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INTRODUCTION

The spectacular nature of deep-sea hydrothermal vent community 
at a depth of 2,500 m seafloor was first discovered by the aid of 
the man submersible deep-sea research vessel (DSRV) Alvin along 
the Galapagos Rift near the Galapagos Islands in 1977 (Corliss and 
Ballard 1977) (Fig. 1 and 2). Since the discovery of dense animal 
communities at deep-sea hydrothermal vents along the Galapagos 
Rift, continuing worldwide explorations have identified unusual fau-
nal assemblages of vent communities that thrive like oases of life 
at seafloor spreading centers. Up to date, these communities have 
been continuously discovered, and also various biological samples 
were taken from hydrothermal vents. For example some represen-
tative hydrothermal vents are known to reside in the Galapagos Rift, 
along the East Pacific Rise, in Guaymas Basin, along the Gorda, Juan 
de Fuca, and Explorer ridges, in the western Pacific at the Mariana 
Trough, Manus Back Arc Basin, Lau Basin, North Fiji Basin, and 
Okinawa Trough, along the Mid-Atlantic Ridge, and in the triple 
junction of Indian Ocean ridges (for reviews, see Lutz and Kennish 
1993, Tunnicliffe et al. 1998, Van Dover 2000, Van Dover et al. 

2001, Watabe and Hashimoto 2002) (Fig. 1). As shown in Fig. 1 
the number of most known vents locates in places where expedi-
tions are relatively easier than to remote regions, such as near An-
tarctic. Vent habitats look like islands isolated by distance along 
spreading ridge axis. Furthermore heterogeneity in temporal distri-
bution of venting sites due to fluctuation of geologic activities 
exists and influence vent communities (Shank et al. 1998). Tunni-
cliffe et al. (1998) counted the number of known vents as about 
thirty up to that time and these vents were mostly located in the 
Pacific and Atlantic. Since then new hydrothermal vent sites have 
been added to the list and species lists have grown rapidly. For 
example recently the southern most hydrothermal vent at thirty eight 
degree latitude in the Pacific-Antarctic ridge was explored and du-
ring this expedition a new species of blind deep-sea crab, which 
even leads to establish a new family of Galatheoidea (Crustacea, 
Decapoda, Anomura), was added to the whole list of animals from 
vents (Macpherson et al. 2005). Fig. 1 illustrates the distribution 
and location of the representative hydrothermal vents and cold water 
seeps, which have different geological settings to vents and mostly 
locate continental margins, around world where scientific investi-
gations have been done and/or biological samplings have been un-
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dertaken. As seen in the Fig. 1, deep-sea hydrothermal vents are 
scattered along the global mid-ocean ridge (MOR) system, in back- 
arc spreading centers, and seamounts. The MOR on the map is shown 
as somewhat like zigzag lines. These lines certainly represent a 
center where fresh sea crusts are newly formed and simultaneously 
sea floors begin to spread out onto opposite directions. Differing 
from the MOR, subduction zones are the places where one ocean 
crust runs down to the other plates, and thus back- arc basin is shaped 
near. On the other hand, cold-water sulfide/hy drocarbon seeps were 
also found to support similar highly specialized faunal assemblages 
at sea bottom, having different geological settings from the hydro-
thermal vents (Paull et al. 1984, Olu et al. 1996, Sibuet and Olu 1998).

The discovery of deep-sea hydrothermal vent communities at such 
extreme environments where sun light never reaches and atmosphe-
ric pressures are several hundreds times higher than surface water 
was one of the most important discoveries in the history of Ocean 
Sciences. Deep-sea hydrothermal vents are characterized by super-
heated venting (often reaching over 380 Celsius degrees on the axis 
of the East Pacific Rise), which are driven by magma activities be-
low ocean crust (Spiess et al. 1980). As soon as superheated mi-
neral-rich and corrosive hydrothermal fluid vents out, it quickly mixes 
with cold sea water (1~2 Celsius degrees), creating ambient water 
temperature about 10 to 20 Celsius degrees. Hydrothermal fluids 

