-middle income countries in Asia. The Journal of Asian Finance, Economics, and Business, 7(7), 251-260. https://doi.org/10.13106/jafeb.2020.vol7.no7.251

48.

Nkoro, E., & Uko, A. K. (2016). Autoregressive Distributed Lag (ARDL) cointegration technique: application and interpretation. Journal of Statistical and Econometric Methods, 5(4), 63-91.

49.

Uri, N. D. (1984). The impact of technical change on the aggregate production function. Applied Economics, 16(4), 555-567. https://doi.org/10.1080/00036848400000069

50.

Peretto, P. F., & Seater, J. J. (2013). Factor-eliminating technical change. Journal of Monetary Economics, 60(4), 459-473. https://doi.org/10.1016/j.jmoneco.2013.01.005

51.

Pesaran, M. H., & Shin, Y. (1998). An autoregressive distributedlag modelling approach to cointegration analysis. Econometric Society Monographs, 31, 371-413.

52.

Pesaran, M. H., Shin, Y., & Smith, R. J. (2001). Bounds testing approaches to the analysis of level relationships. Journal of applied econometrics, 16(3), 289-326. https://doi.org/10.1002/jae.616

53.

Romer, P. M. (1990). Endogenous Technological Change. Journal of Political Economy, 98(5), 71 – 102.

54.

Saudi Central Bank, (2020). Fifty sixth Annual Report. Retrieved from https://www.sama.gov.sa/en-us/economicreports/ pages/annualreport.aspx

55.

Solow, R. M. (1956."A Contribution of the Theory of Economic Growth". Quarterly Journal of Economics. 70(1), 65-94. https://doi.org/10.2307/1884513

56.

Solow, R.M. (1957). Technical Change and Aggregate Production. Review of Economics and Statistic. 39(3). 312-320. https://doi.org/10.2307/1926047

57.

So, O. (2003). Productivity and technical efficiency of poultry egg production in Nigeria. International Journal of Poultry Science, 2(6), 459-464.

58.

Thiam, A., Bravo‐ Ureta, B. E., & Rivas, T. E. (2001). Technical efficiency in developing country agriculture: a meta‐ analysis. Agricultural economics, 25(2‐ 3), 235-243. https://doi.org/10.1111/j.1574-0862.2001.tb00204.x

The Journal of Distribution Science