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INTRODUCTION

The area of mudflats in South Korea is approximately 2,815
km2, which occupies 3% of the gross area of Korean Peninsula.
Among them, 2,393 km2 is distributed in western and southern
coast of Korea. Because of its relatively shallow, protected waters,
and availability of nutrients, it is exceptionally rich in biological
activity and provides commercially most valuable marine products.
Recently, due to the large-scale land reclamation project, mudflat
area reduced rapidly, which threatened the coastal ecosystem in this
area seriously (Lee et al. 2003).

Halophytes inhabited in mudflat area are functionally acted as
primary producers and their roots and stalks induce solidity and
stability of sediments, which prevent land from erosion and from
accumulation of sand by wind. Moreover, halophytes have the abi-
lity to purify the sewage wastes and place various organisms as
habitats (Choi 1998).

Microbiological studies on the mudflats were mainly about the
distribution, enzyme activities (Kim and Lee 1992, Choi and Lee
1996, Lee et al. 1996, Lee et al. 2001), and diversity (Kim et al.
2004, Kim et al. 2005) on the sediment. However, little is known
about microbial diversity on the rhizosphere of halophytes in Korea.
Soil microorganisms associated with plant roots have an important
influence on plant nutrition, growth promotion, and disease inte-
raction (Assigbetse et al. 2005). The structure and function of plant

root system contributes to the establishment of the rhizosphere
microbial population (Nye and Tinker, 1977, Russell 1977, Lynch
1982) and rhizosphere microbial communities are mainly deter-
mined by plant species (Ibekwe and Kennedy 1998, Marshner et al.
2001, Miethling et al. 2000) and soil characteristics (Degens et al.
2000, Gelsomino et al. 1999). The interactions of plant roots and
rhizosphere microorganisms are based largely on the composition of
root cell components and root exudates (Grayston et al. 1996, Ibe-
kwe and Kennedy 1998). Within the rhizosphere, plant roots have
a direct influence on the composition and density of the soil micro-
bial community, known as the rhizosphere effect (Atlas and Bartha
1992). Therefore, microbial distribution and composition on the
rhizosphere can be grasped by estimating the rhizosphere effects.

In this study, as a baseline survey data for the restoration of ha-
lophytes on the mudflat area in Korea, we compared the population
densities of aerobic and anaerobic heterotrophic bacteria, physio-
logical groups of heterotrophic bacteria, and R/S ratios on Suaeda
japonica as a first step among the halophyotes inhabited on western
and southern mudflats in Korea. At the same time, we isolated rhizo-
sphere bacteria from the roots of Suaeda japonica and identified
them by 16S rDNA analysis.

MATERIALS AND METHODS

Sampling and Counting of Bacteria
Samples of rhizosphere soil (R) and soil remote from root (S)
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of halophyte Suaeda japonica were collected from July to October,
2003 from 4 stations on the mudflats of western and southern
mudflats of Korea (Fig. 1). Soils were collected by using a soil
auger and were processed within a few hours after collection and
were maintained at 5 during storage.

Methods in microbiological study deal with isolation and estima-
tion of numbers were followed by Paul and Clark (1988). For the
determination of the aerobic heterotrophic bacteria, one gram of rhi-
zosphere soil sample and one gram of soil sample remote from
roots were suspended in 10-mL sterile saline solution (0.85% NaCl),
respectively and shook for 5 min at 100 rpm. Then serial decade di-
lutions were made with sterile saline water and 0.1 mL of each was
plated on marine ager 2216 (Difco). After incubation at 25 ± 2 for
72 hrs, colonies were enumerated. Viable anaerobic heterotrophic
bacteria were determined in a similar way to aerobic heterotrophic
bacteria, but their incubation took place in an anaerobic jar (BBL
Anaerobic System, USA). To determine the number of aerobic phy-
siological groups of heterotrophic bacteria, soluble starch (0.2%)
foramylolytic bacteria, carboxymethyl cellulose (0.5%) for cellulolytic
bacteria, and gelatin (0.4%) for proteolytic bacteria were added, respec-

Fig. 1. A map showing the sampling sites in the western and sou-
thern mudflats of Korea (St. 1: Daebu-do, St. 2: Mankyung
River, St. 3: Goheung bay, St. 4: Suncheon bay).

tively, as the sole carbon source to the Tryticase soy broth (Difco,
USA) as for the basal medium (Wollum 1982). After incubation at
25 ± 2 for 72 hrs, colonies were counted by the methods of
Holding and Collee (1971). The final population densities were ex-
pressed as log10 colony-forming units (CFU) g-1 oven- dried sediment.