Fig. 1. The mid-ocean ridge system. Thick lines are mid-ocean ridges and thin lines besides the thick ones represent transform faults. Single line 
with pointers are subduction zones showing the direction of subduction. Open circles mark hydrothermal vent sites known around world 
oceans. Open rectangles mark cold-water seeps, mostly along continental margins. Modified from Vrijenhoek (1997) and Tunnicliffe and 
Fowler (1996).

gush out through rock-structures like a chimney which was formed 
by precipitation of minerals, when venting fluids interacted with sea 
water. Usually water temperatures at places where vent animals 
reside are of ambient range (Van Dover 2000). It was summarized 
that there were 443 hydrothermal vent invertebrate species known 
to generic level and/or at least published (Tunnicliffe et al. 1998). 
The authors recognized that many more were under study and were 
not determined onto generic level although their taxonomic status 
was known to ordinal or family level. Among hydrothermal vent 
faunas, mussels, clams, tube worms, crabs, shrimps, and snails are 
the most conspicuous macro fauna than other taxa (Grassle 1986). 
Particularly three phyla, mollusks, arthropods, and annelids, are pre-
ponderant (Van Dover 1990, Tunnicliffe et al. 1998).

Survival of vent and seep communities depends on chemosynthe-
tic primary production by microbes that exploit reduced compounds, 
mostly H2S and CH4 (see review by Fiala-Medioni and Felbeck 
1990, Fisher 1990, Cavanaugh 1994, Nelson and Fisher 1995). The 
high chemosynthetic primary production at hydrothermal vent pro-
vides nutrition directly to populations of vent fauna. Unexpected 
existence of prosperous deep-sea ecosystem at hydrothermal vent 
intrigued strong interests to many biologists, particularly to taxono-
mists, microbiologist and physiologists. Therefore a series of resear--
ches has been dedicated to untangle the mystery of energy source 
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for the ecosystem of hydrothermal vents over a decade since the 
discovery of vent. Many microbiologists and physiologists focused 
their research efforts on finding a basis of energy flow in food 
chains within the vent ecosystem. As the results, growing number 
of literatures on bacterial chemosynthesis and symbiotic association 
of these micro organisms and their host, vent invertebrates, were 
produced in this period (see review by Cavanaugh 1994). Symbiotic 
relationships between many of the invertebrates and chemoauto-
trophic bacteria were established widely as a basis for nutrition in 
related taxa from vents and seeps, as well as in other marine ani-
mals that inhabit in sulfide rich coastal sediments (Cavanaugh et al. 
1981, Felbeck 1981, Rau 1981, Cavanaugh 1983, Stein et al. 1988, 
Cary et al. 1997). Chemoautotrophic symbionts exploit reduced 
compounds available in the vent fluids; for example, carbon fixation 
occurs through oxidation of reduced sulfur compounds (Rau and 
Hedges 1979, Felbeck et al. 1981, Powell and Somero 1985, Belkin et 
al. 1986, Herry et al. 1989) or methane gas (Childress et al. 1986, 
Cavanaugh et al. 1987, Cary et al. 1988). In short, vent ecosystem 
was built on the chemosynthesis and symbiosis without depending on 
photosynthesis.

On the other hand, considerable attentions have been paid to 
ecological and evolutionary connections among highly specialized 
and fragmented deep-sea hydrothermal vent communities. Deep-sea 
chemosynthetic communities are distributed in discrete habitat islands 
that are typically separated by wide geographical gaps, occasionally 
over several hundreds to thousands kilometers apart. The patchy 
and ephemeral nature of these vent habitats raised a series of ques-
tions concerned with colonization and dispersal capabilities of vent- 
endemic animals. Investigations of dispersal modes of the inverte-
brates have been conducted by studying the dispersal potential of 
larvae (Lutz et al. 1980, Turner et al. 1985, Lutz 1988, Mullineaux 
et al. 1995, Tyler and Young 1999, Marsh et al. 2001, Pradillon et 
al. 2001) and by assessing realized dispersal, or gene flow (Black 
et al. 1994, Karl et al. 1996, Vrijenhoek 1997). In addition, faunal 
affinities between the hydrothermal vents and cold seeps have raised 
question about evolutionary relationships of invertebrate taxa 
(Craddock et al. 1995a, Black et al. 1997, Peek et al. 1997, Hala-
nych et al. 2001, Goffredi et al. 2003) In general vent and seep 
fauna turned out to be close relationship each other. Furthermore 
unusual benthic fauna associated with whale falls and sunken woods 
at deep-sea floor also were known to have close evolutionary rela-
tionship with fauna from vent and seep communities (Distel et al. 
2000a, Rouse et al. 2004, Jones et al. 2005). 

BIOGEOGRAPHY

Study of biogeography of vent fauna began as new hydrothermal 

vents on different ridges were found. Since the first discovery of 
vent communities on the Galapagos Rift, additional hydrothermal 
vents on the northern East Pacific Rise were found (Spiess et al. 
1980). Thereafter comparisons of taxonomic composition among 
global vent communities have been undertaken with great interests. 
Currently six biogeographic provinces are known (Van Dover 2000, 
Van Dover et al. 2001). According to Tunnicliffe et al. (1998) current 
biogeography of vents are characterized as the followings; (i) vent 
faunas exhibit extensive provincialism, (ii) over 75% of vent species 
occur at local venting sites, (iii) vent faunas between basins show 
greater similarity than to the nearby normal deep-sea fauna, (iv) 
overall composition of vent faunas consists of three major phyla, 
Arthropoda (35%), Mollusca (34%), Annelida (23%), (v) despite 
high productivity, vent communities show low diversity of species 
and also seemingly simpler trophic structure than other marine com-
munities, (vi) sulphide-rich cold seeps and organic masses (wood 
and animal carcasses) show close evolutionary affinity to those of 
vent at higher taxonomic level, but not in species level. Interes-
tingly the authors explained the endemism with relative recency of 
vent faunas and added a hypothesis of independent penetration to 
vents by many lineages. The pattern of taxonomic distribution and 
composition of vent faunas appeared to be related to tectonic plate 
history (Van Dover 1990, Tunnicliffe and Fowler 1996). Pathways 
along mid-ocean ridges were suggested as a major migration route 
between vents (Tunnicliffe and Fowler 1996). A recently found 
hydrothermal vent invertebrates in two venting sites (Kairei and 
Edmond) in Indian Ocean ridge demonstrated that most organisms 
have close evolutionary relationships with western Pacific vent 
faunas rather than to Mid-Atlantic faunas with except for shrimp 
(Van Dover et al. 2001). Fig. 2 shows some representative vent 
animals from the vents of the Central Indian Ocean ridges, par-
ticularly with newly found scaly snail which differs from all known 
mollusks by having its foot covered by scales containing iron 
sulfide (pyrite and greigite) (Waren et al. 2003, Goffredi et al. 
2004). Combining molecular dating of some vent faunas, vent 
biologists hypothesized that Cenozoic tectonic history and oceanic 
circulation patterns have played important roles for contemporary 
biogeographic patterns (Van Dover et al. 2002). 

Interestingly a comparison of fissile data and molecular phylo- 
genies of several dominant hydrothermal vent and seep taxa showed 
that most modern vent animal groups arose relatively recently and 
that taxonomic composition of vents has changed considerably through 
time, despite of significant discrepancies between both data sets 
(Little and Vrijenhoek 2003). Once it was suspected that hy-
drothermal vent faunas might be a relic of antiquity having a long 
evolutionary history from Palaeozoic, because several relic species 
are found only at hydrothermal vents (Newman 1985). 
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Fig. 2. Deep-sea man submersible research vessel (DSRV) Alvin on 
board. A launching moment of the Alvin into sea. Lowering 
deep-sea remote operating vessel (ROV) Jason into sea water. 
Blacker smoker and rock chimney of hydrothermal vent in 
East Pacific Rise. Stalked barnacles on a rock-chimney of 
hydrothermal vent. A newly discovered gastropod, scaly foot 
snail (family indeterminate) from the Kairei vent site in the 
central Indian Ocean ridge. Bathymodiolous mussels collected 
from the same vent, and arranged according to their size. 
Brachyuran crabs from the same site. An identical ruler is re-
peatedly shown for comparisons of body size (full size of 15 
cm). Photos and explanations are arranged from upper left to 
clockwise order.