PCR Amplification of 16S rDNA
For the specific amplification of 16S rDNA fragments of isolates

from the roots of halophyte Suaeda japonica, a nested PCR pro-
tocol was applied using primers 27F (5'-AGA GTTTGATCMTGG
CTCAG-3') and 1522R (5'-AAGGAGGTGWTCCARCC-3'). The PCR
reaction mixture contained 5 μL of 10X PCR amplification buffer
(final concentration: 50 mM KCl, 0.01% gelatin, 10 mM Tris-HCl,
pH. 9.0), 4 μL of 2.5 mM MgCl2, 1 μL of 10 mM dNTP, 1 μL of
each 10 pmol oligonucleotide primer, and 1 U of Taq polymerase
(Takara, Japan) in 50 μL of PCR mixture. DNA was amplified with
a GeneAmp PCR system 2700 (Applied Biosystems, USA) thermal
cycler cycle using the following programme: initial denaturation at
94 for 10 min, followed by 30 cycle of denaturation at 94 for
30 sec, annealing at 55 for 30 sec, extension at 72 for 5 min,
and a final extension at 72 for 7 min. PCR products were either
used immediately or stored at 4 prior to subsequent analyses.
Two replicate reactions were run for each sample.

16S rDNA Sequencing and Phylogenetic Analysis
Ribosomal DNA sequences were determined using an ABI PRISM

3700 GENETIC analyser (Applied Biosystem, USA) at the Geno-
tech Company (Daejon, Korea). The sequences were compared direc-
tly to all known sequences deposited in GeneBank database using
the basic local alignment search tool (BLAST). The phylogenetic trees
were constructed by the neighbor-joining (NJ) method (Saitou and
Nei 1987) using the NEIGHBOR program (PLYLIP, version 3.5).

Accession Numbers
The sequence data obtained in this study have been submitted to

the GenBank database under accession numbers from AY690670 to
690684.

RESULTS AND DISCUSSION

Population Densities of Heterotrophic Bacteria
Bacterial population densities of aerobic heterotrophic bacteria

inhabited on the roots of Suaeda japonica were in the range of 5.3
± 1.8 × 105 ~ 6.3 ± 3.3 × 107 cfu g-1 dry weight (d. wt.) during
sampling periods at 4 stations (Fig. 2a). Examining the population
densities according to sampling stations, the population densities at
Daebu-do (St. 1) fluctuated between 5.3 ± 1.8 × 105 and 1.3 ± 0.3
× 106 cfu g-1 d. wt., and those at Mankyung (St. 2) between 1.1
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± 0.3 × 107 and 2.6 ± 0.6 × 107 cfu g-1 d. wt., those at Goheung
bay (St. 3) between 1.4 ± 0.8 × 107 and 3.3 ± 1.2 × 107 cfu g-1

d. wt., and those at Suncheon bay (St. 4) between 3.1 ± 1.3 × 107

and 6.3 ± 3.3 × 107 cfu g-1 d. wt., respectively. Bacterial population
densities of aerobic heterotrophic bacteria at Suncheon bay were
shown the highest values among 4 sampling stations. When com-
paring the population densities of aerobic heterotrophic bacteria on
the roots of Suaeda japonica with those of other halophytes inve-
stigated by Park (2005), they showed lower values than those on
Suaeda maritima and Salicornia herbacea during sampling periods,
which indicated rhizosphere microbial communities were mainly
determined by root exudates according to plant species (Ibekwe and
Kennedy 1998, Marshner et al. 2001, Miethling et al. 2000).

Bacterial population densities of anaerobic heterotrophic bacteria
on the roots of Suaeda japonica range from 2.8 ± 1.3 × 104 to 1.8
± 0.7 × 107 cfu g-1 d. wt. during sampling periods at 4 stations
(Fig. 2b). Population densities by sampling stations were 3.2 ± 0.7
× 104 ~ 4.1 ± 2.0 × 104 cfu g-1 d. wt. at Daebu-do (St. 1), 1.4 ±

Fig. 2. Population densities of (a) aerobic and (b) anaerobic heterotrophic bacteria in the rhizosphere soil and soil remote from roots of halophyte
Suaeda japonica sampled from western and southern mudflats of Korea during July and October, 2003.