However, molecular dating of origin of some dominant animal 
groups (vestimentiferans, bathymodiolins, vesicomyids and bresi-
liids) do not exceed Jurassic period even with conservative calibra-
tion of the molecular clocks (Little and Vrijenhoek 2003). 

ADAPTATION AND SYMBIOSIS

In the beginning of exploration of hydrothermal vent, vent bio-
logists were overwhelmed by unseen anatomies of vent animals which 

seemingly reflected their adaptation to deep-sea hydrothermal vent 
environments. For example some annelids, bivalve mollusks, and 
gastropods showed partial to entire loss of digestive organs and in-
stead development of specialized cells (bacteriocytes) that house sym-
biotic bacteria within cytoplasm of various tissues (Boss and Turner 
1980, Felbeck 1981, Rau 1981, Kenk and Wilson 1985, Fiala-Me-
dioni et al. 1986, Endow and Ohta 1989). Remarkably vent vesti-
mentiferan tubeworms (Annelida: Siboglinidae) completely lost di-
gestive organs, so a taxonomist put these animals even on a rank of 
new phylum, Vestimetifera (Jones 1985), although recently the 
taxonomic status was resolved by morphological, embryological, and 
molecular analyses as belonging to the phylum, Anelida (Kojima et 
al. 1993, Rouse and Fauchald 1995, Young et al. 1996, McHugh 
1997, Southward 1999). These, mouthless, gutless, adult vestimenti-
feran tubeworms rely entirely on sulfur-oxidizing endosymbionts for 
their nutrition. Symbionts are housed in specialized cells (bacte-
riocytes) located in a large organ called the trophosome. Vesicomyid 
clams (Bivalvia: Vesicomyidae) also depend on sulfur-oxidizing 
endosymbionts housed in gill epithelium (Felbeck et al. 1981, Rau 
1981), but they possess reduced or vestigial digestive systems (Boss 
and Turner 1980). Bathymodiolus mussels (Bivalvia: Mytilidae) also 
contains symbiotic bacteria; however these mussels have a complex 
pattern in housing endosymbionts. Some species have only sulfur- 
oxidizing endosymbiotic bacteria in specialized bacteriocytes of gill 
tissue, and others house methanotrophic microbes, and some house 
both types of symbionts (Fisher et al. 1987, Cavanaugh et al. 1992, 
Distel et al. 1995, Robinson et al. 1998). In addition, endosymbiotic 
bacteria appear not only epithelial cell of gill but also in soft tissue 
of mantle (Fiala-Medioni et al. 2002, Salerno et al. 2005).

Symbiotic relationships between invertebrates and endosymbiotic 
bacteria have evolved repeatedly in distantly related invertebrate 
taxa from hydrothermal vents and cold-water sulfide/hydrocarbon 
seeps (Cavanaugh et al. 1981, Felbeck 1981, Rau 1981, Cavanaugh 
1983, Stein et al. 1988, Cary et al. 1997). Such obligatory nature 
of symbioses between invertebrate hosts and chemoautotrophic bac-
teria raised questions about mechanisms for transmission of endosy-
mbionts to the next generation. Acquisition mode of symbionts has 
important implications for survival strategy of hydrothermal vent 
animals. An assurance of food source via endosymbionts might gua-
rantee likely survival at unpredictable environments such as ephe-
meral vent habitats. This type of biological tie may lead to optimal 
adaptation to their habitats. However, a strict tie between a host and 
a symbiont might raise problem when they are laid in new environ-
ments. Most hydrothermal vent invertebrates have larval stage 
affected by water regime in their life histories (Tyler and Young 
1999) So, released larvae can opportunistically settle to different 
environments where adaptation between host and endosymbionts are 
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not likely optimal. Under this context a few molecular studies gave 
insight into the evolution and adaptation of symbioses between vent 
animals and their endosymbiotic bacteria. 