Fig. 3. Population densities of (a) amylolytic heterotrophic bacteria, (b) cellulolytic heterotrophic, and (c) proteolytic bacteria in the
rhizosphere soil and soil remote from roots of halophyte Suaeda japonica sampled from western and southern mudflats of Korea
during July and October, 2003.

0.7 × 105 ~ 1.6 ± 0.4 × 105 cfu g-1 d. wt. at Mankyung (St. 2), 2.8
± 1.3 × 104 ~ 6.0 ± 4.5 × 104 cfu g-1 d. wt. at Goheung bay (St.
3), and 1.2 ± 0.3 × 106 ~ 1.2 ± 0.7 × 107 cfu g-1 d. wt. at Suncheon
bay (St. 4), respectively (Fig. 3). Comparing the population densities
by sampling stations, those at Suncheon bay showed the maxima
during sampling periods, which indicated that the soil environment
at St. 4 was more anaerobic condition than other sampling stations.

The physiological groups of heterotrophic bacteria on the roots
of Suaeda japonica ranged from 4.4 ± 0.6 × 106 to 2.5 ± 1.2 × 107

cfu g-1 d. wt. for amylolytic bacteria, from 8.5 ± 6.0 × 104 to 2.3
± 1.6 × 106 cfu g-1 d. wt. for cellulolytic bacteria, and from 3.8
± 1.8 × 105 to 4.2 ± 2.9 × 106 cfu g-1 d. wt. for proteolytic bacteria,
respectively (Fig. 3). Amylolytic and proteolytic bacteria at St. 3
showed maxima, while cellulolytic bacteria at St. 4 showed maxima
during sampling periods. According to the results of measured po-
pulation densities of physiological groups of heterotrophic bacteria
on the roots of Suaeda japonica, population densities of amylolytic
bacteria showed higher values than those of proteolytic and cellu-
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lolytic bacteria, which indicated that plant species (Miethling et al.
2000), plant age-dependent effects (Gomes et al. 2001, von der
Weid et al. 2000), and the materials released by plant into the soil
(Atlas and Bartha 1992) had a direct influence on the composition
and density of the soil microbial community. And root exudation
is an important ecological phenomenon which manipulates the plant
and root microbial succession (Singh 2006).

Plant Root Effects on Microbial Population
The rhizosphere is a soil ecological region where soil is subjected

to specific influenced by plant root due to the exudates from root
cells and sloughing of tissue (Curl and Truelove 1986, Giddens and
Todd 1984, Harley and Russell 1968). The population and func-
tional dynamics of soil microorganisms differ from rhizosphere to
non-rhizosphere zone due to the rhizosphere effect (Johnson et al.
1959). The metabolic state of the plant and the nature of soil appear
to influence the extent of the rhizosphere effect (Rovira 1991). Fac-
tors such as soil type, soil moisture, pH, temperature, plant age,
relative humidity and several other factors are known to influence
the rhizosphere effect. The rhizosphere effect can be seen by looking
at the ratio of the number of microorganisms in the rhizosphere soil
(R) to the number of corresponding microorganisms in soil remote
from roots (S) (Katznelson 1946, Timonin 1966). Activities of rhizos-
phere bacteria is related to the types and amounts of root exudates/
rhizodeposition.

The R/S ratios on the roots of Suaeda japonica were measured-
from 2.33 to 2.39 by sampling stations (Table 1). Comparing R/S
values of Suaeda japonica with those of other halophytes measured
by Park (2005), similar R/S values were measured. Generally R/S
ratios range from 5 to 20, but it is common to find an R/S ratio
of 100 (Gray and Parkinson 1968, Woldendorp 1978). However, the
R/S ratios on the roots of Suaeda japonica of sampledmudflat area
showed lower R/S values than those of ordinary terrestrial environ-
ments. It suggests that, apart from halophyte specificity, mudflat

Table 1. The R/S ratios of halophyte Suaeda japonica sampled from
western and southern mudflats of Korea by looking at the
ratio of the number of microorganisms in the rhizosphere
soil (R) to the number of corresponding microorganisms in
soil remote from roots (S)

Halophyte
Site

Suaeda japonica
(R/S Ratio)

Daebu-do 2.39

Mankyung River 2.35

Goheung bay 2.36

Suncheon bay 2.33

environments condition played an important role for deciding R/S
values for the rhizosphere bacteria to grow.