The hypothesis that sulfur-oxidizing, endosymbiotic bacteria asso-
ciated with deep-sea hydrothermal vent animals are transmitted 
vertically between generations was examined in a group of conspi-
cuous deep-sea animals. Studies of Vesicomyid clams showed that 
these clams vertically inherit their endosymbionts via transovarial 
mechanism and showed significant congruence of genetic diversifi-
cation of host clams and their symbionts at both population and 
species level (Endow and Ohta 1990, Cary and Giovannoni 1993, 
Peek et al. 1998, Hurtado et al. 2003). Whereas, studies of vestimen-
tiferan tubeworms suggested a horizontal transmission from envi-
ronment (Jones and Gardiner 1988, Southward 1988, Edwards and 
Nelson 1991, Cary et al. 1993, Di Meo et al. 2000). These two groups 
appear to represent both ends of transmission mode of endosym-
bionts. Other taxa might be placed between these two ends. In case 
of Bathymodiolus mussels, environmental acquisition mode was 
strongly suggested (Won et al. 2003a). 

Differences in the mode of transmission of symbionts have showed 
contrasting phylogenetic topologies of host-symbiont pairs (Feldman 
et al. 1997, Peek et al. 1998, Nelson and Fisher 2000). While 
vertical transmission in vesicomyid clams (Endow and Ohta 1990, 
Cary and Giovannoni 1993, Hurtado et al. 2003) has resulted in 
cospeciation (e.g. parallel evolutionary trees) between clam host 
species and their associated symbionts (Peek et al. 1998), horizontal 
transmission mode in vestimentiferan tubeworms has resulted in non 
parallel phylogeny between hosts and their symbionts (Feldman et 
al. 1997, Nelson and Fisher 2000).

GENE FLOW AND DISPERSAL PATTERN

Molecular systematic studies have greatly increased our under-
standing of organismic dispersal, population differentiation, and me-
chanisms of speciation in marine organisms (Palumbi 1994). Species 
that occupy deep sea habitats are thought to be relatively homoge-
neous, because the abyssal zone is continuous and uniform across 
vast distances (Gage and Tyler 1991), and because many of its inha-
bitants possess planktonic larvae or juveniles stages capable of dis-
persing in the water column (Scheltema 1986, Young 1994). Charac-
terized as patchy and ephemeral (Grassle 1985, Van Dover and Hes-
sler 1990, Tunnicliffe et al. 1998), discrete vent fields may be sepa-
rated by large distances ranging from a few kilometers to hundreds 
and/or thousands of kilometers. A series of gene flow studies among 
populations of hydrothermal vent animals focused on vents in the 
Galapagos Rift and northern East Pacific Rise showed different 
pattern of dispersal (stepping-stone dispersal, island model dispersal, 

and ridge-scale isolation) (France et al. 1992, Black et al. 1994, 
Craddock et al. 1995b, Vrijenhoek 1997, Black et al. 1998). Further 
studies that involved a larger area about 5,000 km wide in eastern 
Pacific region revealed unseen aspect of dispersal patterns of vent 
organisms (Won et al. 2003b, Hurtado et al. 2004). A role of ocean 
currents were seriously inferred for larval dispersal rates along 
spreading ridges in these regions. For example a topographic feature 
of the Easter Microplate and its associated deep-sea circulations 
coincided with genetic discontinuity between northern and southern 
populations of several vent species, and thus manifest east-to-west 
circulations, which are off-axis direction to the ridge in this region 
(Lupton and Craig 1981, Fujio and Imasato 1991), was interpreted 
to have played a role as a dispersal barrier to larvae of different 
species. Although the extent of impediment by currents varied among 
different taxa, probably due to other confounding effects, a general 
congruent pattern of genetic structures in this region highly sug-
gests that deep-ocean currents be an important factor for shaping 
contemporary biogeography of vent faunas.