Sequencing and Phylogenetic Analysis
Bacterial 16S rDNA clones were characterized by partial sequen-

cing and phylogenetic analysis. There were eleven total clones. As
a result of the identification of eleven isolates from the roots of
Suaeda japonica from Goheung bay by molecular methods, five
clones such as Pseudomonas sp. (GC06, GC07) and Marinobacter
sp. (GC10-1, GC10-2, GC11) were determined to belonging to γ
-Proteobacteria group and six clones such as Sulfitobacter (GC01,
GC02), Mesorhizobium sp. (GC08, GC15), and Sphingomonas sp.
(GC13, GC14) belonging to α-Proteobacteria group were also iden-
tified (Fig. 4). Whereas among four isolates from Suncheon bay,

Fig. 4. Phylogenetic tree showing the affiliation of 16S rDNA se-
quences to selected reference sequence of the heterotro-
phic bacteria on the rhizosphere of Suaeda japonica. The
tree was constructed from a distance matrix by the neigh-
bour-joining analysis. The bar represents 10% estimated
difference in nucleotide sequences per 16S rDNA position.
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Table 2. List of 16S rDNA genes for heterotrophic bacteria isolated from root of Suaeda japonica

Halophyte St. Serial No. Accession No. Closet Genebank library and accession No. Similarity (%)

Suaeda
japonica

Goheung
bay

GC01 AY690670 Sulfitobacter mediterraneus Y17387 1343/1371 (97%)

GC02 AY690671 Sulfitobacter mediterraneus Y17387 1364/1392 (97%)

GC06 AY690672 Pseudomonas alcalophila AJ550466 1402/1431 (97%)

GC07 AY690673 Pseudomonas pseudoalcaligenes Z76666 1403/1432 (97%)

GC08 AY690674 Mesorhizobium sp. AY258096 1373/1378 (99%)

GC10-1 AY690675 Marinobacter aquaeolei AF173969 1430/1450 (98%)

GC10-2 AY690676 Marinobacter flavimaris AY517632 1447/1468 (98%)

GC11 AY690677 Marinobacter aquaeolei AF173969 1430/1450 (98%)

GC13 AY690678 Marinobacter aquaeolei AF173969 1427/1427 (100%)

GC14 AY690679 Sphingomonas flavimaris AY554010 1405/1405 (100%)

GC15 AY690680 Mesorhizobium sp. AY258096 1373/1378 (99%)

Suncheon
bay

SC01 AY690681 Shewanella marisflavi AY485224 1486/1487 (99%)

SC06 AY690682 Jonesia qinghaiensis AJ626896 1036/1045 (99%)

SC09 AY690683 Bacillus aquaemaris AF483625 1451/1464 (99%)

SC10 AY690684 Marinobacter aquaeolei AF173969 1448/1469 (98%)

two clones (SC01, SC10) were determined to belonging to γ-Pro-
teobacteria group, and another two clones (SC06, SC09) belonging
to Actinobacteria and Bacilli group, respectively, were found (Table
2). According to Gray and Herwing (1996), γ-Proteobacteira group
were dominated in the marine sediment. In our study, most identi-
fied sequences had < 97% sequence similarity to previously culti-
vated microorganisms and phylogenetic analyses of isolated bacteria
from the roots of Suaeda japonica were revealed that the major
group of bacteria detected in this study were closely related to γ
-Proteobacteria and Bacilli group, and α-Proteobacteria and Actino-
bacteria group were also found.

Recently, the rapid development of molecular tools for the ana-
lysis of bacterial communities has greatly enhanced the sensitivity
and potential of microbial ecology. However, despite the large amount
of data concerning the molecular identification of bacteria in the
environment, understanding the function of microbial communities is
still a major objective in microbial ecology (Wellington et al. 2003).
In the present study, although we can not understand the exact
function of rhizosphere bacteria isolated in this study, we found
higher bacterial densities on rhizosphere than in soils remote from
rhizosphere, and halophyte species and mudflat environments affected
the rhizosphere bacterial communities. In order to understand the
rhizosphere bacteria and mudflat environments, further studies are
needed. However, It is expected that the results in this study will
contribute to understand the rhizosphere environment of halophytes,

and provide a framework for future molecular ecological study for
the restoration of halophytes on the mudflat area in Korea.
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