Addition to spatial variation of suitable vent habitats along sprea-
ding ridges, a temporal variation in them also raises another impor-
tant issue in ecology and evolution of vent faunas. Volcanic erup-
tions cause extinction of vent habitats. A volcanic eruption between 
9° 45´ N and 9° 52´ N on the East Pacific Rise in 1991 provided 
a chance to observe ecological succession of deep-sea hydrother-
mal vents during five years (Shank et al. 1998). Photographic and 
chemical time-series analyses during this period revealed a sequence 
of colonizing events like a following order and a continuing trend 
of decrease of H2S concentration: microbial mats, mobile vent fauna 
(e.g. amphipods, copepods, and galatheid and brachyuran crabs), 
Vestimentiferan tube worm Tevnia jerichonana, other Vestimenti-
feran Riftia pahyptila, mussels Bathymodiolus thermophilus, galatheid 
crabs and serpulid polychaetes. The authors hypothesize that the 
above events might be general sequence of biological succession 
along the northern East Pacific Rise. 

Population genetic studies on migration rate between isolated 
populations and genetic diversity among different taxa shed a light 
on the possible long term effects of habitat structure and ecological 
succession events on spreading mid-ocean ridge system. When vent 
species were categorized into early colonizer (appearing within 2 
years of vent formation) and late colonizers (after 2 years), genetic 
diversity between these two groups were significantly separated with 
early colonizers having twice the genetic diversity of the late colo-
nizers (Vrijenhoek 1997, Vrijenhoek et al. 1998). It has been hypo-
thesized that the late colonizers would have smaller metapopulation 
size and thus be more prone to lose genetic diversity due to popu-
lation bottlenecks and founder events (Vrijenhoek 1997, Vrijen-
hoek et al. 1998). 
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MOLECULAR PHYLOGENY

Vents and seeps share several species and more taxa at generic 
and family level. Faunal affinities between vents and other sulphide/ 
hydrocarbon rich cold seeps and organic masses cast a testable hypo-
thesis of common origin of these highly specialized animals. Mole-
cular phylogenetic studies were undertaken to illustrate origin and 
age of faunas from chemosynthetic communities (Craddock et al. 
1995a, Black et al. 1997, Peek et al. 1997, Halanych et al. 2001, 
Goffredi et al. 2003). These molecular phylogenetic approaches re-
vealed that the most taxa belonging to the chemosynthetic commu-
nities are truly close relatives each other than any other marine inver-
tebrates, and also ages of vent taxa are much younger than Paleo-
zoic origin. On the basis of morphological characteristics early vent 
biologist speculated that vent faunas are Palaeozoic relic (Newman 
1985). While molecular data mostly estimated origin of some vent 
taxa as recent as between Cretaceous and Tertiary, some fossil records 
dated the relative of two modern vent taxa to be Palaeozoic (e.g. 
vestimentiferan-like tube worms and monoplacophoran mollusks) 
(Little and Vrijenhoek 2003).

Additionally invasions of deep-sea hydrothermal vents by marine 
invertebrates were hypothesized to occur via a wood/bone-to-seeps/ 
vents and a historical progression form shallow-water to deep-water 
habitats in case of Bathymodiolus mussels (Craddock et al. 1995a, 
Distel et al. 2000b). This hypothesis was supported in that vent 
species might represent a monophyletic group except for one lineage 
showing habitat transition from vent to seep (Won et al. 2002, 
Jones et al. 2005). The direction from shallow to deep ocean is 
consistent with a hypothesis posited by Jacobs and Lindberg (1998). 
They suggested that global anoxic/dysoxic events during the late 
Cretaceous and early Tertiary would have caused mass extinction of 
vent communities. Thus vent habitats were reinvaded by animals 
from other refugia, such as coastal vents and seeps. This extinc-
tion/repopulation hypothesis seems to be consistent with an onshore- 
offshore diversifications of other non-vent marine invertebrates ani-
mals. This scenario may be the case in deep-sea mussels, because 
they showed a general diversification pattern from shallow to deep 
invasion. Currently fossil records from ancient vent sites are very 
sparse. In future it would be very interesting to see if recurrent 
extinction/repopulation events would have led to extant taxa in deep- 
sea hydrothermal vents. Therefore further molecular phylogenetic 
analyses for other non-analyzed taxa are also needed.
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